Supplementary Information

Phosphine-Catalyzed [4 + 2] Annulation and Vinylogous Addition Reactions between 1,4-Dien-3-ones and 1,1-Dicyanoalkenes

Rong Zhou, Jianfang Wang, Junjun Tian, and Zhengjie He* The State Key Laboratory of Elemento-Organic Chemistry and Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China

Table of Contents

I. Experiments for Mechanistic Investigations	S2
II. ORTEP Drawings of (<i>trans</i> , <i>E</i>)- 3b and 4b	S6
III. ¹ H and ¹³ C NMR Spectra of 3 , 4 , 5 and 6	
IV. HMQC, HMBC and NOSEY Spectra	S70

I. Experiments for Mechanistic Investigations

Experiment (a): under a N₂ atmosphere, to a solution of (*trans*, *E*)-**3a** (126 mg, 0.3 mmol) in CHCl₃/D₂O (3.6 mL, 5:1, V/V) was added PBu₃ (15 uL, 0.06 mmol) through a microsyringe. The resulting mixture was stirred at room temperature for 24 h. The reaction mixture was concentrated on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel (eluant, petroleum ether–ethy acetate 10:1) to give a partially deuterated product (*trans*, *E*)-**3a**-*d*₂ (Scheme 4, a).

For (*trans*, *E*)-**3a**-*d*₂, ¹H NMR (400 MHz, CDCl₃): δ 7.91 (s, 1H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.43–7.29 (m, 10H), 7.13 (d, *J* = 7.2 Hz, 2H), 4.94 (s, 1H), 3.56 (s, 1H), 3.30 (d, *J* = 13.6 Hz, 0.15 H), 3.13 (d, *J* = 4.9 Hz, 0.15 H).

Experiment (b): under a N₂ atmosphere, to a solution of styryl ketone **1a** (117 mg, 0.5 mmol) and activated alkenes **2o** (101 mg, 0.6 mmol) in CHCl₃/D₂O (6 mL, 5:1) was added PBu₃ (25 uL, 0.1 mmol). The resulting mixture was stirred at room temperature until **1a** was completely consumed (monitored by TLC). The mixture was concentrated on a rotary evaporator under reduced pressure, and the residue was subjected to column chromatography isolation on silica gel (gradient eluant, petroleum ether–ethy acetate 20:1–10:1) to give a partially deuterated vinylogous Michael adduct **4a**- d_5 in 68% yield.

For**4a**-*d*₅, ¹H NMR (400 MHz, CDCl₃): δ 7.61–7.45 (m, 6H), 7.44–7.34 (m, 5H), 7.33–7.21 (m, 3H), 6.99 (d, *J* = 6.7 Hz, 2H), 6.65 (d, *J* = 16.2 Hz, 0.06 H), 3.54 (d, *J* = 4.4 Hz, 0.1H), 3.31 (d, *J* = 10.2 Hz, 0.1H), 3.23 (d, J = 6.2 Hz, 1H), 3.11–2.98 (m, 0.70 H).

Experiment (c): under the same conditions as above, the normal vinylogous Michael adduct **4a** (132 mg, 0.33 mmol) was treated with PBu₃ (16 uL, 0.066 mmol) in CHCl₃/D₂O (3 mL, 5:1) at room temperature for 48 h. After the same work-up and chromatographic isolation as that of experiment (b), a partially deuterated product **4a**- d_3 was obtained in almost quantitative yield. For **4a**- d_3 , ¹H NMR (400 MHz, CDCl₃): δ 7.61–7.45 (m, 6H), 7.44–7.34 (m, 5H), 7.33–7.21 (m, 3H), 6.99 (d, J = 7.1 Hz, 2H), 6.65 (d, J = 16.2 Hz, 0.06 H), 3.54 (d, J = 4.4 Hz, 0.29H), 3.31 (d, J = 10.5 Hz, 0.29H), 3.26–3.21 (m, 1H), 3.10–2.96 (m, 2H).

Ph Ph +
$$\frac{\text{NC}}{\text{Ph}}$$
 + $\frac{\text{PBu}_3 (20 \text{ mol }\%)}{\text{CHCl}_3, \text{ rt, 48 h}}$ no reaction (d)

Experiment (d): under a N_2 atmosphere, to a solution of chalcone (104 mg, 0.5 mmol) and activated alkene **20** (101 mg, 0.6 mmol) in CHCl₃ (5 mL) was added PBu₃ (25 uL, 0.1 mmol). The resulting mixture was stirred at room temperature for 48 h. Except starting materials, no vinylogous Michael adduct was detected by TLC during the entire process.

Experiment (e): under a N₂ atmosphere, to a solution of **1a** (117 mg, 0.5 mmol), chalcone (104 mg, 0.5 mmol), and activated alkene **2o** (101 mg, 0.6 mmol) in CHCl₃ (5 mL) was added PBu₃ (25 uL, 0.1 mmol). The resulting mixture was stirred at room temperature for 48 h. The reaction mixture was concentrated on a rotary evaporator under reduced pressure, and the residue was subjected to column chromatography isolation on silica gel (gradient eluant, petroleum ether–ethyl acetate 20:1-10:1) to give vinylogous Michael adduct **4a** in 75% yield and a complete recovery of chalcone.

II. ORTEP Drawings of (*trans*, *E*)-3b and 4b

 Table 1. Crystal data and structure refinement for (trans, E)-3b.

	(114113, 12)-50	
Empirical formula	$C_{28}H_{22}N_2O_2$	
Formula weight	418.48	
Temperature	113(2) K	
Wavelength	0.71075 Å	
Crystal system, space group	Monoclinic, P 1 21/c 1	
Unit cell dimensions	$a = 11.0620(10) \text{ Å} \qquad \alpha = 90^{\circ}.$	
	$b = 16.7680(16) \text{ Å} \qquad \beta = 105.781(4)^{\circ}.$	
	$c = 12.3210(13) \text{ Å} \gamma = 90^{\circ}.$	
Volume	2199.3(4) Å ³	
Z, Calculated density	4, 1.264 Mg/m ³	
Absorption coefficient	0.080 mm^{-1}	
F(000)	880	
Crystal size	0.22 x 0.20 x 0.18 mm ³	
Theta range for data collection .	1.91 to 27.90°	
Limiting indices	-14<=h<=14, -21<=k<=22, -15<=l<=16	
Reflections collected / unique	20943 / 5255 [R(int) = 0.0322]	
Completeness to the $\theta = 27.90^{\circ}$	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9857 and 0.9826	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5255 / 0 / 290	
Goodness-of-fit on F ²	0.995	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0381, $wR2 = 0.0889$	
R indices (all data)	R1 = 0.0524, $wR2 = 0.0958$	
Largest diff. peak and hole	0.254 and -0.145 e. Å ⁻³	

 Table 2. Crystal data and structure refinement for 4b.

Identification code	4b	
Empirical formula	$C_{30}H_{22}F_2N_2O$	
Formula weight	464.50	
Temperature	113(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Monoclinic, Cc	
Unit cell dimensions	$a = 12.828(2) \text{ Å} \qquad \alpha = 90^{\circ}.$	
	$b = 11.141(2) \text{ Å}$ $\beta = 103.208(10) (4)^{\circ}.$	
	$c = 16.665(3))$ Å $\gamma = 90^{\circ}$.	
Volume	2318.7(7) Å ³	
Z, Calculated density	4, 1.331 Mg/m ³	
Absorption coefficient	0.092 mm ⁻¹	
F(000)	968	
Crystal size	0.20 x 0.18 x 0.12 mm ³	
Theta range for data collection .	2.45 to 27.87°	
Limiting indices	-13<=h<=16, -14<=k<=13, -21<=l<=21	
Reflections collected / unique	11067 / 4433 [R(int) = 0.0302]	
Completeness to the $\theta = 27.87^{\circ}$	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9890 and 0.9818	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4433 / 2 / 316	
Goodness-of-fit on F ²	1.043	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0285, wR2 = 0.0599	
R indices (all data)	R1 = 0.0332, $wR2 = 0.0606$	
Largest diff. peak and hole	0.221 and -0.127 e. $Å^{-3}$	

III. ¹H and ¹³C NMR Spectra of 3, 4, 5 and 6

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

S26

S30

S38

Date: 5 Jul 2011 Document's Title: nc Spectrum Title: C13CPD Frequency (MHz): (f1) 100.638 Original Points Count: (f1) 32768 Actual Points Count: (f1) 32768 Acquisition Time (sec): (f1) 1.1010 Spectral Width (ppm): (f1) 295.733 Pulse Program: Unknown

S65

IV. HMQC, HMBC and NOSEY Spectra

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

