Electronic Supplementary Information (ESI)

Rapid synthesis of nucleotide pyrophosphate linkages in a ball mill

Francesco Ravalico,^a Ivano Messina,^b M. Victoria Berberian,^a Stuart L. James,^a Marie E. Migaud^b* and Joseph S. Vyle^a*

 ^a School of Chemistry and Chemical engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, BT9 5AG, Belfast, Northern Ireland, UK.
^b School of Pharmacy, Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, United Kingdom Belfast, UK.

> *E-mail: j.vyle@qub.ac.uk*; *Tel: +44 (0)28 90975418* E-mail: *m.migaud@qub.ac.uk*; *Tel: +44 (0)28 90972689*

Table of Contents

General information	2
Experimental procedures and analytical data	3
P^1 , P^2 -di(adenosin-5'-yl)diphosphate bis(triethylammonium) salt - Ap ₂ A (3a)	3
P^{1} , P^{3} -di(adenosin-5'-yl)triphosphate tris(triethylammonium) salt - Ap ₃ A (3b)	5
P^{1} , P^{4} -di(adenosin-5'-yl)tetraphosphate tetrakis(triethylammonium) salt - Ap ₄ A (3c)	8
P^{1} -(adenosin-5'-yl)- P^{2} -(thymidin-5'''-yl)diphosphate bis(triethylammonium) salt - Ap ₂ dT (3d)	10
β -Nicotinamide adenine dinucleotide triethylammonium salt - β -NAD ⁺ (3 e)	
P^{1} -(adenosin-5'-yl)- P^{2} -(ribos-5"-yl)diphosphate bis(triethylammonium) salt - ADPR (3f)	15

General information

All substrates were purchased from Sigma and used as supplied: AMP-morpholidate (A1127); AMP.H_{0.9}.Na_{1.1} (A1752); ADP.H_{1.6}.Na_{1.4} (A2754); ATP.Na₂.H₂ (A6419); TMP.Na₂ (T7004), β -NMN (N3501) 5-ribose monophosphate (83870). Other reagents or solvents were purchased from commercial suppliers (Sigma, Aldrich or Fluka) and used without further purification. H₂O was purified to 18.2 M Ω by reverse osmosis (Barnstead NANOpure Diamond water purification system).

All ball mill reactions were performed using a Retsch Mixer Mill MM 400^1 and a 15mm stainless steel ball (13.67g) according to the conditions described below.

Stock solutions of triethylammonium bicarbonate (TEAB) in 18.2 M Ω H₂O were prepared by bubbling CO₂ through a sintered frit into a mixture of triethylamine and H₂O at 0°C overnight to give homogenous solutions and subsequently diluted to 1 M. This stock was stored at 4°C until required (up to 2 days) and then diluted as required to give: 100 mM TEAB (aq.), pH 7.8 (Buffer A); or 100 mM TEAB in 65:35 (v/v) MeCN:H₂O, pH 8.2 (Buffer B).

To the ball-milled reaction mixtures was added H₂O (1 mL) giving turbid solutions and treated as below: <u>Analytical HPLC</u>

Analysis of crude reaction mixtures was performed following further dilution (10 μ l in 1 mL H₂O) and injection of a 10 μ l aliquot of this diluted solution onto HPLC (Merck Hitachi D7000 system). Elution from the C-18 reversed phase silica column (Phenomenex Clarity 5 μ m Oligo-RP - 150 x 4.60 mm) was performed using a gradient of: 0-25 min, 0-20% Buffer B; 25-30 min, isocratic elution at 20% B; flow rate, 1.0 mL min⁻¹. Chromatograms were recorded using a Merck Hitachi Diode Array Detector L-7455 monitoring at 260 nm. Compositional analysis was based upon molar extinction coefficients described in the literature²⁻⁴

Preparative HPLC

The stock solution was dilution following addition of a further aliquot of H_2O (0.5 mL) and this diluted solution purified by preparative HPLC using the same system as described above with the following changes: the material was injected in two aliquots (0.75 mL); a larger column was utilised (Phenomenex Clarity 5µm Oligo-RP - 250 x 21.2 mm); the gradient was modified: 0-7.5 min, isocratic elution at 0% B; 7.5-67.5 min, 0-20% B; flow rate, 7.0 mL min⁻¹; monitoring was performed at 280 nm

¹H, ¹³C or ³¹P NMR NMR spectra were recorded on a Bruker III-400 or DRX-500 at 20°C. All spectra were recorded at ambient temperature in D₂O. Mass spectra were recorded using a VG Quattro II Triple Quadrupole Mass Spectrometer (Electrospray). Mass spectrometry was performed by Analytical Services and Environmental Projects (ASEP) at Queen's University Belfast.

Experimental procedures and analytical data

P^1 , P^2 -di(adenosin-5'-yl)diphosphate bis(triethylammonium) salt - AppA (**3a**).

A stainless steel jar (25 mL) was charged with a mixture of adenosine-5'phosphoromorpholidate 4-morpholine-N,N'-dicyclohexylcarboxamidine

salt (1) (48 mg, 0.068 mmol), adenosine-5'-monophosphate (**2a**) (25 mg, 0.067 mmol, 1 eq.), MgCl₂(H₂O)₆ (21 mg, 0.10 mmol, 1.5 eq.), tetrazole (10 mg, 0.14 mmol, 2.1 eq.), H₂O (7.5 μL, 0.42 mmol, 6 eq.) and a 15.0 mm stainless steel ball. The vessel was vibrated at 30 Hz for 90 minutes and allowed to cool to room temperature. The reaction mixture was suspended in H₂O, analysed and then purified by C18 RP-HPLC – see general information. Appropriate fractions were lyophilised to yield pure **3a** (45 mg, 0.051 mmol, 75%). ¹H NMR (400 MHz, D₂O) δ = 8.06 (2H, s), 7.88 (2H, s), 5.82 (2H, d, *J* = 5.0 Hz), 4.44 (2H, t, *J* = 5.0 Hz), 4.32 (2H, t, *J* = 4.5 Hz), 4.23 (4H, d, *J* = 11.2 Hz), 4.13 (2H, d, *J* = 11.6 Hz), 2.85 (6H, q, *J* = 7.3 Hz), 1.06 (9H, t, *J* = 7.3 Hz); ¹³C NMR (101 MHz, D₂O) δ = 154.66, 152.27, 148.02, 139.09, 117.68, 87.08, 83.30 (d, ²*J*_{*C,P*} = 8.6 Hz), 74.67, 69.86, 65.09, 46.65, 8.20; ³¹P (162 MHz, D₂O) δ = -11.30; ES+ MS (C₂₀H₂₇N₁₀O₁₃P₂) (M + H⁺), calc. 677.1234, found 677.1215.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

 Ap_2A

P¹,P³-di(adenosin-5'-yl)triphosphate tris(triethylammonium) salt –

<u>ApppA (3b)</u>

A stainless steel jar (25 mL) was charged with a mixture of adenosine-5'-phosphoromorpholidate 4-morpholine-N,N'-dicyclo-hexylcarboxamidine salt (1) (50 mg, 0.070 mmol), adenosine-5'-

diphosphate (**2b**) (30 mg, 0.065 mmol, 0.9 eq.), MgCl₂(H₂O)₆ (22 mg, 0.11 mmol, 1.5 eq.), tetrazole (10 mg, 0.14 mmol, 2 eq.), H₂O (7.5 μ L, 0.42 mmol, 6 eq.) and a 15.0 mm stainless steel ball. The vessel was vibrated at 30 Hz for 90 minutes and allowed to cool to room temperature. The reaction mixture was suspended in H₂O, analysed and then purified by C18 RP-HPLC – see general information. Appropriate fractions were lyophilised to yield **3b**·(**TEAB**)_{1.5} (39 mg, 0.032 mmol, 49%). ¹H NMR(400 MHz, D₂O) δ = 8.17 (2H, s), 7.91 (2H, s), 5.85 (2H, d, *J* = 3.8 Hz), 4.47 (2H, t, *J* = 4.6 Hz), 4.37 (2H, t, *J* = 4.6 Hz), 4.30 – 4.10 (6H, m), 2.86 (27H, q, *J* = 7.3 Hz), 1.08 (40.3H, t, *J* = 7.3 Hz); ¹³C NMR (101 MHz, D₂O) δ = 154.84, 152.55, 148.11, 139.04, 117.75, 87.15, 83.04 (d, ²*J*_{*C,P*} = 9.4), 74.78, 69.57, 64.58 (d, ³*J*_{*C,P*} = 5.4 Hz), 46.11, 8.78; ³¹P NMR (162 MHz, D₂O) δ = -11.78 (2 P_a, d, *J* = 19.7 Hz), -23.25 (1 P_β, t, *J* = 19.7); ES+ MS, (C₂₀H₂₈N₁₀O₁₆P₂) (M + H⁺), calc. 757.0898, found 757.0906.

Ap₃A

 P^{1} , P^{4} -di(adenosin-5'-yl)tetraphosphate tetrakis(triethyl-

ammonium) salt - AppppA (3c)

A stainless steel jar (25 mL) was charged with a mixture of adenosine-5'-phosphoromorpholidate 4-morpholine-N,N'-

dicyclohexylcarboxamidine salt (1) (51 mg, 0.072 mmol),

adenosine-5'-triphosphate (2c) (40 mg, 0.073 mmol, 1 eq.), MgCl₂(H₂O)₆ (22 mg, 0.11 mmol, 1.5 eq.), tetrazole (10 mg, 0.14 mmol, 2 eq.), H₂O (7.5 µL, 0.42 mmol, 6 eq.) and a 15.0 mm stainless steel ball. The vessel was vibrated at 30 Hz for 90 minutes and allowed to cool to room temperature. The reaction mixture was suspended in H₂O, analysed and then purified by C18 RP-HPLC – see general information. Appropriate fractions were lyophilised to yield pure **3c**·(**TEAB**)_{0.6} (50 mg, 0.037 mmol, 52 %). ¹H NMR(400 MHz, D₂O) $\delta = 8.34$ (2H, s), 8.06 (2 H, s), 5.96 (2H, d, J = 5.9), 4.68 (2H, t, J = 4.5), 4.51 (2H, t, J = 4.5), 4.34 – 4.27 (2H, m), 4.27 - 4.20 (2H, m), 4.20 - 4.11 (2H, m), 2.96 (27.6H, q, J = 7.3 Hz), 1.13 (41.3H, t, J = 7.3 Hz);¹³C NMR (101 MHz, D₂O) δ = 155.10, 152.63, 148.69, 139.58, 118.00, 86.55, 83.89 (d, ²J_{CP} = 9.3), 74.36, 70.31, 65.14 (d, ${}^{3}J_{C,P} = 5.5$), 46.29, 8.51; 31 P NMR (162 MHz, D₂O) $\delta = -11.51$ (2 P_a, AA'XX'), -23.44 (2 P_b, AA'XX'); ES+ MS, $(C_{20}H_{29}N_{10}O_{19}P_4)$ (M + H⁺)calc. 837.0561, found 837.0557.

 P^{1} -(adenosin-5'-yl)- P^{2} -(thymidin-5'''-yl) bis(triethylammonium) salt - AppdT

<u>(3d)</u>

A stainless steel jar (25 mL) was charged with a mixture of adenosine-5'phosphoromorpholidate 4-morpholine-N,N'- dicyclohexylcarboxamidine salt (1) (100 mg, 0.14 mmol), thymidine-5'-monophosphate (2d) (52 mg, 0.14

mmol, 1 eq.), MgCl₂(H₂O)₆ (43 mg, 0.21 mmol, 1.5 eq.), tetrazole (20 mg, 0.28 mmol, 2 eq.), H₂O (15 μL, 0.83 mmol, 6 eq.) and a 15.0 mm stainless steel ball. The vessel was vibrated at 30 Hz for 90 minutes and allowed to cool to room temperature. The reaction mixture was suspended in H₂O, analysed and then purified by C18 RP-HPLC – see general information. Appropriate fractions were lyophilised to yield pure **3d** (86 mg, 0.10 mmol, 71 %). ¹H NMR (400 MHz, D₂O) δ = 8.32 (1H, s), 8.03 (1H, s), 7.35 (1H, s), 6.04 (1H, t, *J* = 6.9), 5.93 (1H, d, *J* = 5.8), 4.63 (1H, t, *J* = 5.5), 4.45 – 4.32 (2H, m), 4.30 – 3.88 (6H, m), 2.85 (12H, q, *J* = 7.3Hz), 2.21 – 2.00 (2H, m), 1.64 (3H, s), 1.06 (18H, t, *J* = 7.3 Hz); ¹³C NMR (101 MHz, D₂O) δ = 166.02, 155.30, 152.65, 151.25,148.84, 139.66, 136.95, 118.31, 111.22, 86.69, 85.22 (d, ²*J*_{C,P} = 8.9), 84.65, 83.67 (d, ²*J*_{C,P} = 9.1), 74.14, 70.84, 70.24, 65.38 (d, ³*J*_{C,P} = 4.5), 65.26 (d, ³*J*_{C,P} = 4.6), 38.65, 11.59; ³¹P NMR (162 MHz, D₂O) δ = -11.45; ES+ MS (C₃₂H₅₇N₉O₁₄P₂) (M + 2Et₃NH⁺), calc. 855.3657, found 855.3649, (C₂₆H₄₃N₈O₁₄P₂) (M + Et₃NH⁺), calc. 753.2374, found 753.2375.

<u> β -Nicotinamide adenine dinucleotide triethylammonium salt - β -NAD⁺</u>

<u>(3e)</u>

A stainless steel jar (25 mL) was charged with a mixture of adenosine-5'-phosphoromorpholidate 4-morpholine-*N*,*N*'-

dicyclohexylcarboxamidine salt (1) (99 mg, 0.14 mmol), β-nicotinamide-5'-monophosphate (**2e**) (47 mg, 0.14 mmol, 1 eq.), MgCl₂(H₂O)₆ (43 mg, 0.21 mmol, 1.5 eq.), tetrazole (20 mg, 0.29 mmol, 2 eq.), H₂O (15 μ L, 0.83 mmol, 6 eq.) and a 15.0 mm stainless steel ball. The vessel was vibrated at 30 Hz for 90 minutes and allowed to cool to room temperature. The reaction mixture was suspended in H₂O, analysed and then purified by C18 RP-HPLC – see general information. Appropriate fractions were lyophilised to yield **3e**·(**TEAB**)_{0.2} (65 mg, 0.081 mmol, 58 %). ¹H NMR (400 MHz, D₂O) δ = 9.22 (1H, s), 9.05 (1H, d, *J* = 6.3), 8.71 (1 H, d, *J* = 8.2), 8.28 (1 H, s), 8.17 – 8.00 (1H, m), 7.96 (1H, d, *J* = 5.7), 5.97 (1H, d, *J* = 5.4), 5.89 (1H, d, *J* = 6.0), 4.67 – 4.62 (2H, m), 4.46 – 4.42 (1H, m), 4.42 – 4.36 (2H, m), 4.35 – 4.31 (1H, m), 4.30 – 4.22 (2H, m), 4.19 – 4.05 (3H, m), 3.04 (7.3H, q, *J* = 7.3Hz), 1.14 (11H, t, *J* = 7.3Hz); ¹³C NMR (101 MHz, D₂O) δ = 165.10, 155.16, 152.66, 148.77, 145.69, 142.33, 139.83, 139.62, 133.57, 128.56, 118.17, 99.98, 86.99 (d, ²*J*_{*C,P*} = 8.7), 86.60, 83.79 (d, ²*J*_{*C,P*} = 8.9), 77.57, 73.92, 70.59, 70.34, 65.35 (d, ²*J*_{*C,P*} = 5.2), 64.86 (d, ³*J*_{*C,P*} = 5.1); ³¹P NMR (162 MHz, D₂O) δ = -11.56, -11.69 (2 P, ABq, *J* = 20.8). ES+ MS (C₂₁H₂₈N₇O₁₄P₂), (M⁺), calc. 664.1170, found 664.1141.

 P^{1} -(adenosin-5'-yl)- P^{2} -(ribos-5"-yl) bis(triethylammonium) salt - ADPR

<u>(3f)</u>

A stainless steel jar (25 mL) was charged with a mixture of adenosine-5'phosphoromorpholidate 4-morpholine-*N*,*N*'-dicyclohexylcarboxamidine salt

(1) (52 mg, 0.073 mmol), ribose-5-monophosphate (**2f**) (35 mg, 0.074 mmol, 1 eq.), MgCl₂(H₂O)₆ (23 mg, 1.1 mmol, 1.5 eq.), tetrazole (10 mg, 0.14 mmol, 2 eq.), H₂O (7.5 µL, 0.42 mmol, 6 eq.) and a 15.0 mm stainless steel ball. The vessel was vibrated at 30 Hz for 90 minutes and allowed to cool to room temperature. The reaction mixture was suspended in H₂O, analysed and then purified by C18 RP-HPLC – see general information. Appropriate fractions were lyophilised to yield pure **6c** (24 mg, 0.030 mmol, 43 %). ¹H NMR (500 MHz, D₂O) $\delta = 8.40$ (1 H, s), 8.12 (1 H, s), 6.02 (1H, dd, J = 5.9, 1.7), 5.20 (0.37H, d, J = 4.1), 5.09 (0.63H, d, J = 2.2), 4.67 – 4.63 (1H, m), 4.49 – 4.36 (1 H, m), 4.27 (1 H, brs), 4.21 – 4.15 (0.37 H, m), 4.11 (2 H, s), 4.07 – 4.03 (0.63 H, m), 4.03 – 3.81 (4 H, m); ¹³C NMR (101 MHz, D₂O) $\delta = 155.51$, 152.27, 139.82, 101.12, 96.33, 86.76, 83.93 (d, ² $J_{C,P} = 9.0$), 81.07 (d, ² $J_{C,P} = 8.9$) 75.12, 74.24, 70.66, 70.40, 69.98, 66.29 (d, ³ $J_{C,P} = 4.7$), 65.20; ³¹P NMR (162 MHz, D₂O) $\delta = -11.34$; ES+ MS (C₁₅H₂₄N₅O₁₄P₂) (M + H⁺), calc. 560.0795, found 560.0796, (C₂₁H₃₉N₆O₁₄P₂) (M + TEA⁺), calc. 661.2000, found 661.1995.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

REFERENCES

- 1. http://www.retsch.com/products/milling/mixer-mills/mm-400/
- 2. N. Russo and R. Shapiro, J. Biol. Chem., 1999, 274, 14902-14908.
- 3. E. Holler, B. Holmquist, B. L. Vallee, K. Taneja and P. Zamecnik, *Biochemistry*, 1983, 22, 4924-4933.
- 4. J. C. Austin, C. W. Wharton and R. E. Hester, *Biochemistry*, 1989, 28, 1533-1538.