#### **Electronic Supplementary information for:**

## Synthesis and biological evaluation of potential new inhibitors of the bacterial transferase MraY with a β-ketophosphonate structure<sup>†</sup>

Nicolas Auberger,<sup>a</sup> Rok Frlan,<sup>a,b</sup> Bayan Al-Dabbagh,<sup>c,d</sup> Ahmed Bouhss,<sup>c</sup> Muriel Crouvoisier,<sup>c</sup> Christine Gravier-Pelletier<sup>a, \*</sup> and Yves Le Merrer<sup>a</sup>

#### 1. Numbering system



#### 2. Comprehensive experimental section

When a compound is obtained as a mixture of epimers, two situations may happen:
1) One of both epimers is largely predominant: in this case, only one is described.
2) The epimers are both present in substantial quantities: if the distinction between a major epimer and a minor one is possible, they are marked by symbols : \* (major) and ° (minor).

"eq" and "ax" are used for description of respectively equatorial and axial protons.

# 3-(2-Acetamido-4,6-O-(R)-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy- $\alpha$ -D-glucopyranosyl)-prop-1-ene 2 $\alpha$ and 3-(2-acetamido-4,6-O-(R)-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy- $\beta$ -D-glucopyranosyl)-prop-1-ene 2 $\beta$

To a solution of **1** (6.00 g, 18 mmol) in DMF (180 mL) were added *tert*-butyldimethylsilyl chloride (6.78 g, 45 mmol, 2.5 eq.) and imidazole (4.90 g, 72 mmol, 4 eq.). The reaction mixture was stirred at r.t. for 16 h and concentrated to dryness. The residue was then dissolved in CH<sub>2</sub>Cl<sub>2</sub> and washed with saturated aqueous NH<sub>4</sub>Cl solution, dried (MgSO<sub>4</sub>) and concentrated. Purification by flash chromatography (CH<sub>2</sub>Cl<sub>2</sub>/acetone, 9:1) afforded **2** $\beta$  (480 mg, 6%, white solid):  $R_f$  0.72 (CH<sub>2</sub>Cl<sub>2</sub>/acetone = 9:1); mp 159 °C; [ $\alpha$ ]<sub>D</sub><sup>20</sup> - 58 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>);

<sup>1</sup>H NMR δ 7.49-7.45 (m, 2H, H<sub>ar</sub>), 7.37-7.33 (m, 3H, H<sub>ar</sub>), 5.86 (ddt, 1H,  $J_{H2-H1trans} = 17.1$  Hz,  $J_{H2-H1cis} = 10.3$  Hz,  $J_{H2-H3} = 6.8$  Hz, H<sub>2</sub>), 5.61 (d, 1H,  $J_{NH-H2'} = 9.0$  Hz, NH), 5.49 (s, 1H, H<sub>7'</sub>), 5.08 (dm, 1H,  $J_{H1trans-H2} = 17.1$  Hz,  $H_{1trans}$ ), 5.05 (dm, 1H,  $J_{H1cis-H2} = 10.3$  Hz,  $H_{1cis}$ ), 4.29 (dd, 1H,  $J_{H6'eq-H6'ax} = 10.4$  Hz,  $J_{H6'eq-H5'} = 4.8$  Hz,  $H_{6'eq}$ ), 3.83 (dd, 1H,  $J_{H3'-H2'} = 9.4$  Hz,  $J_{H3'-H4'} = 8.3$  Hz,  $H_{3'}$ ), 3.75 (ddd, 1H,  $J_{H2'-H1'} = 10.2$  Hz,  $J_{H2'-H3'} = 9.4$  Hz,  $J_{H2'-NH} = 9.0$  Hz,  $H_2$ ), 3.69 (dd, 1H,  $J_{H6'ax-H6'eq} = 10.4$  Hz,  $J_{H6'ax-H5'} = 9.8$  Hz,  $H_{6'ax}$ ), 3.52 (ddd, 1H,  $J_{H1'-H2'} = 10.2$  Hz,  $J_{H1'-H3a} = 7.7$  Hz,  $J_{H1'-H3b} = 3.2$  Hz,  $H_{1'}$ ), 3.45 (dd, 1H,  $J_{H4'-H5'} = 9.3$  Hz,  $J_{H4'-H3'} = 8.3$  Hz,  $H_{4'}$ ), 3.39 (ddd, 1H,  $J_{H5'-H6'ax} = 9.8$  Hz,  $J_{H5'-H4'} = 9.3$  Hz,  $J_{H5'-H6'eq} = 4.8$  Hz,  $H_{5'}$ ), 2.42-2.35, 2.30-2.23 (2m, 2H, H<sub>3</sub>), 1.99 (s, 3H, CH<sub>3</sub>CO), 0.82 (s, 9H, SitBu), 0.02, -0.04 (2s, 6H, SiMe); <sup>13</sup>C NMR δ 170.0 (CH<sub>3</sub><u>C</u>O), 137.4, 129.1, 128.2, 126.5 (C<sub>ar</sub>), 134.6 (C<sub>2</sub>), 117.1 (C<sub>1</sub>), 102.0 (C<sub>7'</sub>), 82.7 (C<sub>4'</sub>), 79.0 (C<sub>1'</sub>), 73.8 (C<sub>3'</sub>), 70.5 (C<sub>5'</sub>), 69.0 (C<sub>6'</sub>), 57.1 (C<sub>2'</sub>), 36.7 (C<sub>3</sub>), 25.8 (SitBu), 23.9 (<u>C</u>H<sub>3</sub>CO), 18.2 (SitBu), -3.8, -4.8 (SiMe).

Further elution afforded **2α** (7.19 g, 89%, white solid):  $R_f$  0.62 (CH<sub>2</sub>Cl<sub>2</sub>/acetone = 9:1); mp 210 °C;  $[\alpha]_D^{20}$  + 18 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR δ 7.50-7.45 (m, 2H, H<sub>ar</sub>), 7.38-7.33 (m, 3H, H<sub>ar</sub>), 5.77 (dddd, 1H,  $J_{H2-H1trans}$  = 17.1 Hz,  $J_{H2-H1cis}$  = 10.3 Hz,  $J_{H2-H3a}$  = 7.6 Hz,  $J_{H2-H3b}$  = 6.0 Hz, H<sub>2</sub>), 5.50 (s, 1H, H<sub>7</sub>), 5.49 (d, 1H,  $J_{NH-H2'}$  = 7.1 Hz, NH), 5.14 (dm, 1H,  $J_{H1trans-H2}$  = 17.1 Hz, H<sub>1trans</sub>), 5.11 (dm, 1H,  $J_{H1cis-H2}$  = 10.3 Hz, H<sub>2</sub>, H<sub>6</sub>·eq), 3.84 (dd, 1H,  $J_{H3'-H4'}$  = 10.0 Hz,  $J_{H3'-H2'}$  = 8.3 Hz, H<sub>3</sub>·), 3.69 (dd, 1H,  $J_{H4'-H3'}$  = 10.0 Hz,  $J_{H4'-H5'}$  = 9.8 Hz, H<sub>4</sub>·), 3.59 (dd, 1H,  $J_{H3'-H4'}$  = 9.4 Hz,  $J_{H5'-H6'eq}$  = 4.5 Hz, H<sub>5</sub>·), 3.53 (dd, 1H,  $J_{H6'ax-H5'}$  = 9.4 Hz,  $J_{H6'ax-H6'eq}$  = 8.6 Hz, H<sub>6'ax</sub>), 2.49 (ddd, 1H,  $J_{H3a-H3b}$  = 14.8 Hz,  $J_{H3a-H1'}$  = 10.7 Hz,  $J_{H3a-H2}$  = 7.6 Hz, H<sub>3a</sub>), 2.32 (ddd, 1H,  $J_{H3b-H3a}$  = 14.8 Hz,  $J_{H3b-H2}$  = 6.0 Hz,  $J_{H3b-H1'}$  = 4.8 Hz, H<sub>6'ax</sub>), 1.99 (s, 3H, CH<sub>3</sub>CO), 0.84 (s, 9H, SitBu), 0.07, 0.00 (2s, 6H, SiMe); <sup>13</sup>C NMR δ 170.2 (CH<sub>3</sub>CO), 137.3, 129.2, 128.3, 126.4 (C<sub>ar</sub>), 134.1 (C<sub>2</sub>), 117.4 (C<sub>1</sub>), 102.0 (C<sub>7</sub>·), 83.4 (C<sub>4</sub>·), 74.0 (C<sub>1</sub>·), 70.6 (C<sub>3</sub>·), 69.5 (C<sub>6</sub>·), 64.0 (C<sub>5</sub>·), 55.3 (C<sub>2</sub>·), 31.3 (C<sub>3</sub>), 25.8 (SitBu), 23.5 (<u>C</u>H<sub>3</sub>CO), 18.3 (SitBu), -3.7, -4.7 (SiMe); MS (ESI): m/z = 917 [2M+Na]<sup>+</sup> 100%; HRMS calcd for C<sub>24</sub>H<sub>37</sub>NNaO<sub>5</sub>Si<sup>+</sup> 470.2339, found 470.2336.

### Methyl 2-(2-acetamido-4,6-O-(R)-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy- $\alpha$ -D-glucopyranosyl)acetate 3

To a solution of  $2\alpha$  (2.00 g, 4.47 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (55 mL) was added a solution of sodium hydroxide (1.79 g, 44.7 mmol, 10 eq.) in methanol (25 mL). Ozone was bubbled through the solution at - 78 °C for 3 h until it became blue. The solution was then purged with argon, warmed to r.t., diluted with  $CH_2Cl_2$  and washed with saturated aqueous  $NH_4Cl$  solution. Aqueous phase was back-extracted with CH<sub>2</sub>Cl<sub>2</sub>. Combined organic extracts were dried (MgSO<sub>4</sub>) and concentrated. Purification by flash chromatography (CH<sub>2</sub>Cl<sub>2</sub>/acetone, 9:1) afforded ester **3** (1.44 g, 67%, white solid):  $R_f 0.37$  (CH<sub>2</sub>Cl<sub>2</sub>/acetone = 9:1); mp 198 °C;  $[\alpha]_D^{20}$ + 21 (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>); IR 1743 cm<sup>-1</sup>; <sup>1</sup>H NMR δ 7.49-7.44 (m, 2H, H<sub>ar</sub>), 7.38-7.33 (m, 3H,  $H_{ar}$ ), 5.52 (d, 1H,  $J_{NH-H2'}$  = 7.0 Hz, NH), 5.50 (s, 1H,  $H_{7'}$ ), 4.78 (ddd, 1H,  $J_{H1'-H2a}$  = 9.4 Hz,  $J_{\text{H1'-H2'}} = 5.7 \text{ Hz}, J_{\text{H1'-H2b}} = 5.5 \text{ Hz}, H_{1'}, 4.22 \text{ (ddd, 1H, } J_{\text{H2'-H3'}} = 9.7 \text{ Hz}, J_{\text{H2'-NH}} = 7.0 \text{ Hz},$  $J_{\text{H2'-H1'}} = 5.7 \text{ Hz}, \text{H}_{2'}$ , 4.20 (dd, 1H,  $J_{\text{H6'eq-H6'ax}} = 9.4 \text{ Hz}, J_{\text{H6'eq-H5'}} = 3.5 \text{ Hz}, \text{H}_{6'eq}$ ), 3.81 (dd, 1H,  $J_{\text{H3'-H2'}} = 9.7$  Hz,  $J_{\text{H3'-H4'}} = 8.8$  Hz,  $H_{3'}$ ), 3.70 (s, 3H, OMe), 3.69-3.62 (m, 2H,  $H_{5'}$ ,  $H_{6'ax}$ ), 3.53 (dd, 1H,  $J_{H4'-H5'} = 9.2$  Hz,  $J_{H4'-H3'} = 8.8$  Hz,  $H_{4'}$ ), 2.73 (dd, 1H,  $J_{H2a-H2b} = 14.3$  Hz,  $J_{H2a-H1'}$ = 9.4 Hz, H<sub>2a</sub>), 2.62 (dd, 1H,  $J_{H2b-H2a}$  = 14.3 Hz,  $J_{H2b-H1'}$  = 5.5 Hz, H<sub>2b</sub>), 1.97 (s, 3H, CH<sub>3</sub>CO), 0.83 (s, 9H, SitBu), 0.05, -0.02 (2s, 6H, SiMe);  $^{13}$ C NMR  $\delta$  171.2 (C<sub>1</sub>), 170.3 (CH<sub>3</sub>CO), 137.3, 129.2, 128.3, 126.4 (Car), 102.1 (C7'), 83.1 (C4'), 72.3 (C1'), 70.4 (C3'), 69.3 (C6'), 64.9 (C<sub>5'</sub>), 54.9 (C<sub>2'</sub>), 52.2 (OMe), 34.0 (C<sub>2</sub>), 25.8 (SitBu), 23.4 (<u>C</u>H<sub>3</sub>CO), 18.3 (SitBu), -3.7, -4.8 (SiMe); MS (ESI):  $m/z = 480 [M+H]^+ 100\%$ ; HRMS calcd for C<sub>24</sub>H<sub>37</sub>NNaO<sub>7</sub>Si<sup>+</sup> 502.2237, found 502.2226.

#### (3-N-tert-Butyloxycarbonyl-2',3'-O-isopropylidene)-uridine 6

To a solution of 2',3'-O-isopropylidene-uridine (1.50 g, 5.3 mmol) in THF (30 mL) were added at 0 °C trimethylsilyl chloride (1.35 mL, 10.6 mmol, 2 eq.) and DIEA (1.85 mL, 10.6 mmol, 2 eq.). The reaction mixture was stirred at r.t. for 1 h and hydrolyzed with saturated aqueous NH<sub>4</sub>Cl solution. Aqueous phase was extracted with EtOAc and organic phase was dried (MgSO<sub>4</sub>) and concentrated in vacuo. The residue was taken up in THF (30 mL). Ditert-butyl dicarbonate (1.27 g, 5.8 mmol, 1.1 eq.), Et<sub>3</sub>N (820 µL, 5.8 mmol, 1.1 eq.) and DMAP cat. were successively added. The mixture was stirred at r.t. for 3 h, then cooled to 0 °C and stirred with 1 M aqueous HCl solution for 5 min. After dilution with EtOAc and decantation, organic phase was washed with saturated aqueous NaCl solution, dried (MgSO<sub>4</sub>) and concentrated. Purification by flash chromatography (cyclohexane/acetone, 2:1) afforded 6 (1.67 g, 82%, white solid):  $R_f 0.26$  (cyclohexane/acetone = 2:1);  $[\alpha]_D^{20}$  - 23 (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR  $\delta$  7.48 (d, 1H,  $J_{H6-H5}$  = 8.2 Hz, H<sub>6</sub>), 5.71 (d, 1H,  $J_{H5-H6}$  = 8.2 Hz, H<sub>5</sub>), 5.66 (d, 1H,  $J_{\text{H1'-H2'}} = 2.9 \text{ Hz}, \text{H}_{1'}$ , 4.94 (dd, 1H,  $J_{\text{H2'-H3'}} = 6.4 \text{ Hz}, J_{\text{H2'-H1'}} = 2.9 \text{ Hz}, \text{H}_{2'}$ ), 4.89 (dd, 1H,  $J_{\text{H3'-H2'}} = 6.4 \text{ Hz}, J_{\text{H3'-H4'}} = 3.2 \text{ Hz}, H_{3'}), 4.29 \text{ (ddd, 1H, } J_{\text{H4'-H5'b}} = 3.5 \text{ Hz}, J_{\text{H4'-H3'}} = 3.2 \text{ Hz}, J_{\text{H4'-H3'}$  $J_{\text{H4'-H5'a}} = 2.4 \text{ Hz}, \text{H}_{4'}$ , 3.90 (ddd, 1H,  $J_{\text{H5'a-H5'b}} = 12.0 \text{ Hz}, J_{\text{H5'a-OH}} = 3.8 \text{ Hz}, J_{\text{H5'a-H4'}} = 2.4 \text{ Hz}$ , H<sub>5'a</sub>), 3.78 (ddd, 1H,  $J_{\text{H5'b-H5'a}} = 12.0$  Hz,  $J_{\text{H5'b-OH}} = 6.4$  Hz,  $J_{\text{H5'b-H4'}} = 3.5$  Hz,  $H_{5'b}$ ), 2.81 (dd, 1H,  $J_{OH-H5'b} = 6.4$  Hz,  $J_{OH-H5'a} = 3.8$  Hz, OH), 1.58 (s, 9H, CMe<sub>3</sub>), 1.55, 1.34 (2s, 6H, CMe<sub>2</sub>); <sup>13</sup>C NMR δ 160.5 (C<sub>4</sub>), 148.7 (C<sub>2</sub>), 147.5 (CO<sub>Boc</sub>), 141.7 (C<sub>6</sub>), 114.5 (<u>C</u>Me<sub>2</sub>), 102.5 (C<sub>5</sub>), 95.7  $(C_{1'})$ , 87.4 (<u>C</u>Me<sub>3</sub>), 87.1 (C<sub>4'</sub>), 84.1 (C<sub>2'</sub>), 80.4 (C<sub>3'</sub>), 62.7 (C<sub>5'</sub>), 27.6 (<u>CMe<sub>3</sub></u>), 27.4, 25.4  $(CMe_2)$ ; MS (ESI): m/z = 791 [2M+Na]<sup>+</sup> 100%; HRMS calcd for  $C_{17}H_{24}N_2NaO_8^+$  407.1430, found 407.1431.

### Benzyl (3-*N-tert*-butyloxycarbonyl-2',3'-*O*-isopropylidene)-uridin-5'-yl methylphosphonate 7

At 0 °C, diisopropyl azodicarboxylate (DIAD) (320 µL, 1.6 mmol, 1.5 eq.) was added dropwise to a solution of 5 (200 mg, 1.1 mmol, 1 eq.), 6 (413 mg, 1.1 mmol, 1 eq.) and PPh<sub>3</sub> (423 mg, 1.6 mmol, 1.5 eq.) in THF (10 mL). The reaction mixture was stirred at r.t. for 3 h then concentrated. Purification by flash chromatography (EtOAc/cyclohexane, 2:1) afforded 7 (400 mg, 67%, white solid) as a mixture of epimers (d.r. = 54/46):  $R_f$  0.13 (EtOAc/cyclohexane = 2:1); <sup>1</sup>H NMR  $\delta$  7.39-7.33 (m, 5H, H<sub>ar</sub>), 7.32, 7.30 (2d, 1H, J<sub>H6-H5</sub> = 8.1 Hz,  $H_6^*$ ,  $H_6^\circ$ ), 5.70, 5.66 (2d, 1H,  $J_{H5-H6} = 8.1$  Hz,  $H_5^*$ ,  $H_5^\circ$ ), 5.70-5.68 (m, 1H,  $H_{1'}$ ), 5.12-5.04 (m, 2H, CH<sub>2</sub>Ph), 4.87, 4.80 (2dd, 1H,  $J_{H2'-H3'} = 6.4$  Hz,  $J_{H2'-H1'} = 2.2$  Hz,  $H_{2'}^{\circ}$ ,  $H_{2'}^{*}$ ), 4.77, 4.71 (2dd, 1H,  $J_{\text{H3'-H2'}} = 6.4$  Hz,  $J_{\text{H3'-H4'}} = 3.7$  Hz,  $H_{3'}^{\circ}$ ,  $H_{3'}^{*}$ ), 4.32-4.28 (m, 1H,  $H_{4'}$ ), 4.25-4.15, 4.15-4.07 (2m, 2H, H<sub>5'</sub>), 1.59 (2s, 9H, tBu°, tBu\*), 1.54 (bs, 3H, CMe<sub>2</sub>), 1.48, 1.48 (2d, 3H,  $J_{CH3-P} = 17.6$  Hz,  $CH_3^*$ ,  $CH_3^\circ$ ), 1.33, 1.33 (2s, 3H,  $CMe_2^\circ$ ,  $CMe_2^*$ ); <sup>13</sup>C NMR  $\delta$ 160.3 (C<sub>4</sub>), 148.3 (C<sub>2</sub>), 147.5 (CO<sub>Boc</sub>), 140.8, 140.7 (C<sub>6</sub>\*, C<sub>6</sub>°), 136.2, 136.2 (2d,  $J_{Cqar-P} = 5.0$ Hz, Cq<sub>ar</sub>\*, Cq<sub>ar</sub>°), 128.9, 128.8, 128.1 (CH<sub>ar</sub>), 114.8 (CMe<sub>2</sub>), 102.3 (C<sub>5</sub>), 94.5, 94.4 (C<sub>1</sub>,°,  $C_{1,*}$ ), 87.2 (CMe<sub>3</sub>), 85.8, 85.7 (2d,  $J_{C4'-P} = 7.0$  Hz,  $C_{4,\circ}$ ,  $C_{4,*}$ ), 84.7, 84.6 ( $C_{2,\circ}$ ,  $C_{2,*}$ ), 80.6, 6.0 Hz,  $C_{5'}$ \*,  $C_{5'}$ °), 27.6 (CMe<sub>3</sub>), 27.3, 25.5, 25.4 (CMe<sub>2</sub>), 11.5, 11.5 (2d,  $J_{CH3-P} = 144.0$  Hz, CH<sub>3</sub>\*, CH<sub>3</sub>°); <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>) δ 32.6 (s, 0.46P, P°), 32.4 (s, 0.54P, P\*); MS

(ESI): m/z = 1127  $[2M+Na]^+$  100%; HRMS calcd for  $C_{25}H_{33}N_2NaO_{10}P^+$  575.1771, found 575.1777.

#### Benzyl (R)-citronellyl methylphosphonate 8

At 0 °C, DIAD (880 µL, 4.4 mmol, 1.5 eq.) was added dropwise to a solution of **5** (550 mg, 3 mmol, 1 eq.), (*R*)-citronellol (540 µL, 3 mmol, 1 eq.) and PPh<sub>3</sub> (1.16 g, 4.4 mmol, 1.5 eq.) in THF (25 mL). The reaction mixture was stirred at r.t. for 1 h 30 then concentrated. Purification by flash chromatography (EtOAc/cyclohexane, 2:1) afforded **8** (920 mg, 95%, colorless oil) as a mixture of epimers (d.r. = 1/1):  $R_f$  0.44, 0.31 (EtOAc/cyclohexane, 2:1); <sup>1</sup>H NMR  $\delta$  7.41-7.28 (m, 5H, H<sub>ar</sub>), 5.12-5.02 (m, 3H, CH<sub>2</sub>Ph, H<sub>6</sub>), 4.10-3.90 (m, 2H, H<sub>1</sub>), 2.04-1.87 (m, 2H, H<sub>5</sub>), 1.72-1.64 (m, 1H, H<sub>2a</sub>), 1.67 (s, 3H, H<sub>8</sub>), 1.59 (s, 3H, H<sub>9</sub>), 1.58-1.51 (m, 1H, H<sub>3</sub>), 1.48-1.39 (m, 1H, H<sub>2b</sub>), 1.46 (d, 3H,  $J_{CH3-P}$  = 17.5 Hz, CH<sub>3</sub>P), 1.36-1.26, 1.20-1.11 (2m, 2H, H<sub>4</sub>), 0.88 (2d, 3H,  $J_{H10-H3}$  = 6.6 Hz, H<sub>10</sub>); <sup>13</sup>C NMR  $\delta$  136.7 (d,  $J_{Cq-P}$  = 5.7 Hz, Cq), 131.5 (C<sub>7</sub>), 128.7, 128.5, 128.0 (CH<sub>ar</sub>), 124.7 (C<sub>6</sub>), 67.2 (d,  $J_{CH2Ph-P}$  = 5.7 Hz, CH<sub>2</sub>Ph), 64.2 (d,  $J_{C1-P}$  = 6.2 Hz, C<sub>1</sub>), 37.5 (d,  $J_{C2-P}$  = 6.3 Hz, C<sub>2</sub>), 37.1 (C<sub>4</sub>), 29.2 (C<sub>3</sub>), 25.8 (C<sub>8</sub>), 25.5 (C<sub>5</sub>), 19.4 (C<sub>10</sub>), 17.8 (C<sub>9</sub>), 11.5, 11.5 (2d,  $J_{CH3-P}$  = 144.5 Hz, CH<sub>3</sub>P); <sup>31</sup>P NMR  $\delta$  31.5, 31.5 (2s); MS (ESI): m/z = 671 [2M+Na]<sup>+</sup> 100%; HRMS calcd for C<sub>18</sub>H<sub>29</sub>NaO<sub>3</sub>P<sup>+</sup> 347.1752, found 347.1746.

### Dibenzyl 3-(2-acetamido-4,6-O-(R)-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy- $\alpha$ -D-glucopyranosyl)-2-oxopropylphosphonate 11

To a solution of 17 (890 mg, 3.2 mmol, 3.25 eq.) in THF (15 mL) was added dropwise nBuLi (1.5 mL, 3.43 mmol, 3.5 eq.) at - 78 °C. After 1 h stirring at - 78 °C, the mixture was added to a cold solution of 3 (475 mg, 0.99 mmol, 1 eq.) in THF (3 mL). The reaction mixture was slowly warmed to r.t. overnight and quenched with saturated aqueous NH<sub>4</sub>Cl solution. Aqueous phase was extracted with EtOAc and combined organic layers were dried (MgSO<sub>4</sub>) and concentrated. Purification by flash chromatography (CH<sub>2</sub>Cl<sub>2</sub>/acetone, 8:2) afforded 11 (600 mg, 83%, white solid):  $R_f 0.47$  (CH<sub>2</sub>Cl<sub>2</sub>/acetone = 8:2);  $[\alpha]_D^{20} + 26$  (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>); IR (cm<sup>-1</sup>) 1718 (CO), 1250 (PO); <sup>1</sup>H NMR δ 7.51-7.47 (m, 2H, H<sub>ar</sub>), 7.42-7.30 (m, 13H, H<sub>ar</sub>), 6.62 (d, 1H,  $J_{\text{NH-H2}'}$  = 8.7 Hz, NH), 5.50 (s, 1H, H<sub>7</sub>), 5.12, 5.02 (AB from ABX, 2H,  $J_{\text{AB}}$  = 11.6 Hz,  $J_{A-P} = 9.5$  Hz,  $J_{B-P} = 10.0$  Hz, CH<sub>2</sub>Ph), 5.01 (d, 2H,  $J_{H-P} = 8.4$  Hz, CH<sub>2</sub>Ph), 4.78 (ddd, 1H,  $J_{\text{H1'-H3a}} = 8.0$  Hz,  $J_{\text{H1'-H2'}} = 5.7$  Hz,  $J_{\text{H1'-H3b}} = 5.1$  Hz,  $H_{1'}$ ), 4.31 (ddd, 1H,  $J_{\text{H2'-H3'}} = 9.8$  Hz,  $J_{\text{H2'-NH}} = 8.7 \text{ Hz}, J_{\text{H2'-H1'}} = 5.7 \text{ Hz}, H_{2'}, 4.15 \text{ (dd, 1H, } J_{\text{H6'eq-H6'ax}} = 10.3 \text{ Hz}, J_{\text{H6'eq-H5'}} = 4.3 \text{ Hz},$  $H_{6'eq}$ ), 3.83 (dd, 1H,  $J_{H3'-H2'} = 9.8$  Hz,  $J_{H3'-H4'} = 8.3$  Hz,  $H_{3'}$ ), 3.65 (dd, 1H,  $J_{H6'ax-H6'eq} = 10.3$ Hz,  $J_{\text{H6'ax-H5'}} = 9.2$  Hz,  $H_{6'ax}$ ), 3.51 (dd, 1H,  $J_{\text{H4'-H5'}} = 9.6$  Hz,  $J_{\text{H4'-H3'}} = 8.3$  Hz,  $H_{4'}$ ), 3.47 (ddd, 1H,  $J_{\text{H5'-H4'}} = 9.6 \text{ Hz}$ ,  $J_{\text{H5'-H6'ax}} = 9.2 \text{ Hz}$ ,  $J_{\text{H5'-H6'eq}} = 4.3 \text{ Hz}$ ,  $H_{5'}$ ), 3.19 (dd, 1H,  $J_{\text{H3a-H3b}} = 17.1$ Hz,  $J_{\text{H3a-H1}}$  = 8.0 Hz,  $H_{3a}$ ), 3.10, 3.05 (AB from ABX, 2H,  $J_{\text{AB}}$  = 13.5 Hz,  $J_{\text{A-P}}$  = 23.2 Hz,  $J_{\text{B-P}}$ = 21.9 Hz, H<sub>1a</sub>, H<sub>1b</sub>), 2.63 (dd, 1H,  $J_{H3b-H3a}$  = 17.1 Hz,  $J_{H3b-H1'}$  = 5.1 Hz, H<sub>3b</sub>), 1.85 (s, 3H, CH<sub>3</sub>CO), 0.83 (s, 9H, SitBu), 0.10, 0.01 (2s, 6H, SiMe); <sup>13</sup>C NMR  $\delta$  197.4 (d,  $J_{C2-P}$  = 4.7 Hz, C<sub>2</sub>), 170.7 (CH<sub>3</sub>CO), 137.4 (Cq<sub>ar</sub>), 135.4, 135.3 (2d, J<sub>Cq-P</sub> = 6.0 Hz, Cq<sub>ar</sub>), 129.2, 129.1, 129.0, 129.0, 128.9, 128.5, 128.2, 128.2, 126.4 (CH<sub>ar</sub>), 102.0 (C<sub>7'</sub>), 83.4 (C<sub>4'</sub>), 70.5 (C<sub>1'</sub>), 70.1 (C<sub>3'</sub>), 69.3 (C<sub>6'</sub>), 68.6, 68.5 (2d,  $J_{CH2Ph-P} = 6.5$  Hz, CH<sub>2</sub>Ph), 65.7 (C<sub>5'</sub>), 54.0 (C<sub>2'</sub>), 43.9 (C<sub>3</sub>), 42.9 (d,  $J_{C1-P} = 124.8 \text{ Hz}, C_1$ , 25.8 (SitBu), 23.0 (<u>C</u>H<sub>3</sub>CO), 18.2 (SitBu), -3.9, -4.7 (SiMe); <sup>31</sup>P NMR  $\delta$ 21.4 (s); MS (ESI):  $m/z = 1469 [2M+Na]^+ 100\%$ ; HRMS calcd for  $C_{38}H_{50}NNaO_9PSi^+$ 746.2890, found 746.2898.

### $Benzyl \ 3-(2-acetamido-4, 6-O-(R)-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy-\alpha-D-glucopyranosyl)-2-oxopropylphosphonate \ 12$

To a solution of 11 (600 mg, 0.83 mmol) in toluene (8 mL) was added DABCO (110 mg, 0.99 mmol, 1.2 eq.). The reaction mixture was then refluxed for 7 h and concentrated. The residue was taken up in methanol, acidified with DOWEX H<sup>+</sup> (50WX8-100) ion exchange resin. Methanol was removed in vacuo to afford **12** (475 mg, 90%, white solid):  $\left[\alpha\right]_{D}^{20} + 18$  (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (acetone-d<sub>6</sub>) δ 7.54-7.32 (m, 11H, NH, H<sub>ar</sub>), 5.62 (s, 1H, H<sub>7</sub>), 5.18-5.08 (m, 2H, CH<sub>2</sub>Ph), 4.66 (ddd, 1H,  $J_{H1'-H3a} = 6.8$  Hz,  $J_{H1'-H3b} = 6.3$  Hz,  $J_{H1'-H2'} = 5.9$  Hz,  $H_{1'}$ ), 4.28 (ddd, 1H,  $J_{\text{H2'-H3'}} = 10.0 \text{ Hz}$ ,  $J_{\text{H2'-NH}} = 9.4 \text{ Hz}$ ,  $J_{\text{H2'-H1'}} = 5.9 \text{ Hz}$ ,  $H_{2'}$ ), 4.09 (dd, 1H,  $J_{\text{H6'eq}}$ )  $_{H6'ax} = 9.7 \text{ Hz}, J_{H6'eq-H5'} = 4.5 \text{ Hz}, H_{6'eq}$ , 3.99 (dd, 1H,  $J_{H3'-H2'} = 10.0 \text{ Hz}, J_{H3'-H4'} = 8.9 \text{ Hz}$ , H<sub>3'</sub>), 3.68 (dd, 1H,  $J_{H6'ax-H5'} = J_{H6'ax-H6'eq} = 9.7$  Hz, H<sub>6'ax</sub>), 3.62 (ddd, 1H,  $J_{H5'-H6'ax} = 9.7$  Hz,  $J_{\text{H5'-H4'}} = 9.2 \text{ Hz}, J_{\text{H5'-H6'eq}} = 4.5 \text{ Hz}, H_{5'}, 3.52 \text{ (dd, 1H, } J_{\text{H4'-H5'}} = 9.2 \text{ Hz}, J_{\text{H4'-H3'}} = 8.9 \text{ Hz},$  $H_{4'}$ ), 3.37 (dd, 1H,  $J_{H1a-P} = 22.8$  Hz,  $J_{H1a-H1b} = 13.4$  Hz,  $H_{1a}$ ), 3.35 (dd, 1H,  $J_{H3a-H3b} = 17.1$  Hz,  $J_{\text{H3a-H1}} = 6.8 \text{ Hz}, \text{H}_{3a}$ , 3.24 (dd, 1H,  $J_{\text{H1b-P}} = 21.9 \text{ Hz}, J_{\text{H1b-H1a}} = 13.4 \text{ Hz}, \text{H}_{1b}$ ), 3.00 (dd, 1H,  $J_{\text{H3b-H3a}} = 17.1 \text{ Hz}, J_{\text{H3b-H1}} = 6.3 \text{ Hz}, H_{3b}$ , 1.84 (s, 3H, CH<sub>3</sub>CO), 0.82 (s, 9H, SitBu), 0.08, 0.00 (2s, 6H, SiMe); <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  199.9 (d,  $J_{C2-P} = 5.0$  Hz,  $C_2$ ), 170.5 (CH<sub>3</sub><u>C</u>O), 139.0 (Cq<sub>ar</sub>), 137.6 (d,  $J_{Cq-P} = 6.0$  Hz, Cq<sub>ar</sub>), 129.6, 129.4, 129.3, 129.1, 128.7, 128.7, 127.3  $(CH_{ar})$ , 102.5  $(C_{7'})$ , 84.4  $(C_{4'})$ , 72.0  $(C_{1'})$ , 71.0  $(C_{3'})$ , 69.7  $(C_{6'})$ , 68.0  $(d, J_{CH2Ph-P} = 5.0 \text{ Hz})$ , CH<sub>2</sub>Ph), 65.9 (C<sub>5'</sub>), 54.6 (C<sub>2'</sub>), 43.8 (d,  $J_{C1-P} = 124.0$  Hz, C<sub>1</sub>), 43.5 (C<sub>3</sub>), 26.3 (SitBu), 23.1 (<u>CH</u><sub>3</sub>CO), 18.8 (SitBu), -3.8, -4.5 (SiMe); <sup>31</sup>P NMR (acetone-d<sub>6</sub>)  $\delta$  18.8 (s); MS (ESI): m/z = 632 [M-H]<sup>-</sup> 100%; HRMS calcd for C<sub>31</sub>H<sub>43</sub>NO<sub>9</sub>PSi<sup>-</sup> 632.2445, found 632.2460.

#### Dibenzyl 3-(2-acetamido-2-deoxy-a-D-glucopyranosyl)-2-oxopropylphosphonate 13

To a suspension of **11** (100 mg, 0.14 mmol) in water (5 mL) was added trifluoroacetic acid (5 mL) at 0 °C. The reaction mixture was stirred at r.t. for 1 h and concentrated. Purification by flash chromatography (CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 85:15) and lyophilization afforded 13 (70 mg, 97%, white solid):  $R_f 0.48$  (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 85:15);  $[\alpha]_D^{20} + 38$  (c 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (DMSOd<sub>6</sub>) δ 7.67 (d, 1H, J<sub>NH-H2'</sub> = 7.8 Hz, NH), 7.41-7.31 (m, 10H, H<sub>ar</sub>), 5.07-4.98 (m, 5H, OH<sub>4'</sub>, CH<sub>2</sub>Ph), 4.88 (d, 1H, *J*<sub>OH3'-H3'</sub> = 5.3 Hz, OH<sub>3'</sub>), 4.44 (dd, 1H, *J*<sub>OH6'-H6'b</sub> = 6.0 Hz, *J*<sub>OH6'-H6'a</sub> = 5.8 Hz, OH<sub>6</sub>), 4.40 (ddd, 1H,  $J_{\text{H1'-H3a}} = 9.1$  Hz,  $J_{\text{H1'-H2'}} = 5.6$  Hz,  $J_{\text{H1'-H3b}} = 4.6$  Hz,  $H_{1'}$ ), 3.71 (ddd, 1H,  $J_{\text{H2'-H3'}} = 10.0 \text{ Hz}$ ,  $J_{\text{H2'-NH}} = 7.8 \text{ Hz}$ ,  $J_{\text{H2'-H1'}} = 5.6 \text{ Hz}$ ,  $H_{2'}$ ), 3.56 (ddd, 1H,  $J_{\text{H6'a-H6'b}} = 10.0 \text{ Hz}$ ) 11.6 Hz,  $J_{\text{H6'a-OH6'}} = 5.8$  Hz,  $J_{\text{H6'a-H5'}} = 2.5$  Hz,  $H_{6'a}$ ), 3.50 (dd, 1H,  $J_{\text{H1a-P}} = 21.8$  Hz,  $J_{\text{H1a-H1b}} = 21.8$ 14.4 Hz, H<sub>1a</sub>), 3.47 (dd, 1H, (ddd, 1H,  $J_{H6'b-H6'a} = 11.6$  Hz,  $J_{H6'b-OH6'} = 6.0$  Hz,  $J_{H6'b-H5'} = 5.7$ Hz, H<sub>6'b</sub>), 3.41 (dd, 1H,  $J_{H1b-P} = 21.5$  Hz,  $J_{H1b-H1a} = 14.4$  Hz, H<sub>1b</sub>), 3.40 (ddd, 1H,  $J_{H3'-H2'} = 14.4$  Hz, H<sub>1b</sub>), 3.40 (ddd, 1H, J\_{H3'-H2'} = 14.4 Hz, H\_{H3'-H2'} = 1 10.0 Hz,  $J_{\text{H3'-H4'}} = 8.0$  Hz,  $J_{\text{H3'-OH3'}} = 5.3$  Hz,  $H_{3'}$ ), 3.35 (ddd, 1H,  $J_{\text{H5'-H4'}} = 8.8$  Hz,  $J_{\text{H5'-H6'b}} = 10.0$  Hz,  $J_{\text{H5'-H6'}} = 10.0$  Hz,  $J_{\text{H5'-H6'} = 10.0$  Hz,  $J_{\text{H5'-H6'}} = 10.0$  5.7 Hz,  $J_{\text{H5'-H6'a}} = 2.5$  Hz,  $H_{5'}$ ), 3.15 (ddd, 1H,  $J_{\text{H4'-H5'}} = 8.8$  Hz,  $J_{\text{H4'-H3'}} = 8.0$  Hz,  $J_{\text{H4'-OH4'}} = 1000$ 5.3 Hz, H<sub>4</sub>, 2.90 (dd, 1H,  $J_{H3a-H3b} = 16.1$  Hz,  $J_{H3a-H1'} = 9.1$  Hz, H<sub>3a</sub>), 2.66 (dd, 1H,  $J_{H3b-H3a} = 16.1$  Hz,  $J_{H3a-H1'} = 9.1$  Hz, H<sub>3a</sub>), 2.66 (dd, 1H,  $J_{H3b-H3a} = 16.1$  Hz,  $J_{H3a-H1'} = 9.1$  Hz, H<sub>3</sub>,  $J_{H3a} = 16.1$  Hz,  $J_{H3a-H1'} = 16.1$  Hz,  $J_{H3a-H1'} = 16.1$  Hz,  $J_{H3a-H1} = 16.1$  Hz,  $J_{H3a-H1} = 16.1$  Hz,  $J_{H3a-H1} = 16.1$  Hz,  $J_{H3a-H1} = 16.1$  Hz,  $J_{H3a-H1'} = 16.1$  Hz,  $J_{H3a-H1} = 16.1$  Hz,  $J_{H3a-H1'} = 16.1$  Hz,  $J_{$ 16.1 Hz,  $J_{\text{H3b-H1}^{\prime}}$  = 4.6 Hz, H<sub>3b</sub>), 1.77 (s, 3H, CH<sub>3</sub>CO); <sup>13</sup>C NMR (DMSO-d<sub>6</sub>)  $\delta$  200.5 (d,  $J_{\text{C2-P}}$ = 6.0 Hz, C<sub>2</sub>), 169.3 (CH<sub>3</sub><u>C</u>O), 136.2 (d,  $J_{Cq-P}$  = 6.0 Hz, Cq<sub>ar</sub>), 128.4, 128.2, 127.7 (CH<sub>ar</sub>), 74.9 (C<sub>5'</sub>), 70.6 (C<sub>4'</sub>), 70.3 (C<sub>3'</sub>), 69.3 (C<sub>1'</sub>), 67.0, 66.9 (2d,  $J_{CH2Ph-P} = 6.0$  Hz, CH<sub>2</sub>Ph), 60.9 (C<sub>6'</sub>), 52.6 (C<sub>2'</sub>), 41.8 (d,  $J_{C1-P} = 126.0$  Hz, C<sub>1</sub>), 41.4 (C<sub>3</sub>), 22.6 (<u>C</u>H<sub>3</sub>CO); <sup>31</sup>P NMR (DMSOd<sub>6</sub>)  $\delta$  21.8 (s); MS (ESI): m/z = 544 [M+Na]<sup>+</sup> 100%; HRMS calcd for C<sub>25</sub>H<sub>32</sub>NNaO<sub>9</sub>P<sup>+</sup> 544.1712, found 544.1707.

#### Benzyl 3-(2-acetamido-2-deoxy-a-D-glucopyranosyl)-2-oxopropylphosphonate 14

To a solution of 13 (34 mg, 65 µmol) in toluene (1 mL) was added DABCO (9 mg, 78 µmol, 1.2 eq.). The reaction mixture was then refluxed for 4 h and concentrated. The residue was taken up in water, acidified with DOWEX  $H^+$  (50WX8-100) ion exchange resin. Water was removed in vacuo to afford 14 (25 mg, 88%, white solid): <sup>1</sup>H NMR (DMSO-d<sub>6</sub>) δ 7.73 (d, 1H,  $J_{\text{NH-H2}'} = 8.0 \text{ Hz}, \text{NH}, 7.42-7.28 \text{ (m, 5H, Har)}, 4.94 \text{ (d, 2H, } J_{\text{CH2Ph-P}} = 7.5 \text{ Hz}, \text{CH}_2\text{Ph}), 4.66$ (ddd, 1H,  $J_{\text{H1}'-\text{H3a}} = 8.3 \text{ Hz}$ ,  $J_{\text{H1}'-\text{H3b}} = J_{\text{H1}'-\text{H2}'} = 5.2 \text{ Hz}$ ,  $H_1$ '), 3.72 (ddd, 1H,  $J_{\text{H2}'-\text{H3}'} = 10.3 \text{ Hz}$ ,  $J_{\text{H2'-NH}} = 8.0 \text{ Hz}, J_{\text{H2'-H1'}} = 5.2 \text{ Hz}, \text{H}_{2'}$ , 3.56 (dd, 1H,  $J_{\text{H6'a-H6'b}} = 11.5 \text{ Hz}, J_{\text{H6'a-H5'}} = 2.2 \text{ Hz}$ ,  $H_{6'a}$ ), 3.46 (dd, 1H,  $J_{H6'b-H6'a} = 11.5$  Hz,  $J_{H6'b-H5'} = 5.7$  Hz,  $H_{6'b}$ ), 3.41 (dd, 1H,  $J_{H3'-H2'} = 10.3$ Hz,  $J_{\text{H3'-H4'}} = 8.1$  Hz,  $H_{3'}$ ), 3.35 (ddd, 1H,  $J_{\text{H5'-H4'}} = 8.8$  Hz,  $J_{\text{H5'-H6'b}} = 5.7$  Hz,  $J_{\text{H5'-H6'a}} = 2.2$ Hz, H<sub>5'</sub>), 3.17, 3.12 (AB from ABX, 2H,  $J_{AB} = 13.3$  Hz,  $J_{A-P} = 21.7$  Hz,  $J_{B-P} = 22.0$  Hz, H<sub>1</sub>), 3.12 (dd, 1H,  $J_{H4'-H5'} = 8.8$  Hz,  $J_{H4'-H3'} = 8.1$  Hz,  $H_{4'}$ ), 2.88 (dd, 1H,  $J_{H3a-H3b} = 16.2$  Hz,  $J_{H3a-H1'}$  $= 8.3 \text{ Hz}, \text{H}_{3a}$ ), 2.75 (dd, 1H,  $J_{\text{H3b-H3a}} = 16.2 \text{ Hz}, J_{\text{H3b-H1}} = 5.2 \text{ Hz}, \text{H}_{3b}$ ), 1.76 (s, 3H, CH<sub>3</sub>CO); <sup>13</sup>C NMR (DMSO-d<sub>6</sub>)  $\delta$  201.5 (d,  $J_{C2-P} = 5.5$  Hz, C<sub>2</sub>), 169.3 (CH<sub>3</sub><u>C</u>O), 137.2 (d,  $J_{Cq-P} = 7.0$ Hz, Cqar), 128.3, 127.8, 127.4 (CHar), 74.8 (C5'), 70.8 (C4'), 70.4 (C3'), 69.5 (C1'), 66.1 (d,  $J_{CH2Ph-P} = 5.0$  Hz, CH<sub>2</sub>Ph), 61.0 (C<sub>6</sub>), 52.7 (C<sub>2</sub>), 43.9 (d,  $J_{C1-P} = 120.0$  Hz, C<sub>1</sub>), 41.1 (C<sub>3</sub>), 22.6 (<u>C</u>H<sub>3</sub>CO); <sup>31</sup>P NMR (DMSO-d<sub>6</sub>)  $\delta$  16.2 (s); MS (ESI): m/z = 430 [M-H]<sup>-</sup> 100%;.

#### 3-N-tert-Butyloxycarbonyl-1-(5'-hydroxypentyl)-uracil 17

To a solution of 1-(5'-hydroxypentyl)uracil (500 mg, 2.5 mmol) in THF (10 mL) were added at 0 °C trimethylsilyl chloride (650 µL, 5.0 mmol, 2 eq.) and DIEA (880 µL, 5.0 mmol, 2 eq.). The reaction mixture was stirred at r.t. for 1 h 30 and hydrolyzed with saturated aqueous NH<sub>4</sub>Cl solution. Aqueous phase was extracted with EtOAc and the organic layer was dried (MgSO<sub>4</sub>) and concentrated in vacuo. The residue was taken up in THF (10 mL). Boc<sub>2</sub>O (606 mg, 2.8 mmol, 1.1 eq.), Et<sub>3</sub>N (390 µL, 2.8 mmol, 1.1 eq.) and DMAP cat. were successively added. The mixture was stirred at r.t. for 16 h, then cooled to 0 °C and stirred with 1 M aqueous HCl solution for 2 min. After dilution with EtOAc and decantation, organic phase was washed with saturated aqueous NaCl solution, dried (MgSO<sub>4</sub>) and concentrated. Purification by flash chromatography (CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 9:1) afforded **17** (498 mg, 66%, yellow oil):  $R_f 0.54$  (CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 9:1); <sup>1</sup>H NMR  $\delta$  7.12 (d, 1H,  $J_{H6-H5} = 8.0$  Hz, H<sub>6</sub>), 5.70 (d, 1H,  $J_{\text{H5-H6}} = 8.0 \text{ Hz}, \text{ H}_5$ ), 3.73 (t, 2H,  $J_{\text{H1'-H2'}} = 7.4 \text{ Hz}, \text{ H}_1$ ), 3.68-3.61 (m, 2H,  $\text{H}_5$ ), 1.74 (tt, 2H,  $J_{\text{H2'-H3'}} = 7.7 \text{ Hz}, J_{\text{H2'-H1'}} = 7.4 \text{ Hz}, H_{2'}$ , 1.65-1.56 (m, 2H, H<sub>4'</sub>), 1.60 (s, 9H, CMe<sub>3</sub>), 1.47-1.39 (m, 2H,  $H_{3'}$ ); <sup>13</sup>C NMR  $\delta$  160.9 (C<sub>4</sub>), 149.2 (C<sub>2</sub>), 148.0 (CO<sub>Boc</sub>), 143.7 (C<sub>6</sub>), 102.0 (C<sub>5</sub>), 86.9  $(CMe_3)$ , 62.5  $(C_{5'})$ , 49.4  $(C_{1'})$ , 32.1  $(C_{4'})$ , 28.8  $(C_{2'})$ , 27.6  $(CMe_3)$ , 22.9  $(C_{3'})$ ; MS (ESI): m/z = 321  $[M+Na]^+$  100%; HRMS calcd for  $C_{14}H_{22}N_2NaO_5^+$  321.1426, found 321.1425.

# 3. <sup>1</sup>H , <sup>13</sup>C and <sup>31</sup>P NMR Spectra Compound $2\alpha$ (<sup>1</sup>H, <sup>13</sup>C)



Compound  $\mathbf{3}(^{1}\mathrm{H}, ^{13}\mathrm{C})$ 





Compound 6 ( $^{1}$ H,  $^{13}$ C)



Compound 7 (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)





Compound **8** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **9** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **10** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **11** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **12** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **13** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)





Compound **14** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **15** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **16** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound 17 (<sup>1</sup>H, <sup>13</sup>C)



Compound **18** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **19** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **20** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)





Compound **21** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **22** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)





Compound **23** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **24** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)





Compound **25** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)







Compound **26** (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P)



