Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Intramolcular Diels-Alder Reactions Using Chiral Ruthenium Lewis Acid and

Application in the Total Synthesis of Ledol

Sirinporn Thamapipol and E. Peter Kundig*

Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4,

Switzerland.

*Corresponding author : Fax: (+)41-22-379-3215; Tel: (+)41-22-379-6093

E-mail: peter.kundig@unige.ch

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Contents Page General 3 Cyclopropanation of bicyclic 21 1. Compound **21** 4 2. Compound **22** 4 3. Compound 23 5 Experimental procedures of trienes and adducts 4. Triene **4** 6 5. Triene **5** 7 9 6. Triene **8** 7. Triene **12** 12 8. Triene **13** 14 9. Triene **14** 16 10. Triene **15** 17 11. Adduct from triene 4 19 12. Adduct from triene 5 20 13. Adduct from triene 8 20 14. Adduct from triene **12** 21 15. Adduct from triene 14 22 16. Adduct from triene 15 23 Following IMDA of triene $\mathbf{10}$ with ReactIR $^{\text{TM}}$ 23 References 24 NMR spectra 25

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

General

Catalysts **1a** and **1b** were prepared by published procedures.¹¹H-, ¹³C- and ³¹P-, NMR spectra were recorded on Bruker ARX-500, AMX-400 or ARX-300 FT spectrometers in the solvent indicated. ¹H- and ¹³C-NMR chemical shifts (δ) are quoted in parts per million (ppm) relative to TMS. Coupling constants (J) are in hertz (Hz). ³¹P-NMR chemical shifts are referenced to H₃PO₄ as external standard. Infrared spectra (IR) were recorded on a Perkin-Elmer Spectrum One spectrophotometer using a diamond ATR Golden Gate sampling. A band is described as strong (s), medium (m), or weak (w) depending on its depth. Electron impact (EI) HRMS mass spectra were obtained using a Finningan MAT 95 operating at 70eV. Electrospray ionization (ESI) HRMS analyses were measured on a VG analytical 7070E instrument. Optical rotations were measured on a Perkin Elmer 241 Polarimeter using a quartz cell (l = 10 cm) with a Na highpressure lamp (λ = 589 nm, continuous). UV-Vis spectra were recorded on a JASCO V-650 spectrophotometer equipped with a stirrer and a temperature controller (25 °C). CD spectra were recorded on a JASCO J-815 spectropolarimeter with a thermostated S3cell holder at 25°C in quartz cells with 1 cm light path. Three spectra were averaged, and the spectrum of solvent was subtracted for correction. The reactions were carried out under N₂. Solvents were removed by using a rotary evaporator at a water-aspirator pressure followed by evacuation of the flask to approximate 0.20 mmHg to remove traces of solvents. All glassware and syringes were ovendried and further dried by placing under vacuum and heating with a heat gun for ca. 5 minutes as necessary. Flash column chromatography (FC) was performed by using Brunschwig silica gel (60 Å/32-63 mesh) (Art. 7736). Thin layer chromatography was performed on pre-coated aluminium plates (Fluka silica 60F₂₅₄), and visualized using UV light or aq. KMnO₄. Purification of THF, diethyl ether, toluene and dichloromethane was carried out by passing through activated Al₂O₃ (Solvtek[©] purification system). Commercial chemicals were used as supplied unless otherwise stated.

Experimental procedures of trienes and adducts

Cyclopropanation of bicyclic 21

1. 1-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol (21)

To a stirring solution of bicyclic ketone **20** (100 mg, 0.67 mmol, 1 eq) in THF (2 mL) at -78 °C was added dropwise a solution of MeMgBr (3 M in ethers, 0.27 mL, 0.80 mmol, 1.2 eq). After being stirred at -78 °C for 30 min (white suspension was observed), the reaction mixture quenched with sat. NH₄Cl (1 mL) and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic phases were brine, dried (anh. MgSO₄) and filtrated. Solvents were removed in vacuo. The residue was purified by FC on silica gel (50% Et₂O in pentanes, R_f = 0.36,) to give a colorless viscous oil of alcohol **21** (100 mg, 0.60 mmol, 90% yield). IR (Neat): v_{max} 3403*m*, 2932*m*, 2860*m*, 1462*m*, 1374*m*, 1255*m* cm⁻¹; MS: *m*/*z* (%) relative intensity 149.25 (M⁺-H₂O); ¹H NMR (400 MHz, CDCl₃) δ 5.73–5.57 (m, 2H, CH=CH), 2.24–2.03 (m, 3H, CHCOHCHH and CHHCH=CH), 1.86 (ddd, *J* = 14.7, 9.1, 5.4 Hz, 1H, CHHCH=CH), 1.74–1.34 (m, 9H, HOCCHHCH₂CH₂CH and CH₂CH), 1.33 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 132.0 (CH), 126.5 (CH), 72.6 (C), 45.1 (CH), 35.5 (CH₂), 35.3 (CH), 28.6 (CH₂), 28.0 (CH₃), 26.3 (CH₂), 23.1 (CH₂), 17.5 (CH₂).

2. 1,1-dibromo-4-methyldecahydro-1*H*-cyclopropa[a]naphthalen-4-ol (22)²

Bicyclic alcohol **21** (30 mg, 0.18, 1 eq) was dissolved in CH_2Cl_2 (0.1 mL) followed by addition of $CHBr_3$ (0.32 mL, 3.6 eq, 20 eq) and powdered NaOH (115 mg, 2.88 mmol, 16 eq). The reaction mixture was stirred at 50-60 °C for 48 h. This mixture was diluted with water (1 mL) and extracted with CH_2Cl_2 (3 × 2 mL). The combined organic phases were dried (anh. MgSO₄) and filtrated. Solvents were removed in vacuo. The residue was chromatographed on silica gel (30% Et_2O in pentanes, $R_f = 0.36$ in 50% Et_2O in pentanes) to give a colorless solid of gem-

dibromopropane **22** (50 mg, 0.148 mmol, 82% yield). IR (Neat): v_{max} 3374*m*, 2929*s*, 2863*m*, 1460*m*, 1374*w*, 1121*m*, 728*m* cm⁻¹; MS: *m/z* (%) relative intensity 319.95 (M⁺-H₂O); ¹H NMR (400 MHz, CDCl₃) δ 2.30 (ddd, J = 18.2, 9.5, 4.6 Hz, 1H, HOCC*H*H), 2.12–2.01 (m, 1H, Br₂CC*H*CH), 1.91 (td, J = 10.5, 3.7 Hz, 1H, Br₂CC*H*CH₂), 1.79–1.52 (m, 6H, C*H*HC*H*HC*H*CO*H*, CH₂C*H*HCH₂ and Br₂CCHC*H*H), 1.53–1.18 (m, 9H, HOCC*H*HCH*H*CH₂, Br₂CCHC*H*CHCH*H* and CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 72.1 (C), 42.1 (CH), 39.7 (C), 35.9 (CH₂), 34.4 (CH), 31.4 (CH), 29.0 (CH₂), 28.2 (CH), 28.1 (CH₃), 22.0 (CH₂), 21.5 (CH₂), 17.9 (CH₂); HSMS (ESI-TOF) calcd for C₁₂H₁₈Br₂O; 335.9724 found: 335.9725.

3. 1,1,4-trimethyldecahydro-1*H*-cyclopropa[a]naphthalen-4-ol (23)³

A solution of MeLi (1.6 M in ethers, 0.67 mL, 1.07 mmol, 5.1 eq) was added dropwise under N₂ at -78 °C to a stirred suspension of CuCN (56 mg, 0.651 mmol, 3.1 eq) in THF. The green suspension became to white turbid solution in 5 min. A solution of dibromopropane (70 mg, 0.21 mmol, 1 eq) in THF (2 mL), was slowly added to the previous mixture at -78 °C. The reaction mixture was warmed up to -20 °C and stirred for 4 h. MeI (0.25 mL, 4.2 mmol, 20 eq) was then added at -63 °C. After being stirred at -63 °C for 1 h, the mixture was poured into sat. NaHCO₃, extracted with Et_2O (3 × 10 mL) and washed with water (10 mL). The combined organic phases were dried (anh. MgSO₄) and filtrated. Solvents were removed in vacuo. The residue was chromatographed on silica gel (20% Et₂O in pentanes, $R_f = 0.42$) to give a colorless oil of gemdimethylcyclopropane 23 (40 mg, 0.19 mmol, 92% yield). IR (Neat): v_{max} 3364m, 2929s, 2862m, 1456*m*, 1373*m*, 1223*w*, 1116*m*, 914*m* cm⁻¹; MS: m/z (%) relative intensity 225.1 (M⁺-H+NH₄); ¹H NMR (500 MHz, CDCl₃) δ 2.02 (ddt, J = 14.5, 9.8, 4.5 Hz, 1H, Me₂CCHCHH), 1.87–1.78 (m, 1H, Me₂CCHCH), 1.74–1.61 (m, 1H, CH₂CHHCH₂), 1.59–1.47 (m, 3H, CHHCH₂CHH and OH), 1.46–1.16 (m, 10H, CHHCH₂CH, CHHCHHCHH, HOCCH₃), 1.01 (s, 3H, CH₃), 0.98 (s, 3H, CH_3), 0.67 (td, J = 9.2, 4.5 Hz, 1H, Me₂CCHCH₂), 0.32 (dd, J = 9.2, 2.8 Hz, 1H, Me₂CCHCH); ¹³C NMR (126 MHz, CDCl₃) δ 72.6 (C), 43.8 (CH), 36.7 (CH₂), 30.4 (CH₂), 30.0 (CH₃), 29.6 (CH), 28.0 (CH₃), 26.9 (CH), 21.1 (CH₂), 20.1 (CH), 19.9 (CH₂), 19.3 (CH₂), 18.0 (C), 15.1 (CH₃); HSMS (ESI-TOF) calcd for C₁₄H₂₄O; 208.1827 found: 208.1825.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Experimental procedures of trienes and adducts

4. Synthesis of triene 4⁴

(E)-7-bromohepta-1,3-diene was prepared according to the literature procedure.⁵

4.1 (*E*)-2-methyldeca-1,7,9-trien-3-ol (36)

In round bottom flask equipped with a magnetic stirring bar and Mg powder (50-150 mesh, 170 mg, 7 mmol, 2 eq), under N₂, was charged with THF (3.5 mL) and heated with heating gun until refluxing. The solution of alkyl bromide (613 mg, 3.5 mmol, 1 eq) in THF (5 mL) was added dropwise around 10% of all solution to refluxed heterogeneous Mg in THF over 30 min. After 15 min, the brown gray solution of Grignard reagent was cannula transferred to dropping funnel that was connected to another one round bottom which was contained a solution of methacrolein (0.23)mL, 2.8 mmol, 0.8 eq) in THF (2.0 mL) at -78 °C. The Grignard reagent was dripped into the solution of methacrolein over 15 min and warmed up to -50 °C for 1 h. The reaction mixture was quenched with sat. NH₄Cl (7 mL), extracted with Et₂O (3 x 10 mL), brine and dried (anh. Na₂SO₄). The crude reaction was purified by FC on silica gel (20% Et₂O in pentanes, $R_f = 0.19$ in 30 % Et₂O in pentanes) to give a pale yellow oil of alcohol **36** (390 mg, 2.35 mmol, 67% yield). IR (Neat): v_{max} 3351br. s, 2932s, 2860s, 1454m, 1377w, 1059s cm⁻¹; MS: m/z (%) relative intensity 166 (M⁺, 2), 151 (3), 148 (3), 133 (4), 123 (5), 97 (16), 94 (14), 80 (100), 79 (45), 71 (32), 69 (14), 67 (21), 55 (13); ¹H NMR (300 MHz, CDCl₃): δ 6.31 (td, J = 16.9, 10.3 Hz, 1H, CHCH=CH₂), 6.06 (dd, J = 15.1, 10.3 Hz, 1H, CHCH=CH₂), 5.70 (td, J = 6.9, 15.1 Hz, 1H, CH₂CH=CH), 5.09 (d, J = 16.9 Hz, 1H, CHCH=CHH), 5.00-4.91 (m, 2H, CHCH=CHH and $CH_3C=CHH$), 4.84 (t, J = 1.51 Hz, 1H, $CH_3C=CHH$), 4.07 (dd, J = 9.93, 6.08 Hz, 1H, CHOH), 2.10 (q, J = 7.1 Hz, 2H, =CHCH₂), 1.73 (s, 3H, CH₃), 1.49 (m, 5H, CH₂CH₂ and OH); ¹³C NMR (CDCl₃, 75 MHz): δ 147.6 (C), 137.3 (CH), 134.9 (CH), 131.3 (CH), 114.9 (CH₂), 111.1 (CH₂),

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

75.9 (CH), 34.4 (CH₂), 32.4 (CH₂), 25.2 (CH₂), 17.6 (CH₃); HSMS (ESI-TOF) calcd for $C_{11}H_{18}O$; 166.1358 found: 166.1356.

4.2 (*E*)-2-methyldeca-1,7,9-trien-3-one (4)

In a 10 mL round-bottom flask equipped with a magnetic stirring bar, under N₂, was charged with a solution of dimethyl sulfoxide (0.052 mL, 0.66 mmol, 1.1 eq) in 20 mL of THF. Oxalyl chloride (0.056 mL, 0.66 mmol, 1.1 eq) was added at -78 °C and the mixture was stirred for 15 min. 1,7,9-trienol **36** (100 mg, 0.6 mmol, 1 eq) was then added slowly, and the mixture was allowed to stir for 20 min. NEt₃ (0.23 mL, 1.8 mmol, 3 eq) was then added, and the reaction was allowed to warm to r.t. and stirred for 30 min. 1 M HCl (2 mL) was added, the aqueous and organic phases were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 x 5 mL). The combined organic layers were then dried (anh. Na₂SO₄) and concentrated in vacuo to afford crude ketone 4 which was purified by FC on silica gel (5% Et₂O in pentanes, $R_f = 0.22$) to give a pale vellow oil of trienone **4** (72 mg, 0.43 mmol, 72% yield).⁶ IR (Neat): v_{max} 2926m, 1676s, 1631w, 1452*m*, 1369*w*, 1095*m*, 1003*s* cm⁻¹; MS: m/z (%) relative intensity 164 (M⁺, 17), 149 (15), 139 (17), 121 (15), 112 (16), 111 (34), 109 (17), 97 (38), 95 (27), 93 (30), 85 (48), 83 (39), 81 (37), 71 (71), 69 (84), 57 (100), 55 (85); ¹H NMR (400 MHz, CDCl₃) δ 6.32 (td, J = 17.0, 10.3 Hz, 1H CHCH=CH₂), 6.07 (dd, J = 15.2, 10.3 Hz, 1H, CHCH=CH₂), 5.96 (s, 1H, CH₃CH=CHH), 5.77 (s, 1H, CH₃CH=CH*H*), 5.74-5.63 (td, *J* = 15.2, 6.6 Hz, 1H, CH=CH), 5.11 (d, *J* = 17.0 Hz, 1H, CHCH=CHH), 4.98 (d, J = 10.7 Hz, 1H, CHCH=CHH), 2.70 (t, J = 7.4 Hz, 2H, CH₂CO), 2.13 (q, J = 7.2 Hz, 2H, =CHCH₂), 1.88 (s, 3H, CH₃), 1.74 (p, J = 7.4 Hz, 2H, CH₂); ¹³C NMR (CDCl₃, 100 MHz): δ 202.0 (CO), 144.6 (C), 137.1 (CH), 134.4 (CH), 131.7 (CH), 124.5 (CH₂), 115.2 (CH₂), 36.7 (CH₂), 32.0 (CH₂), 23.9 (CH₂), 17.7 (CH₂); HSMS (ESI-TOF) calcd for C₁₁H₁₆O; 164.1201 found: 164.1202.

5. Synthesis of triene 5^7

5.1 (E)-deca-1,7,9-trien-3-ol (26)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Obtained in 66% yield as a pale yellow oil according to the procedure in 4.1. IR (Neat): v_{max} 3347*s*, 2929*s*, 1651*m*, 1603*m*, 1424*m*, 1001*s*, 896*s* cm⁻¹; MS: *m/z* (%) relative intensity 152 (M⁺, 1), 134 (3), 111 (4), 91 (6), 83 (15), 80 (100), 79 (38), 70 (11), 67 (25), 57 (32), 55 (19);¹H NMR (400 MHz, CDCl₃): δ 6.36 (dt, *J* = 17.0, 10.4 Hz, 1H, CHC*H*=CH₂), 6.11 (dd, *J* = 15.2, 10.4 Hz, 1H, CHC*H*=CH₂), 5.91 (ddd, *J* = 17.2, 10.6, 6.4 Hz, 1H, CHCH=CH₂), 5.74 (dd, *J* = 15.2, 7.5 Hz, 1H, CHC*H*=CHCH₂), 5.27 (dt, *J* = 17.2, 1.4 Hz, 1H, CHCH=CHH), 5.16 (ddd, *J* = 17.0, 5.9, 4.7 Hz, 2H, CHCH=CH*H* and HOCHCH=C*H*H), 5.01 (d, *J* = 10.1 Hz, 1H, HOCHCH=CH*H*), 4.16 (q, *J* = 5.9 Hz, 1H, CHOH), 2.17 (q, *J* = 6.7 Hz, 2H, CH=CHCH₂), 1.68–1.53 (m, 4H, CH₂CH₂); ¹³C NMR (CDCl₃, 100 MHz): δ 141.2 (CH), 137.2 (CH), 134.9 (CH), 131.3 (CH), 115.0 (CH₂), 114.8 (CH₂), 73.2 (CH), 36.5 (CH₂), 32.4 (CH₂), 24.9 (CH₂).

5.2 (*E*)-deca-1,7,9-trien-3-one (5)

In a 50 mL round-bottom flask equipped with a magnetic stirring bar, under N_2 was charged with a solution of dimethyl sulfoxide (0.23 mL, 3.3 mmol, 1.1 eq) in CH₂Cl₂ (18 mL). Oxalyl chloride (0.28 mL, 3.3 mmol, 1.1 eq) was added at -78 °C and the mixture was stirred for 15 min. The trienol 26 (3 mmol, 1 eq) was then added slowly, and the mixture was allowed to stir for 20 min. NEt₃ (1.25 mL, 9 mmol, 3 eq) was then added, and the reaction was allowed to warm to r.t. and stirred for 30 min. In the reaction mixture, buffer NaH₂PO₄/Na₂HPO₄ (pH 8, 2 mL) was added, the aqueous and organic phases were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 x 5 mL). The combined organic layers were then dried (anh. Na₂SO₄) and concentrated in vacuo to afford a 1:0.2 of ketone 5 and its cycloaddition product (15% Et₂O in pentanes, $R_f = 0.41$ and 0.31, respectively). This mixture cannot be purified by FC on silica gel with 1-2% NEt₃ because IMDA reaction of triene 5 easily performed (The purification was performed to give 60% yield of cycloadduct 20). IR (Neat): v_{max} 1702s, 1681s, 1615m, 1401m, 1004s cm⁻¹: ¹H NMR (400 MHz, CDCl₃): δ 6.34 (m, 2H, COCH=CHH), 6.22 (d, J = 17.6 Hz, 1H, COCH=CHH), 6.11 (dd, J = 17.0, 10.1 Hz, 1H, CHCH=CH₂), 5.84 (d, J = 10.5 Hz, 1H, CHCH=CH), 5.72 (m, 1H, CH₂CH=CH), 5.13 (d, J = 17.0 Hz, 1H, CH=CHH), 5.00 (d, J = 10.1 Hz, 1H, CH=CHH), 2.61 (dd, J = 14.6, 7.2 Hz, 2H, CH₂CO), 2.15 (q, J = 7.2 Hz, 2H, CH₂), 1.74 (m, 2H, CH₂);¹³C NMR (CDCl₃, 100 MHz): δ 200.3 (CO), 137.2 (CH), 136.6 (CH), 134.4 (CH), 131.6 (CH), 127.5 (CH₂), 114.8 (CH₂), 38.7 (CH₂), 31.8 (CH₂), 23.2 (CH₂).

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

6. Synthesis of triene 8

(*E*)-octa-5,7-dienal was prepared according to the literature procedure.⁸

6.1 (E)-octa-5,7-dien-1-ol (37)

A solution of aldehyde (0.90 g, 7.30 mmol) in MeOH (7.3 mL) was added NaBH₄ (excess) as solid at 0 °C. After 20 min, the reaction was monitored by TLC which starting material was not observed. The mixture was added with water (7 mL) to destroy the rest of NaBH₄ and extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were dried (anh. MgSO₄). The solvent was removed in vacuo. The crude product was passed through silica gel plug (40% Et₂O in pentanes, $R_f = 0.18$) to give a colorless oil of alcohol **37** (0.85 g, 6.75 mmol, 92% yield). IR (Neat): v_{max} 3330m, 2930m, 1651w, 1603w, 1415m, 1334m, 1002s cm⁻¹; MS: m/z (%) relative intensity 126.1 (M⁺); ¹H NMR (400 MHz, CDCl₃) δ 6.31 (dt, J = 17.0, 10.2 Hz, 1H, CHCH=CH₂), 6.06 (dd, J = 15.2, 10.4 Hz, 1H, CHCH=CH₂), 5.69 (dt, J = 15.2, 7.2 Hz, 1H, CH=CHCH), 5.09 (d, J = 17.0 Hz, 1H, CH=CHH), 4.96 (d, J = 10.2 Hz, 1H, CH=CHH), 3.64 (t, J = 6.5 Hz, 2H, CH₂OH), 2.12 (q, J = 7.0 Hz, 2H, CH=CHCH₂), 1.63-1.54 (m, 3H, HOCH₂CH₂), 1.52-1.42 (m, 2H, CH₂CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 137.3 (CH), 135.0 (CH), 131.3 (CH), 115.0 (CH₂), 62.8 (CH₂), 32.3 (2CH₂), 25.3 (CH₂); HSMS (ESI-TOF) calcd for C₈H₁₄OH; 126.1045 found: 126.1043.

6.2 (*E*)-nona-6,8-dienenitrile (38)

MsCl (0.70 mL, 9.11 mmol, 1.35 eq) was added dropwise to a 0 $^{\circ}$ C solution of alcohol **37** (850 mg, 6.75 mmol, 1 eq) and NEt₃ (1.88 mL, 13.50 mmol, 2 eq) in dry CH₂Cl₂ (22 mL). After 1 h, the reaction mixture was poured into a separating funnel which was contained cold 1 M HCl

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

(10 mL). The aqueous phase was separated and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic phases were washed with sat. NaHCO₃ (10 mL), dried (anh. Na₂SO₄), filtrated and evaporated in vacuo to give a crude mesylate. The crude product was then combined with KCN (814 mg, 12.5 mmol, 1.85 eq) and 80:20 mixture of EtOH:H₂O (5.5 mL and 1.4 mL). This mixture was refluxed for 18 h. The cooled mixture was diluted with brine and extracted with Et₂O (3 x 10 mL), dried (anh. Na₂SO₄), filtrated and evaporated in vacuo. The residue was purified by FC on silica gel (10% Et₂O in pentanes, $R_f = 0.16$) to give a pale yellow oil of nitrile **38** (709 mg, 5.25 mmol, 78% yield). IR (Neat): v_{max} 2935*m*, 1652*w*, 1603*w*, 1460*m*, 1426*m*, 1005*s* cm⁻¹; MS: *m/z* (%) relative intensity 136.11 (M⁺+H); ¹H NMR (400 MHz, CDCl₃) δ 6.29 (dt, *J* = 17.0, 10.2 Hz, 1H, CHCH=CH₂), 6.06 (dd, *J* = 15.2, 10.4 Hz, 1H, CHCH=CH₂), 5.65 (dt, *J* = 15.2, 7.2 Hz, 1H, CH=CHCH), 5.11 (d, *J* = 17.0 Hz, 1H, CH=CH=CH₂), 1.65 (m, 2H, NCCH₂CH₂), 1.61-1.51 (m, 2H, CH₂CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 137.0 (CH), 131.9 (CH), 119.7 (CN), 115.5 (CH₂), 31.6 (CH₂), 28.1 (CH₂), 24.8 (CH₂), 17.1 (CH₂); HSMS (ESI-TOF) calcd for C₉H₁₃O; 135.1041 found: 135.1048.

6.3 (2*E*,8*E*)-methyl undeca-2,8,10-trienoate (39)

In a 50 mL round-bottom flask equipped with a magnetic stirring bar, under N₂, was charged with a solution of nitrile **38** (0.27 g, 2 mmol, 1 eq) of in dry Et₂O (4 mL). Then, DIBALH solution (1.2 M in toluenes, 2.5 mL, 3 mmol, 1.5 eq) was added dropwise at 0 °C. The solution was warmed to r.t. and stirred for 4.5 h. The solution was cooled to 0 °C, and then 1.50 mL of methanol was added followed by 7.5 mL of 1 M HCl. This two-phase mixture was stirred for 2 h at r.t. and extracted with Et₂O (3 x 10 mL). The organic extracts were washed with sat. NaHCO₃ (10 mL), dried (anh. Na₂SO₄), filtered, and concentrated in vacuo to give aldehyde **39** (5% Et₂O in pentanes, R_f = 0.20).

In a 50 mL round-bottom flask equipped with a magnetic stirring bar, was put with NaH (0.122 g, 3 mmol, 1.5 eq) which was washed with hexanes $(3 \times 5 \text{ mL})$ and decantation by syringe under N₂. Methyldiethylphosphonoacetate (0.44 mL, 2.4 mmol, 1.2 eq) was added to a 0 °C suspension of NaH in THF (5 mL) and the resulting mixture was stirred for 1 h at r.t.. The solution of crude dienal **39** (2 mmol, 1 eq) in THF (1 mL) was then added to the reaction at 0 °C. The reaction mixture was slowly warmed to r.t. and stirred for 30 min, the reaction was quenched

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

with sat. NH₄Cl. The aqueous and organic layers were then separated, the aqueous layer extracted with Et₂O (3 x 10 mL), and the combined organic layers were dried (anh. Na₂SO₄). Following concentration of the organic layers in vacuo, the residue was chromatographed on silica gel (5-10% Et₂O in pentanes, $R_f = 0.36$ in 10% Et₂O in pentanes) to give ester **40** as colorless oil (0.305 g, 1.46 mmol, 73% yield). IR (Neat): v_{max} 2932m, 1722s, 1655m, 1603w, 1436m, 1269s, 1196s, 1173s, 1003s cm⁻¹; MS: m/z (%) relative intensity 195.0 (M⁺); ¹H NMR (400 MHz, CDCl₃) δ 7.01 (dt, J = 15.4, 7.0 Hz, 1H, CH=CHCO₂Me), 6.35 (dt, J = 16.6, 10.2 Hz, 1H, CHCH=CH₂), 6.09 (dd, J = 15.4, 10.4 Hz, 1H, CH=CHCO₂Me), 5.87 (dt, J = 15.4, 1.5 Hz, 1H, CH=CHCO₂Me), 5.74 (t, J = 15.4, 7.2 Hz, 1H, CH=CHCH), 5.14 (d, J = 16.6 Hz, 1H, CH=CHCO₂Me), 2.14 (q, J = 6.8 Hz, 2H, CH₂CH=CH), 1.58-1.42 (m, 4H, CH₂CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 167.2 (CO), 149.5 (CH), 137.2 (CH), 134.8 (CH), 131.3 (CH), 121.0 (CH), 115.0 (CH₂), 51.5 (CH₃), 32.3 (CH₂), 32.1 (CH₂), 28.6 (CH₂), 27.6 (CH₂); HSMS (ESI-TOF) calcd for C₁₂H₁₈O₂; 194.1307 found: 194.1307.

6.4 (2*E*,8*E*)-undeca-2,8,10-trienal (8)

To the ester **40** (270 mg, 1.4 mmol, 1 eq) solution in dry Et₂O (7.7 mL) was added DIBALH (1.2 M in toluenes, 2.38 mL, 2.86 mmol, 2.2 eq) at 0 °C. After 2 h, the reaction was quenched by addition of sat. Rochell's salt (7 mL) and allowed to warm to r.t.. The clear 2 phases were seperated. The aqueous phase was extracted with Et₂O (3 x 10 mL). The combined organic phases were dried (anh. MgSO₄). Volatiles were evaporated in vacuo. The crude product was purified by FC (40% Et₂O in pentanes, $R_f = 0.27$) to give a pale yellow oil of trienal **8**. IR (Neat): v_{max} 3355*br*. *m*, 2928*m*, 1652*w*, 1003*s*, 904*s* cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.36 (dt, *J* = 17.0, 10.2 Hz, 1H, CHCH=CH₂), 6.10 (dd, *J* = 15.1, 10.4 Hz, 1H, CHCH=CH₂), 5.72 (m, 3H, CH=CHCH and CH=CHCH₂OH), 5.14 (d, *J* = 17.0 Hz, 1H, CH=CHH), 5.01 (d, *J* = 10.2 Hz, 1H, CH=CHCH₂OH), 1.51-1.40 (m, 4H, CH₂CH₂), 1.38 (s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃): δ 137.32 (CH), 135.29 (CH), 133.29 (CH), 131.08 (CH), 129.05 (CH), 114.83 (CH₂), 63.87 (CH₂), 32.42 (CH₂), 32.09 (CH₂), 28.71 (CH₂), 28.68 (CH₂).

The pure alcohol solution in Et₂O (5 mL) was added MnO_2 (2.26 g, 26 mmol, 20 eq) as one portion. After 30 min, the reaction was monitored by TLC (40% Et₂O in pentanes, $R_f = 0.55$).

After removing of MnO₂, the solvents were removed in vacuo to give pale yellow oil (170 mg, 1.04 mmol, 74% yield) for 2 steps. IR (Neat): v_{max} 2931*m*, 1687*s*, 1652*w*, 1637*w*, 1603*w*, 1436*w*, 1122*m*, 1004*s* cm⁻¹; MS: *m/z* (%) relative intensity 165.1 (M⁺+H); ¹H NMR (400 MHz, CDCl₃) δ 9.50 (d, *J* = 7.9 Hz, 1H, CHO), 6.85 (dt, *J* = 15.5, 6.8 Hz, 1H, CH=CHCHO), 6.31 (dt, *J* = 17.0, 10.3 Hz, 1H, CHCH=CH₂), 6.18–5.98 (m, 2H, CHCH=CH₂ and CH=CHCHO), 5.68 (dt, *J* = 15.2, 7.0 Hz, 1H, CH=CHCH), 5.10 (d, *J* = 17.0 Hz, 1H, CH=CHH), 4.97 (d, *J* = 10.1 Hz, 1H, CH=CHH), 2.35 (q, *J* = 7.0 Hz, 2H, CH₂CH=CHCHO), 2.12 (q, *J* = 7.0 Hz, 2H, CH₂CH=CH), 1.59–1.41 (m, 4H, CH₂CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 194.2 (CHO), 158.7 (CH), 137.1 (CH), 134.6 (CH), 133.1 (CH), 131.2 (CH), 115.2 (CH₂), 32.6 (CH₂), 32.2 (CH₂), 28.6 (CH₂), 27.4 (CH₂); HSMS (ESI-TOF) calcd for C₁₁H₁₆O; 164.1201 found: 164.1196.

7. Synthesis of triene 12

(*E*)-hexa-3,5-dien-1-ol⁹ and (*E*)-1-acetoxy-4-iodo-2-butene¹⁰ were prepared according to the literature procedure.

To a solution of (*E*)-hexa-3,5-dien-1-ol (0.49 g, 5 mmol, 1 eq) and NEt₃ (1.40 mL, 10 mmol, 2 eq) in CH₂Cl₂ (16 mL) at 0 °C was added MsCl (0.41 mL, 5.25 mmol, 1.05 eq). After stirring at 0 °C for 1 h, the mixture was poured into cool 1 M HCl (10 mL), extracted with CH₂Cl₂ (3 x 20 mL) and the extracted were washed with brine and dried (anh. Na₂SO₄) and concentrated under rotary evaporator to give the crude mesylate compound as yellowish oil. To suspension of NaH (0.363 g, 9 mmol, 1.8 eq) in dry DMF (10 mL) were added dropwise a solution of dimethyl malonate (0.86 mL, 10 mmol, 2 eq) in THF (13 mL). The mixture became to clear solution which was added with a solution of crude mesylate in THF (12 mL) followed by adding KI (0.166 g, 1

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

mmol, 0.2 eq) as solid. The reaction mixture was stirred at 75 °C. After 18 h, it was quenched with sat. NH₄Cl and extracted with Et₂O (3 x 20 mL). The combined organic layers were dried (anh. Na₂SO₄) and concentrated in vacuo. The residue was chromatographed on silica gel (5-10 % Et₂O in pentanes, $R_f = 0.22$) to give product **41** (700 mg, 3.3 mmol, 66% yield). IR (Neat): v_{max} 1733*s*, 1653*w*, 1603*w*, 1435*m*, 1221*s*, 1196*s*, 1153*s*, 1005*s* cm⁻¹; MS: *m/z* (%) relative intensity 213 (M⁺, 100), 195 (24, 181 (22), 82 (19), 66 (12); ¹H NMR (400 MHz, CDCl₃): δ 6.28 (td, *J* = 17.0, 10.3 Hz, 1H, CH₂=CH), 6.05 (dd, *J* = 15.2, 10.3 Hz, 1H, CHCH=CH), 5.62 (dt, *J* = 15.2, 7.6 Hz, 1H, CHCH=CH), 5.10 (d, *J* = 17.0 Hz, 1H, CHH=CH), 4.98 (d, *J* = 10.3 Hz, 1H, CHH=CH), 3.72 (s, 6H, 2CO₂CH₃), 3.37 (t, *J* = 7.3 Hz, 1H, CHCO₂CH₃), 2.12 (dd, *J* = 14.5, 7.12 Hz, 2H, CH₂CH=CH), 2.01 (dd, *J* = 14.5, 7.3 Hz, 2H, CH₂CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 169.8 (2CO), 136.9 (CH), 132.7 (CH), 132.5 (CH), 115.8 (CH₂), 52.6 (2CH₃), 50.9 (CH), 30.2 (CH₂), 28.2 (CH₂); HSMS (ESI-TOF) calcd for C₁₁H₁₆O₄; 212.1049 found: 212.1049.

7.2 Dimethyl 2-((*E*)-**4**-acetoxybut-**2**-enyl)-**2-**((*E*)-hexa-**3**,**5**-dienyl)malonate (42)

A solution of 41 (0.55 g, 2.60 mmol, 1 eq) in dry THF (5.20 mL) was added at r.t. to a suspension of NaH (115 mg of 60% suspension in mineral oil, 2.86 mmol, 1.1 eq) in dry THF (3.00 mL) under N₂. The mixture was stirred at r.t. for 0.5 h, then (E)-1-acetoxy-4-iodo-2-butene (0.687 g 2.86 mmol, 1.1 eq) in dry THF (5.20 mL) was added dropwise and the reaction was stirred at 60 ^oC for 4 h. Then the mixture was carefully diluted with water and extracted with Et₂O (3 x 15 mL). Combined organic portions were dried (anh. Na_2SO_4). The solvent was evaporated and the residue was chromatographed on silica gel (20% Et_2O in pentanes, $R_f = 0.10$) to afford product 42 as an viscous clear liquid (0.66 g, 2.04 mmol, 77% yield). IR (Neat): v_{max} 1729s, 1436m, 1226s, 1199s, 1024m, 971m cm⁻¹; MS: m/z (%) relative intensity 324 (M⁺, 1), 265 (100), 233 (23), 205 (73), 173 (15), 146 (24); ¹H NMR (400 MHz, CDCl₃): δ 6.32 (td, J = 17.0, 10.3 Hz, 1H, CH=CH₂), 6.09 (dd, J = 15.3, 10.4 Hz, 1H, CHCH=CH₂), 5.78-5.60 (m, 3H, CH=CHCH₂OCOCH₃ and CHCH=CH₂), 5.15 (d, J = 17.0 Hz, 1H, CH=CHH), 5.03 (d, J = 10.3 Hz, 1H, CH=CHH), 4.53 (d, J = 5.4 Hz, 2H, CH₂OCOCH₃), 3.76 (s, 6H, 2CH₃), 2.71 (d, J = 6.5Hz, 2H, CH₂CH=CH), 2.09 (s, 3H, CH₃CO₂), 2.06-1.98 (m, 4H, CH₂CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 171.3 (CO), 170.6 (2CO), 136.8 (CH), 133.2 (CH), 131.6 (CH), 129.3 (CH), 128.4 (CH), 115.6 (CH₂), 64.5 (CH₂), 57.2 (C), 52.4 (2CH₃), 35.7 (CH₂), 31.9 (CH₂), 27.0 (CH₂), 20.9 (CH₃); HSMS (ESI-TOF) calcd for C₁₇H₂₄O₆Na; 347.1465 found: 347.1463.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

7.3 Dimethyl 2-((*E*)-hexa-3,5-dienyl)-2-((*E*)-4-oxobut-2-enyl)malonate (12)

A solution of 42 (0.60 mg, 1.85 mmol, 1 eq) in MeOH (6.20 mL) was added to a solution of K₂CO₃ (0.563 g, 4.07 mmol, 2.2 eq) in a mixture of MeOH (2.50 mL) and H₂O (6.20 mL) at r.t.. The mixture was stirred at r.t. for 1 h, then MeOH was removed under reduced pressure. The residue was extracted with CH₂Cl₂ (3 x 10 mL), brine and dried (anh. Na₂SO₄). The solvent was evaporated in vacuo and the residue was used in further step. (IR (Neat): v_{max} 3422b, 1728s, 1653w, 1603w, 1435m, 1198s, 1005s cm⁻¹). This crude alcohol was dissolved in CH₂Cl₂ (10 mL) and then was added MnO₂ (4.00 g, 46.25 mmol, 25 eq). The reaction mixture was stirred at r.t. for 2 h. After removing of MnO₂ by filtration, the crude aldehyde was purified on silica gel (40 % Et₂O in pentanes, $R_f = 0.27$) to give a trienal 12 as a white solid (0.450 g, 1.61 mmol, 87% yield, mp 53-55 °C). IR (Neat): v_{max} 1727s, 1436m, 1199s, 1004m, 991s cm⁻¹; MS: m/z (%) relative intensity 281 (M⁺+1, 74), 280 (M⁺, 70), 263 (74), 243 (100); ¹H NMR (300 MHz, CDCl₃): δ 9.49 (d, J = 7.8 Hz, 1H, CHO), 6.71 (dd, J = 15.6, 7.8 Hz, 1H, COCH=CH), 6.26 (td, J = 17.0, 10.2 Hz, 1H, CH=CHCH), 6.18-5.97 (m, 2H, CHCHO and CH=CH₂), 5.60 (td, J = 11.2, 5.2 Hz, 1H, CH=CHCH), 5.11 (dd, J = 17.0, 1.6 Hz, 1H, CH=CHH), 4.99 (dd, J = 10.2, 1.58 Hz, 1H, CH=CHH), 3.73 (s, 6H, 2OCH₃), 2.90 (dd, J = 7.5, 1.4 Hz, 2H, CH₂CH=CHCHO), 2.06-1.97 (m, 4H, CH₂CH=CH and CH₂CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 193.29 (CO), 170.74 (2CO), 151.55 (CH), 136.63 (CH), 135.74 (CH), 132.53 (CH), 131.96 (CH), 115.90 (CH₂), 57.05 (C), 52.71 (2CH₃), 36.20 (CH₂), 32.70 (CH₂), 27.13 (CH₂); HSMS (ESI-TOF) calcd for C₁₅H₂₀O₅Na; 303.1202 found: 303.1182.

8. Synthesis of triene 13

8.1 (E)-dimethyl 2-(hepta-4,6-dienyl)malonate (43)

To a suspension of NaH (84 mg of 60% in mineral oil, 2.10 mmol, 1.05 eq) in dry DMF (6 mL) at 0 °C a dimethyl malonate (0.172 mL, 2.00 mmol, 1 eq) was added. After 15 min, (*E*)-7-bromohepta-1,3-diene (0.368 g, 2.10 mmol, 1.05 eq) was added dropwise to anion solution. The mixture was stirred at r.t.. After 20 h, the reaction was quenched with sat. NH₄Cl (1 mL), concentrated under vacuum pump (to remove DMF) and extracted with Et₂O (3 x 10 mL). The organic layers were washed with brine, dried (anh. MgSO₄) and concentrated in vacuo. The residue was purified by FC on silica gel (12% Et₂O in pentane, $R_f = 0.22$) to give malonate **43** as a colorless oil (295 mg, 1.30 mmol, 65% yield). IR (Neat): v_{max} 1733s, 1652w, 1603w, 1435m, 1198m, 1152m, 1005m cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.34 (td, J = 17.0, 10.3 Hz, 1H, CH=CH₂), 6.10 (dd, J = 15.2, 10.3 Hz, 1H, CH=CH₂), 5.70 (dt, J = 15.2, 7.3 J Hz, 1H, CH₂CH=CH), 5.14 (d, J = 17.0 Hz, 1H, CH=CHH), 5.02 (d, J = 10.3 Hz, 1H, CH=CHH), 3.78 (s, 6H, 2CH₃), 3.41 (t, J = 7.6 Hz, 1H, CHCO₂CH₃), 2.16 (q, J = 7.1 Hz, 2H, CH₂CH=CH), 1.95 (m, 2H, CHCH₂), 1.47 (m, 2H, CH₂CH₂); ¹³C NMR (CDCl₃, 100 MHz): δ 169.9 (2CO), 137.1 (CH), 131.6 (CH), 115.2 (CH₂), 52.6 (2CH₃), 51.6 (CH), 32.1 (CH₂), 28.4 (CH₂), 26.9 (CH₂); HSMS (ESI-TOF) calcd for C₁₂H₁₈O₄; 226.1205 found: 226.1208.

8.2 Dimethyl 2-((E)-4-acetoxybut-2-enyl)-2-((E)-hepta-4,6-dienyl)malonate (44)

A solution of **43** (0.226 g, 1 mmol, 1 eq) in dry THF (2 mL) was added at r.t. to a suspension of NaH (44 mg of a 60% suspension in mineral oil, 1.1 mmol, 1.1 eq) in dry THF (1 mL) under N₂. The mixture was stirred at r.t. for 0.5 h, then (*E*)-1-acetoxy-4-iodo-2-butene (1.05 mmol, 1.05 eq) in dry THF (2 mL) was added dropwise and the reaction was stirred at 60 °C for 4 h. Then the mixture was carefully diluted with water and extracted with Et₂O (3 x 5 mL). Combined organic portions were dried (anh. Na₂SO₄). The solvent was evaporated and the residue was chromatographed on silica gel (30% EtOAc in pentanes, $R_f = 0.38$) to afford product **44** as an viscous liquid (237 mg, 0.70 mmol, 70% yield). IR (Neat): v_{max} 1730s, 1652w, 1603w, 1435m, 1365m, 1225s, 1199m, 1006m, 972m cm⁻¹; MS: m/z (%) relative intensity 278 (10), 218 (27), 192 (13), 187 (14), 177 (15), 164 (28), 145 (29), 105 (27), 80 (100), 67 (44); ¹H NMR (300 MHz, CDCl₃): δ 6.33 (td, J = 16.9, 10.3 Hz, 1H, CH=CH₂), 6.09 (dd, J = 15.2, 10.3 Hz, 1H, CHCH=CH₂), 5.75-5.62 (m, 3H, CH=CHCH₂OCOCH₃ and CHCH=CH₂), 5.14 (dd, J = 16.9, 1.7 Hz, 1H, CH=CHH), 5.01 (ddd, J = 10.1, 1.1, 0.6 Hz, 1H, CH=CHH), 4.53 (d, J = 5.0 Hz, 2H, CH₂OCOCH₃), 3.76 (s, 6H, 2CH₃), 2.68 (d, J = 6.2 Hz, 2H, CH₂CH=CH), 2.19-2.05 (m, 5H,

OCOC*H*₃ and CH₂C*H*₂CH=CH), 1.95-1.86 (m, 2H, CH₂C*H*₂C), 1.38-1.26 (m, 2H, C*H*₂CH₂C); ¹³C NMR (CDCl₃, 100 MHz): δ 171.8 (2CO), 170.8 (CO), 137.1 (CH), 134.2 (CH), 131.6 (CH), 129.6 (CH), 128.4 (CH), 115.3 (CH₂), 64.6 (CH₂), 57.6 (C), 52.5 (2CH₃), 35.7 (CH₂), 32.5 (CH₂), 32.2 (CH₂), 23.7 (CH₂), 21.0 (CH₃); HSMS (ESI-TOF) calcd for C₁₈H₂₆O₆Na; 361.1621 found: 361.1632.

8.3 Dimethyl 2-((E)-hepta-4,6-dienyl)-2-((E)-4-oxobut-2-enyl)malonate (13)

A solution of 44 (100 mg, 0.30 mmol, 1 eq) in MeOH (1 mL) was added to a solution of K₂CO₃ (92 mg, 0.66 mmol, 2.2 eq) in MeOH (4 mL) and H₂O (1 mL) at r.t.. The mixture was stirred at r.t. for 1 h, then MeOH was removed under reduced pressure. The residue was extracted with CH₂Cl₂ (3 x 5 mL), brine and dried (anh. Na₂SO₄). The solvent was removed in vacuo and the residue was used in further step. (IR (Neat): v_{max} 3431b, 1730s, 1652w, 1603w, 1435m, 1198s, 1005s cm⁻¹) This crude alcohol solution in CH₂Cl₂ (3 mL) was added MnO₂ (0.65 g, 7.5 mmol, 25 eq). The reaction mixture was stirred at r.t. for 15 h. After removing of MnO₂ by filtration, the crude aldehyde was purified on silica gel to give a triene 13 as a colorless viscous liquid (85 mg, 0.29 mmol, 96% yield). IR (Neat): v_{max} 2954m, 1731s, 1688s, 1651w, 1435m, 1251m, 1197m, 1142s. 1006m cm⁻¹; MS: m/z (%) relative intensity 295 (M⁺, 1), 250 (70), 193 (11), 190 (11), 161 (14), 145 (16), 113 (13), 93 (20), 81 (19), 80 (100), 79 (53), 67 (42), 59 (25), 53 (16);¹H NMR (400 MHz, CDCl₃): δ 9.55 (d, J = 7.8 Hz, 1H, CHO), 6.76 (td, J = 15.3, 7.5 Hz, 1H, CH=CHCHO), 6.33 (td, J = 17.0, 10.3 Hz, 1H, CH=CHCH), 6.18 (tdd, J = 15.3, 7.8, 1.2 Hz, 1H, CHCHO), 6.10 (dd, J = 15.2, 10.4 Hz, 1H, CH=CH₂), 5.68 (d, J = 15.1 Hz, 1H, CH=CHCH), 5.15 (d, J = 17.0 Hz, 1H, CH=CHH), 5.04 (d, J = 10.4 Hz, 1H, CH=CHH), 3.79 (s, 6H, 2OCH₃), 2.94 (dd, J = 7.5, 1.3 Hz, 2H, CH₂CH=CHCHO), 2.15 (q, J = 7.0 Hz, 2H, CH₂CH=CH), 1.96 (m, 2H, CH₂CCO₂Me), 1.42-1.31 (m, 2H, CH₂CH₂); ¹³C NMR (CDCl₃, 100 MHz): δ 193.5 (CHO), 171.0 (2CO), 151.9 (CH), 137.0 (CH), 135.8 (CH), 133.7 (CH), 131.9 (CH), 115.5 (CH₂), 57.4 (C), 52.8 (2CH₃), 36.2 (CH₂), 32.9 (CH₂), 32.4 (CH₂), 23.8 (CH₂); HSMS (ESI-TOF) calcd for C₁₆H₂₂O₅; 294.1467 found: 294.1465.

9. Synthesis of triene 14

Triene **11** was prepared according to the literature procedure.¹⁰

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

9.1 Dimethyl 2-((*E*)-4-hydroxypent-2-en-1-yl)-2-((*E*)-penta-2,4-dien-1-yl)malonate (45)

To a stirring solution of trienal 11 (310 mg, 1.16 mmol, 1 eq) in THF (1 mL) at -78 °C was added dropwise a solution of MeMgBr (3 M in ethers, 0.43 mL, 1.27 mmol, 1.1 eq). After being stirred at -78 °C for 20 min, the reaction mixture was warmed up to r.t.. Quenching with sat. NH₄Cl (1 mL) and the aqueous phase was extracted with Et_2O (3 × 10 mL). The combined organic phased were brine, dried (anh. $MgSO_4$) and filtrated. Solvents were removed in vacuo. The residue was purified by FC on silica gel (50% Et_2O , in pentanes $R_f = 0.19$) to give a colorless oil of alcohol (250 mg, 0.88 mmol, 87% yield). IR (Neat): v_{max} 3424m, 2955m, 1729s, 1437s, 1237m, 1202m, 1006*m* cm⁻¹; MS: m/z (%) relative intensity 283.3 (M⁺+H); ¹H NMR (400 MHz, CDCl₃) δ 6.28 $(tt, J = 16.8, 8.4 \text{ Hz}, 1\text{H}, CH=CH_2), 6.09 (dd, J = 15.1, 10.3 \text{ Hz}, 1\text{H}, CHCH=CH_2), 5.60 (dd, J = 15.1, 10.3 \text{ Hz}, 1\text{H}, CHCH=CH_2), 5.60 (dd, J = 15.1, 10.3 \text{ Hz}, 1\text{H}, CHCH=CH_2), 5.60 (dd, J = 15.1, 10.3 \text{ Hz}, 1\text{H}, CHCH=CH_2), 5.60 (dd, J = 15.1, 10.3 \text{ Hz}, 1\text{H}, CHCH=CH_2), 5.60 (dd, J = 15.1, 10.3 \text{ Hz}, 1\text{H}, CHCH=CH_2), 5.60 (dd, J = 15.1, 10.3 \text{ Hz}, 1\text{H}, CHCH=CH_2), 5.60 (dd, J = 15.1, 10.3 \text{ Hz}, 1\text{H}, CHCH=CH_2), 5.60 (dd, J = 15.1, 10.3 \text{ Hz}, 1\text{H}, CHCH=CH_2), 5.60 (dd, J = 15.1, 10.3 \text{ Hz}, 10.3$ 15.3, 6.2 Hz, 1H, CH=CHCHOH), 5.55–5.43 (m, 2H, CH=CHCHOH and CH=CHCH₂), 5.13 (d, J = 16.8 Hz, 1H, CH=CHH), 5.03 (d, J = 10.3 Hz, 1H, CH=CHH), 4.26 (p, J = 6.3 Hz, 1H, CHOH), 3.72 (s, 6H, $2CO_2CH_3$), 2.66 (d, J = 7.6 Hz, 2H, CH_2), 2.60 (d, J = 7.1 Hz, 2H, CH_2), 1.85 (m, 1H, OH), 1.24 (d, J = 6.3 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.2 (CO), 171.1 (CO), 139.2 (CH), 136.5 (CH), 135.2 (CH), 127.6 (CH), 123.7 (CH), 116.7 (CH₂), 68.5 (CH), 58.0 (C), 52.5 (2CH₃), 35.9 (CH₂), 35.5 (CH₂), 23.3 (CH₃); HSMS (ESI-TOF) calcd for C₁₅H₂₂O₅Na; 305.1360 found: 305.1359.

9.2 Dimethyl 2-((*E*)-4-oxopent-2-en-1-yl)-2-((*E*)-penta-2,4-dien-1-yl)malonate (14)

Alcohol **45** (220 mg, 0.78 mmol, 1 eq) was dissolved in Et₂O (2 mL) and then MnO₂ (1.70 g, 19.5 mmol, 25 eq) was added. The reaction mixture was monitored by TLC (50% Et₂O in pentanes, $R_f = 0.28$) after stirring at r.t. for 30 min. After removing MnO₂ by filtration, the crude ketone **14** was obtained as pale yellow oil (215 mg, 0.77 mmol, 99% yield). IR (Neat): v_{max} 2956*m*, 1731*s*, 1699*m*, 1677*s*, 1436*s*, 1361*w*, 1252*s*, 1200*s*, 1164*s*, 1006*m* cm⁻¹; MS: *m/z* (%) relative intensity 298.5 (M⁺+NH₄⁺); ¹H NMR (400 MHz, CDCl₃) δ 6.64 (dt, *J* = 15.9, 7.6 Hz, 1H, CH=CHCOMe), 6.27 (dt, *J* = 16.8, 10.3 Hz, 1H, CH=CH₂), 6.10 (dd, *J* = 15.4, 10.2 Hz, 2H, CH=CHCOMe and CHCH=CH₂), 5.48 (dt, *J* = 15.2, 7.6 Hz, 1H, CH=CHCH₂), 5.15 (d, *J* = 16.5

Hz, 1H, CH=C*H*H), 5.05 (d, J = 10.2 Hz, 1H, CH=CH*H*), 3.73 (s, J = 2.5 Hz, 6H, 2CO₂C*H*₃), 2.76 (dd, J = 7.6, 1.3 Hz, 2H, C*H*₂), 2.68 (d, J = 7.4 Hz, 2H, C*H*₂), 2.23 (s, J = 4.4 Hz, 3H, C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 198.0 (CO), 170.6 (2CO), 141.6 (CH), 136.3 (CH), 135.7 (CH), 134.5 (CH), 126.9 (CH), 117.2 (CH₂), 57.6 (C), 52.7 (2CH₃), 36.6 (CH₂), 36.0 (CH₂), 27.0 (CH₃); HSMS (ESI-TOF) calcd for C₁₅H₂₁O₅; 281.1383 found: 281.1383.

10. Synthesis of triene 15

Triene **10** was prepared according to the literature procedure.¹⁰

To a stirring solution of trienal 10 (286 mg, 1.02 mmol, 1 eq) in THF (1 mL) at -78 °C was added dropwise a solution of MeMgBr (3 M in ethers, 0.38 mL, 1.12 mmol, 1.1 eq). After being stirred at -78 °C for 20 min, the reaction mixture was warmed up to r.t.. Quenching with sat. NH₄Cl (1 mL) and the aqueous phase was extracted with Et_2O (3 × 10 mL). The combined organic phased were brine, dried (anh. MgSO₄) and filtrated. Solvents were removed in vacuo. The residue was purified by FC on silica gel (50% Et_2O in pentanes, $R_f = 0.12$) to give a colorless oil of alcohol (275 mg, 0.92 mmol, 91% yield). IR (Neat): v_{max} 3448m, 2956m, 1729s, 1729s, 1437s, 1237s, 1199s, 1153s, 1102m, 1060s cm⁻¹; MS: m/z (%) relative intensity 314.0 (M⁺+NH₄⁺); ¹H NMR (400 MHz, CDCl₃) δ 6.00 (app. p, J = 10.4 Hz, 2H, CHCH=CHCH₃), 5.60 (m, 2H, CHCH=CHCH₂ and CH=CHCHOH), 5.47 (dt, *J* = 15.3, 7.2 Hz, 1H, CH=CHCHOH), 5.32 (app. dt, J = 14.2, 7.0 Hz, 1H, CH=CHCH₃), 4.24 (p, J = 6.2 Hz, 1H, CHOH), 3.70 (s, 6H, 2CO₂CH₃), 2.60 (dd, J = 13.5, 7.4 Hz, 4H, 2CH₂), 1.72 (d, J = 7.0 Hz, 3H, CH=CHCH₃), 1.23 (d, J = 6.2 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.3 (CO), 171.2 (CO), 139.1 (CH), 134.8 (CH), 131.1 (CH), 128.9 (CH), 124.0 (CH), 123.8 (CH), 68.5 (CH), 58.1 (C), 52.5 (2CH₃), 35.9 (CH₂), 35.3 (CH₂), 23.3 (CH₃), 18.1 (CH₃); HSMS (ESI-TOF) calcd for C₁₆H₂₄O₅Na; 319.1517 found: 319.1516.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

10.2 Dimethyl 2-((2*E*,4*E*)-hexa-2,4-dien-1-yl)-2-((*E*)-4-oxopent-2-en-1-yl)malonate (15)

Alcohol **46** (30 mg, 0.1 mmol, 1 eq) was dissolved in Et₂O (0.5 mL) and then MnO₂ (0.174 g, 2.0 mmol, 20 eq) was added. The reaction mixture was monitored by TLC (50% Et₂O in pentanes, R_f = 0.33) after stirring at r.t. for 30 min. After removing MnO₂ by filtration, the crude aldehyde was obtained as pale yellow oil in quantitative yield. IR (Neat): v_{max} 2955*m*, 1733*s*, 1701*m*, 1679*s*, 1436*m*, 1361*w*, 1251*s*, 1201*s*, 990*m* cm⁻¹; MS: *m/z* (%) relative intensity 295.5 (M⁺+H); ¹H NMR (400 MHz, CDCl₃) δ 6.65 (dtd, J = 9.5, 7.6, 1.9 Hz, 1H, CH=CHCO), 6.15 – 5.92 (m, 3H, CHCH=CHCH₃ and CH=CHCO), 5.65 (td, J = 13.4, 7.0 Hz, 1H, CHCH=CHCH₂), 5.31 (dt, J = 14.7, 7.0 Hz, 1H, CH=CHCH₃), 3.74 and 3.73 (each s, 6H, 2CH₃), 2.76 (d, J = 7.6 Hz, 2H, CH₂), 2.66 (d, J = 7.0 Hz, 2H, CH₂), 2.24 (d, J = 2.2 Hz, 3H, COCH₃), 1.74 (d, J = 7.0 Hz, 3H, CHCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 198.1 (CO), 170.8 (2CO), 141.8 (CH), 135.3 (CH), 134.5 (CH), 130.9 (CH), 129.5 (CH), 123.3 (CH), 57.7 (C), 52.7 (2CH₃), 36.7 (CH₂), 36.0 (CH₂), 27.0 (CH₃), 18.1 (CH₃). HSMS (ESI-TOF) calcd for C₁₆H₂₂O₅; 294.1467 found: 294.1467.

11. IMDA of triene 4

In a 10 mL round-bottom flask equipped with a magnetic stirring bar, under N₂, was charged with a solution of triene **4** (50 mg, 0.30 mmol, 1 eq) in CH₂Cl₂ (0.3 mL). AlEt₂Cl solution (0.15 mL, 0.15 mmol, 0.5 eq) was added dropwise at -78 °C. The yellow reaction mixture was stirred at -78 °C to r.t. for 2 h and quenched with sat. NaHCO₃ (2 mL) and CH₂Cl₂ (2 mL). The organic phase was extracted with Et₂O (5 x 3 mL), brine and dried (anh. Na₂SO₄). A 90:10 mixture of *endo:exo* adducts was determined by ¹H NMR and GC. The crude reaction was purified by FC (10% Et₂O in pentanes, $R_f = 0.31$) to give a colorless oil of adducts (45 mg, 0.274 mmol, 90% yield). Chiral GC (Hydrodex- β , H₂, 100 °C hold 30 min then heating 0.5 °C/min to 120 °C): t_R of *endo* product (min) = 41.13, 43.10 and t_R of *exo* product (min) = 51.59, 52.34. IR (Neat): v_{max} 1700*s*, 1448*m*, 1429*m*, 1119*m* cm⁻¹; MS: *m*/*z* (%) relative intensity 164 (M⁺, 5), 149 (16), 139 (12), 137 (18), 135

(10), 127 (10), 125 (19), 111 (36), 109 (26), 97 (52), 95 (39), 93 (21), 85 (42), 71 (56), 69 (100), 57 (97), 55 (82); ¹H NMR (400 MHz, CDCl₃): δ 5.81-5.71 (m, 1H, CH=CH), 5.48 (d, *J* = 10.03 Hz, 1H, CH=CH), 2.51-1.53 (m, 9H, CH and 4CH₂), 1.32-1.18 (m, 5H, CH₃ and CH₂); ¹³C NMR (CDCl₃, 100 MHz): δ 215.6 (CO), 130.2 (CH), 128.3 (CH), 47.0 (C), 43.5 (CH), 38.8 (CH₂), 30.5 (CH₂), 27.8 (CH₂), 24.6 (CH₃), 23.1 (CH₂), 22.7 (CH₂).

2,3,4,4a,8,8a-hexahydronaphthalen-1(7*H*)-one

A solution of triene **5** (30 mg, 0.2 mmol) in CH₂Cl₂ (1 mL) was then put silica gel and stirred at r.t. overnight. After removal silica gel by filtration, a 99:1 mixture of *endo:exo* isomers of the corresponding adduct was obtained in quantitative yield. Chiral GC (Hydrodex-β, H₂, 100 °C hold 30 min then heating 0.5 °C/min to 120 °C): t_R of *endo* product (min) = 45.93, 48.85. IR (Neat): v_{max} 1702*s*, 1445*m*, 1430*m*, 1123*m* cm⁻¹; MS: *m/z* (%) relative intensity 150 (M⁺, 100), 107 (30), 104 (32), 95 (30), 94 (34), 93 (35), 80 (44), 79 (89), 77 (34), 55 (37); ¹H NMR (400 MHz, CDCl₃): δ 5.79-5.72 (m, 1H, CH=CH), 5.58-5.51 (m, 1H, CH=CH), 2.80-2.68 (m, 1H, CHCO), 2.58-2.50 (m, 1H, CHCHCO), 2.45-2.36 (m, 1H, COCHH), 2.34-1.67 (m, 8H, COCHH, 3CH₂ and CHHCH), 1,56 (m, 1H, CHHCH); ¹³C NMR (CDCl₃, 100 MHz): δ 213.3 (CO), 129.8 (CH), 128.5 (CH), 48.1 (CH), 40.7 (CH₂), 37.3 (CH), 29.6 (CH₂), 23.4 (CH₂), 23.0 (CH₂), 22.3 (CH₂).

13. IMDA of triene 8

1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carbaldehyde

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

In a 10 mL round-bottom flask equipped with a magnetic stirring bar, under N₂, was charged with a solution of triene 8 (32 mg, 0.2 mmol, 1 eq) in CH₂Cl₂ (2 mL). AlEtCl₂ solution (1 M in hexanes, 0.2 mL, 0.2 mmol, 1 eq) was added dropwise at r.t. The yellow reaction mixture was stirred at -78 to -10 °C and quenched with sat. NaHCO₃ (2 mL) and CH₂Cl₂ (2 mL). The organic phase was extracted with CH₂Cl₂ (3 x 5 mL), brine and dried (anh. Na₂SO₄). A 84:16 mixture of endo:exo adducts was obtained. The crude product was purified by FC (10% Et₂O in pentanes, R_f = 0.47) to give a colorless oil of adducts (22 mg, 0.134 mmol, 67% yield). Chiral GC (Hydrodex- β , H₂, 100 °C hold 30 min then heating 0.5 °C/min to 120 °C): t_R of *endo* product (min) = 53.52, 54.93 and t_R of *exo* product (min) = 72.45, 73.26. IR (Neat): v_{max} 2921s, 2852m, 1727s, 1446w, $1067m \text{ cm}^{-1}$; MS: m/z (%) relative intensity 165.1 (M⁺+H); ¹H NMR (400 MHz, CDCl₃) δ 9.61 (d, J = 4.3 Hz, 1H, CHO), 5.64 (tdd, J = 9.7, 4.3, 2.4 Hz, 1H, CH=CH), 5.49 (dd, J = 9.7, 1.5Hz, 1H, CH=CH), 2.43-2.19 (m, 2H, CHHCHCHO), 2.11 (m, 1H, CHHCHCHO), 1.85-1.68 (m, 3H, CHCHCHO and CHHCH₂CH₂CH₁, 1.45 (dt, J = 10.0, 4.0 Hz, 1H, CH=CHCH), 1.39-1.04 (m, 6H, CHHCH₂CH₂CHH); ¹³C NMR (100 MHz, CDCl₃): δ 205.2 (CO), 132.5 (CH), 123.4 (CH), 52.2 (CH), 41.0 (CH), 40.6 (CH), 33.1 (CH₂), 50.5 (CH₂), 26.44 (CH₂), 26.37 (CH₂), 23.4 (CH₂); HSMS (ESI-TOF) calcd for C₁₁H₁₆O; 164.1201 found: 164.1199.

14. IMDA of triene 12

Trienone **12** (28 mg, 0.1 mmol, 1 eq) was placed in dry reaction flask and then CH₂Cl₂ (1 mL) was added under N₂. AlEt₂Cl solution (1 M in hexanes, 0.02 mL, 0.2 eq) was slowly added dropwise at r.t.. After 30 min, the reaction was quenched with water (2 mL). The aqueous phase was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic phases were brine, dried (anh. MgSO₄) and filtrated. Solvents were removed in vacuo. The residue was passed through Celite 545 plug to give a yellow oil of bicyclic product (25 mg, 0.089 mmol, 89% yield) with a 85:15 ratio of *endo:exo* isomers. To determine enantiomeric ratio, aldehyde adducts were changed to chiral imine derivative (¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, *J* = 8.9, 4.3 Hz, CH_{exo}=N), 7.78

(dd, J = 8.9, 4.3 Hz, $CH_{exo}=N$), 7.67 (d, J = 7.1 Hz, $CH_{endo}=N$) and 7.64 (d, J = 7.1 Hz, $CH_{endo}=N$)). IR (CHCl₃): v_{max} 2924*m*, 1727*s*, 1435*s*, 1241*s*, 1205*m*, 1005*m*, 911*m*, 730*s* cm⁻¹; MS: m/z (%) relative intensity 281.32 (M⁺+H⁺); ¹H NMR (400 MHz, CDCl₃) δ 9.59 (d, J = 4.3 Hz, 1H, CHO), 5.64 (m, 1H, CH=CH), 5.67 (ddd, J = 10.2 Hz, 1H, CH=CH), 3.76 (s, 3H, CO₂CH₃), 3.69 (s, 3H, CO₂CH₃), 2.44 (t, J = 14.0 Hz, 2H, CHHCCHH), 2.34-2.20 (m, 2H, CHHCHCHO), 2.13 (d, J = 17.5 Hz, 1H, CHHCHCHO), 1.87-1.75 (m, 3H, CHCHHCHH), 1.66-1.48 (m, 2H, CHCHHC), 1.26 (m, 1H, CHCHHCH₂); ¹³C NMR (100 MHz, CDCl₃): δ 204.0 (CHO), 172.2 (CO), 171.3 (CO), 131.0 (CH), 124.0 (CH), 55.4 (C), 52.8 (CH₃), 52.7 (CH₃), 51.6 (CH), 39.7 (CH), 36.4 (CH), 35.1 (CH₂), 31.3 (CH₂), 29.2 (CH₂), 25.3 (CH₂); HRMS (ESI-TOF) calcd for C₁₅H₂₀O₅; 280.1311 found: 280.1313.

15. IMDA of triene 14

Dimethyl 7-acetyl-3,3a,7,7a-tetrahydro-1H-indene-2,2(6H)-dicarboxylate

Trienone **14** (28 mg, 0.1 mmol, 1 eq) was placed in dry reaction flask and then CH₂Cl₂ (1 mL) was added under N₂. AlEt₂Cl solution (1 M in hexanes, 0.02 mL, 0.2 eq) was slowly added dropwise at r.t.. After 30 min, the reaction was monitored by IR (peak at 1677 cm⁻¹ of α , β -unsaturated ketone was disappeared). Water (2 mL) was added at r.t.. The aqueous phase was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic phases were brine, dried (anh. MgSO₄) and filtrated. Solvents were removed in vacuo. The residue was passed through Celite 545 plug to give a yellow oil of bicyclic product in quantitative yield with exclusive *endo* isomer (28 mg, 0.1 mmol). Chiral GC (CP-Chirasil-Dex CB, H₂, 150 °C hold 5 min then heating 0.5 °C/min to 160 °C hold 45 min, flow 0.5 mL/min): t_R of *endo* product (min) = 59.22, 60.89. IR (Neat): ν_{max} 2924*m*, 1711*s*, 1729*s*, 1435*s*, 1358*m*, 1252*s*, 1197*m*, 1164*s*, 1100*m* cm⁻¹; MS: *m/z* (%) relative intensity 298.4 (M⁺+NH₄⁺); ¹H NMR (400 MHz, CDCl₃) δ 5.79 (d, *J* = 9.9 Hz, 1H, C*H*=CH), 5.64 (ddd, *J* = 9.6, 6.5, 2.7 Hz, 1H, CH=CH), 3.72 (s, 3H, CO₂CH₃), 3.73 (s, 3H, CO₂CH₃), 2.79–2.51 (m, 3H, CHCO and CHHCCHH), 2.40–2.04 (m, 6H, CH₂CH=CH, COCH₃, and CHCH=CH), 1.93–1.58 (m, 3H, CHHCCHH and CHCHCOCH₃); ¹³C NMR (100 MHz, CDCl₃)

δ 210.4 (CO), 173.1 (CO), 172.7 (CO), 128.0 (CH), 126.5 (CH), 58.3 (C), 52.9 (2CH₃), 52.6 (CH), 44.4 (CH), 43.4 (CH), 38.1 (CH₂), 37.6 (CH₂), 29.2 (CH₂), 29.0 (CH₃); HSMS (ESI-TOF) calcd for C₁₅H₂₁O₅; 281.1383 found: 281.1381.

16. IMDA of triene 15

Dimethyl 7-acetyl-6-methyl-3,3a,7,7a-tetrahydro-1H-indene-2,2(6H)-dicarboxylate

Trienone **15** (29.5 mg, 0.1 mmol, 1 eq) in CH₂Cl₂ (1 mL), silica gel and 1 drops of conc. HCl were added, and then stirred at r.t. for overnight. The reaction was monitored by IR (peak at 1679 cm⁻¹ of α ,β-unsaturated ketone was disappeared). After filtration through Celite plug, the *endo* adduct was obtained in quantitative yield with exclusive *endo* isomer (29 mg, 0.1 mmol). Chiral GC (CP-Chirasil-Dex CB, H₂, 150 °C 5 min then heating 0.4 °C/min to 160 °C hold 35 min): t_R of *endo* product (min) = 43.64, 65.26; IR (Neat): ν_{max} 2924*m*, 1733*s*, 1713*s*, 1436*m*, 1358*w*, 1252*s*, 1195*m*, 1164*m*, 1110*m* cm⁻¹; MS: *m/z* (%) relative intensity 294.2 (M⁺); ¹H NMR (400 MHz, CDCl₃) δ 5.76 (d, *J* = 9.8 Hz, 1H, CH=CH), 5.57 (dt, *J* = 9.8, 3.2 Hz, 1H, CH=CH), 3.74 (s, 3H, CO₂CH₃), 3.71 (s, 3H, CO₂CH₃), 2.88–2.74 (m, 3H, CHCH=CH and CHHCCHH), 2.49 (dd, *J* = 12.6, 6.3 Hz, 1H, CHCO), 2.15 (s, 3H, COCH₃), 2.02 (m, 1H, CHHCH=CH), 1.89–1.66 (m, 3H, CHHCCHH and CHCHCOCH₃), 0.85 (d, *J* = 7.0 Hz, 3H, CHCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 209.2 (CO), 173.4 (CO), 172.9 (CO), 133.1 (CH), 127.2 (CH), 58.6 (C), 56.8 (CH), 52.81 (CH₃), 52.78 (CH₃), 44.0 (CH), 38.9 (CH), 38.0 (CH₂), 37.4 (CH₂), 32.8 (CH), 29.13 (CH₃), 17.10 (CH₃); HSMS (ESI-TOF) calcd for C₁₆H₂₂O₅; 294.1467 found: 294.1467.

Following IMDA reaction of triene 10 with ReactIRTM

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

At the start of reaction, there are 2 peaks at v = 1731 and 1693 cm⁻¹ in the IR spectrum corresponding to the ester and aldehyde groups, respectively (green spectrum). After 4 h, the aldehyde peak of triene **10** disappeared and only one peak of aldehyde of adduct **18** was seen at v =

1731 cm⁻¹ as shown in the pink (after 4 h) and blue spectra (after 19 h). The peak at 1647 cm⁻¹ corresponds to the acetone complex **1b** indicating catalyst recovery.

References

- (a) E. P. Kündig, C. M. Saudan and G. Bernardinelli, *Angew. Chem. Int. Ed.*, 1999, **38**, 1220; (b) E. P. Kündig, C. M. Saudan, V. Alezra, F. Viton and G. Bernardinelli, *Angew. Chem. Int. Ed.*, 2001, **40**, 4481; (c), Y. Brinkmann, R. J. Madhushaw, R. Jazzar, G. Bernardinelli and E. P. Kündig, *Tetrahedron*, 2007, **63**, 8413.
- 2. H. Karwowska and A. Jonczyk, Polish J. Chem., 2007, 81, 45.
- M. G. B. Drew, L. M. Harwood, A. J. Macías-Sánchez, R. Scott, R. M. Thomas and D. Uguen, *Angew. Chem. Int. Ed.*, 2001, 40, 2311.
- 4. K. Maruoka, H. Imoto and H. Yamamoto, J. Am. Chem. Soc., 1994, 116, 12115.
- 5. J. A. Marshall, J. E. Audia, J. Grote and B. G. Shearer, Tetrahedron, 1986, 42, 2893.
- 6. Allylic oxidation of trienol **36** with MnO_2 led to a 66:20:14 mixture of **4**:adduct:**36**.
- 7. J. L. Gras and M. Bertrand, *Tetrahedron Lett.*, 1979, 20, 4549.
- 8. W. R. Roush, H. R. Gillis and A. I. Ko, J. Am. Chem. Soc., 1982, 104, 2269.
- 9. C. A. Miller and R. A. Batey, Org. Lett., 2004, 6, 699.
- 10. S. Thamapipol, G. Bernardinelli, C. Besnard and E. P. Kündig, Org. Lett., 2010, 12, 5604.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

NMR Spectra

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

ROSEY and NOE experimentals of tricyclic 23

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

32

