Electronic Supplementary Information for

A new practical synthesis of triaryl and trisindolylmethanes under solvent-free reaction conditions

Margherita Barbero,* Silvano Cadamuro, Stefano Dughera, Claudio Magistris and Paolo Venturello
Dipartimento di Chimica Generale e Chimica Organica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
margherita.barbero@unito.it

Fax: +39-011-6707642; Tel: +39-011-6707645

Table of contents:

General Experimental P 1
General procedure for acid-catalysed triarylmethane synthesis P 2
Characterisation of products $\mathbf{5 a - i}, \mathbf{6 a - c}, \mathbf{7 a - b}, \mathbf{8 a - c}$ and $\mathbf{9 a} \quad$ P 2-9
General procedure for triarylmethane synthesis in the absence of catalyst P9
Characterisation of product $\mathbf{5 j} \quad$ P 9
General procedure for acid-catalysed trisindolylmethane synthesis P9
Characterisation of products 11a-d

General Information

All the reactions were run in vials using analytical grade reagents, and were monitored by TLC, GC, GC-MS and NMR spectrometry. GC-MS spectra were recorded with an AT5973N mass selective detector connected to an AT6890N GC cross-linked methyl silicone capillary column. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} with a Bruker Avance 200 spectrometer at 200 MHz and 50 MHz , respectively; chemical shifts are given in ppm relative to CDCl_{3}. TLC were performed on Fluka silica gel TLCPET foils GF 254, 2-25 $\mu \mathrm{m}$, layer thickness 0.2 mm , medium pore diameter $60 \mathrm{~A}^{\circ}$. Plates were visualized using UV light (254 nm). Column chromatography was carried out on SiO_{2} (pore size $70 \AA, 70-230$ mesh). Petroleum ether refers to the fraction boiling in the range $40-60^{\circ} \mathrm{C}$ and is abbreviated as PE. Commercially available reagents and solvents were purchased from Aldrich and were used without purification or distillation prior to use; Dowex 50X8 ion-exchange resin was purchased from Fluka. o-Benzenedisulfonimide (1) was prepared as described in literature. ${ }^{1}$ Details for the reactions and yields for the pure (GC, GC-MS, TLC, ${ }^{1} \mathrm{H}$ NMR) isolated products are listed in Table 2, 4 and 5. Structure and purity of all the products were confirmed by comparison of their physical and spectral data (IR, MS, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) with those reported in literature. For triarylmethanes $\mathbf{5 d} \mathbf{d}, \mathbf{6} \mathbf{b}$ and $\mathbf{8 b},{ }^{1} \mathrm{H}$ NMR spectra are reported for the p, p isomer, always predominant, along with distinctive signals for the o, p minor isomer. By the work-up of the reaction mixtures, o-benzenedisulfonimide could be recovered by evaporating aqueous phases, purified by elution on Dowex ion-exchange resin and recycled in other reactions. When OBS was used adsorbed onto SiO_{2}, at the end of the reaction, the solid mixture was extracted with small portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times 3 \mathrm{~mL})$ under stirring; the heterogeneous catalyst was then directly recycled after drying under vacuum.

[^0]
General Procedures

Preparation of $10 \% \mathbf{w} / \mathbf{w}$ silica-gel supported \boldsymbol{o}-benzenedisulfonimide:

To a solution of o-benzenedisulfonimide ($\mathbf{1})(0.66 \mathrm{~g}, 3 \mathrm{mmol})$ in water (10 mL), silica gel (column chromatographic grade, $70 \AA, 70-230$ mesh; 6.60 g) was added. The mixture was stirred for 5 min and then water was evaporated under heating at reduced pressure until a free-flowing white solid was obtained. The catalyst was ready to use.

General procedure for acid catalysed Friedel-Crafts hydroxyalkylation reactions:

A mixture of aldehyde $2(1.0 \mathrm{mmol})$, aromatic compound 4 (mmol as in Table 4) and o benzenedisulfonimide ($\mathbf{1}, 10 \mathrm{~mol} \%, 0.022 \mathrm{~g}$) was stirred at r.t. (or under heating, as in Table 4) in a vial until TLC analyses showed almost complete conversion of $\mathbf{2}$. The reaction mixture was then treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}(1: 1,20 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by column chromatography on a short column of silica gel.
When $10 \% \mathrm{w} / \mathrm{w}$ silica-gel supported o-benzenedisulfonimide was used as the catalyst, at the end of the reaction, after extraction of the solid phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and further few washings with small amounts of solvent ($6 \times 3 \mathrm{~mL}$), the solid catalyst was dried and immediately recycled.
Organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the work-up was as above.

bis(2,4,5-Trimethoxyphenyl)(4-nitrophenyl)methane (5a). ${ }^{2}$
Chromatographic eluent: $\mathrm{PE}-\mathrm{AcOEt}$ (6:4); yellow solid (0.47 g , quantitative yield); mp $125-126^{\circ} \mathrm{C}$ (EtOH) [lit. ${ }^{2}$ 123-124 $\left.{ }^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.58(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 2 \mathrm{H})$, $6.49(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 42.8, 55.9 (2C), 56.4 (2C), 56.5 (2C), 97.8 (2C), 114.2 (2C), 122.1 (2C), 123.0 (2C), 129.4 (2C), 142.6 (2C), 145.9, 148.4 (2C), 151.3 (2C), 152.7.

MS (EI): $m / z(\%) 469\left[\mathrm{M}^{+}\right](100), 438$ (40), 181 (25), 151 (25).

[^1]
bis(2,4-Dimethoxyphenyl)(4-nitrophenyl)methane (5b). ${ }^{2}$
Chromatographic eluent: $\mathrm{PE}-\operatorname{AcOEt}$ (7:3); light yellow solid (0.41 g , quantitative yield); mp 151.8$152.4{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)$ [lit. $\left.{ }^{2} 148-149{ }^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.62(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=8.4$ and 2.4 $\mathrm{Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=42.3,55.1$ (2C), $55.4(2 \mathrm{C}), 98.6$ (2C), 103.5 (2C), 123.0 (2C), 123.2 (2C), 129.5 (2C), 130.1 (2C), 145.9, 153.1 (2C), 157.8 (2C), 159.5.
MS (EI): $m / z(\%) 409\left[\mathrm{M}^{+}\right](100), 378$ (40), 287 (50), 234 (40).

bis(3,4-Dimethoxyphenyl)(4-nitrophenyl)methane (5c). ${ }^{3}$
Chromatographic eluent: PE-AcOEt (6:4); light yellow oil ($0.39 \mathrm{~g}, 95 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.70(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=8.2$ and 2.0
$\mathrm{Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.5,55.7(4 \mathrm{C}), 110.8(2 \mathrm{C}), 112.3(2 \mathrm{C}), 121.2$ (2C), 123.3 (2C), 129.9 (2C), 134.8 (2C), 146.3 , 147.7 (2C), 148.8 (2C), 151.9.
MS (EI): m / z (\%) $409\left[\mathrm{M}^{+}\right](100), 378$ (70), 287 (45).

5d
bis(4-Methoxyphenyl)(4-nitrophenyl)methane (5d) and isomer. ${ }^{2}$

[^2]Chromatographic eluent: PE-AcOEt (7:3); light yellow oil ($0.32 \mathrm{~g}, 91 \%$ yield). Mixture of isomers (p, p and o, p, the former always prevalent) not completely separable.
${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.66(\mathrm{~s}, 3 \mathrm{H})(o, p), 3.74(\mathrm{~s}, 6 \mathrm{H})(p, p), 3.76(\mathrm{~s}, 3 \mathrm{H})(o, p), 5.49(\mathrm{~s}$, $1 \mathrm{H})(p, p), 5.87(\mathrm{~s}, 1 \mathrm{H})(o, p), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2 H), 8.07 ($\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$).
MS (EI): $m / z(\%) 349\left[\mathrm{M}^{+}\right](100), 318(65), 227$ (100) (p, p isomer); $349\left[\mathrm{M}^{+}\right](100), 319(40), 227$ (55), 121 (55) (o, p isomer).

bis(4-Hydroxyphenyl)(4-nitrophenyl)methane (5e) and isomer. ${ }^{2}$

Chromatographic eluent: PE-EE (1:1); oil (0.32 g , quantitative yield). Mixture of isomers (p, p and o, p, the former always prevalent) not completely separable.
${ }^{1} \mathrm{H}$ NMR ($\left.200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=5.42(\mathrm{~s}, 1 \mathrm{H})(p, p), 5.82(\mathrm{~s}, 1 \mathrm{H})(o, p), 6.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H})$, 6.81 (d, $J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.19$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.01$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.

MS (EI): $m / z(\%) 321\left[\mathrm{M}^{+}\right](100), 228$ (30), 199 (80) (p, p isomer); $321\left[\mathrm{M}^{+}\right](100), 228$ (100), 199 (50), 181 (60) (o,p isomer).

bis(3-Indolyl)(4-nitrophenyl)methane (5f). ${ }^{4}$

Chromatographic eluent: $\mathrm{PE}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:8); yellow needles ($0.35 \mathrm{~g}, 95 \%$ yield); mp 221.9-222.3 ${ }^{\circ} \mathrm{C}$ (AcOEt-PE) [lit. $\left.{ }^{4} 218-220^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) : $\delta=6.00(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $8.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.10(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=40.0,111.1$ (2C), 117.9 (2C), 119.3 (2C), 119.4 (2C), 122.2 (2C), 123.4 (4C), 126.4 (2C), 129.3 (2C), 136.5 (2C), 146.4, 151.6.

[^3]

bis(1-Methyl-3-indolyl)(4-nitrophenyl)methane (5g). ${ }^{5}$

Chromatographic eluent: $\mathrm{PE}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:6); yellow needles ($0.39 \mathrm{~g}, 99 \%$ yield); mp 210.0-211.0 ${ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)$ [lit. $\left.{ }^{5} 215-217{ }^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=3.65(\mathrm{~s}, 6 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 6.92-7.02(\mathrm{~m}, 2 \mathrm{H})$, $7.14-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=32.6,39.9,109.2$ (2C), 116.4 (2C), 118.9 (2C), 119.5 (2C), 121.7 (2C), 123.4 (2C), 126.9 (2C), 128.1 (2C) 129.3 (2C), 137.3 (2C), 146.3, 152.2.

bis(5-Methyl-2-furyl)(4-nitrophenyl)methane (5h). ${ }^{6}$

Chromatographic eluent: PE-EE (7:3); white needles ($0.39 \mathrm{~g}, 95 \%$ yield); mp 81.7-82.7 ${ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)$ [lit. $\left.{ }^{6} 89-91^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.19(\mathrm{~s}, 6 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.84-5.89(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.37$ (2C), 44.63, 106.1 (2C), 108.6 (2C), 123.5 (2C), 129.1 (2C), 146.8, 147.3, 150.8 (2C), 151.9 (2C).
MS (EI): $m / z(\%) 297\left[\mathrm{M}^{+}\right](90), 175$ (100).

bis(2-Thienyl)(4-nitrophenyl)methane (5i). ${ }^{\mathbf{3}}$
Chromatographic eluent: PE-EE (7:3); pink needles ($0.22 \mathrm{~g}, 74 \%$ yield); mp 81.7.8-82.7.4 ${ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)\left[\right.$ lit. $\left.{ }^{3} 89-91^{\circ} \mathrm{C}\right]$;

[^4]${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.92(\mathrm{~s}, 1 \mathrm{H}), 5.75-5.79(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.95(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.22$ $(\mathrm{m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=46.9$, 123.7 (2C), 125.2 (2C), 126.4 (2C), 126.7 (2C), 129.1 (2C), 145.4 (2C), 146.8, 150.6. MS (EI): $m / z(\%) 301\left[\mathrm{M}^{+}\right](100), 179$ (40).

(4-Chlorophenyl)bis(2,4,5-trimethoxyphenyl)methane (6a). ${ }^{7}$
Chromatographic eluent: PE-AcOEt (6:4); white needles ($0.46 \mathrm{~g}, 90 \%$ yield); mp $167.8-168.2^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)$ [lit. $\left.{ }^{7} 168-169{ }^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.57(\mathrm{~s}, 6 \mathrm{H}), 3.60(\mathrm{~s}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 2 \mathrm{H})$, $6.47(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 41.9, 55.9 (2C), 56.5 (2C), 56.7 (2C), 98.0 (2C), 114.2 (2C), 123.6 (2C), 127.9 (2C), 130.1 (2C), 131.2, 142.5 (2C), 142.8, 148.0 (2C), 151.3 (2C).

MS (EI): $m / z(\%) 458\left[\mathrm{M}^{+}\right](100), 427$ (55).

(4-Chlorophenyl)bis(4-hydroxyphenyl)methane (6b) and isomer. ${ }^{8}$

Chromatographic eluent: PE-AcOEt (6:4); viscous oil ($0.24 \mathrm{~g}, 77 \%$ yield). Mixture of isomers (p, p and o, p, the former always prevalent) not completely separable.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=5.25(\mathrm{~s}, 1 \mathrm{H})(p, p), 5.71(\mathrm{~s}, 1 \mathrm{H})(o, p), 6.63(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H})$, 6.79 (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$.

MS (EI): $m / z(\%) 310\left[\mathrm{M}^{+}\right](100), 275$ (40), 217 (40), 199 (70), 181 (80) (p, p isomer); $310\left[\mathrm{M}^{+}\right](40)$, 181 (100), 275 (30), 217 (35) (o, p isomer).

[^5]
(4-Chlorophenyl)bis(1-methyl-3-indolyl)methane (6c). ${ }^{9}$
Chromatographic eluent: $\mathrm{PE}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:6); white solid (0.38 g , quantitative yield); mp 206-207 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)$ [lit. $\left.{ }^{9} 208-209{ }^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=3.64(\mathrm{~s}, 6 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 6.95-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.14-$ $7.35(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.5$ (2C), 39.3, 109.0 (2C), 117.6 (2C), 118.6 (2C), 119.8 (2C), 121.4 (2C), 127.1 (2C), 128.1 (2C), 128.2, (2C) 129.9 (2C), 131.4, 137.3 (2C), 142.9 .

bis(2,4,5-Trimethoxyphenyl)phenylmethane (7a). ${ }^{7}$

Chromatographic eluent: $\mathrm{PE}-\mathrm{AcOEt}(7: 3)$; white solid ($0.39 \mathrm{~g}, 93 \%$ yield); mp 129.9-130.5 ${ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)$ [lit. $\left.{ }^{7} 126-127^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.57(\mathrm{~s}, 6 \mathrm{H}), 3.60(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 2 \mathrm{H})$, $6.48(\mathrm{~s}, 2 \mathrm{H}), 6.95-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.22(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=42.3,55.9$
(2C), 56.4 (2C), 56.8 (2C), 98.2 (2C), 114.3 (2C), 124.3 (2C), 125.6, 127.8 (2C), 128.8 (2C), 142.5 (2C), 144.1, 147.8 (2C), 151.4 (2C).
MS (EI): m / z (\%) $424\left[\mathrm{M}^{+}\right]$(100), 393 (50).

bis(3-Indolyl)phenylmethane (7b). ${ }^{7}$

[^6]Chromatographic eluent: $\operatorname{PE}-\operatorname{AcOEt}$ (8:2); light yellow solid ($0.41 \mathrm{~g}, 75 \%$ yield); mp $110-112{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)$ [lit. $\left.{ }^{7} 141-142{ }^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.84(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.05-$ $7.38(\mathrm{~m}, 11 \mathrm{H}), 7.77(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=40.0,110.9(2 \mathrm{C}), 119.0(2 \mathrm{C}), 119.5$ (2C), 119.8 (2C), 121.7 (2C), 123.4 (2C), 126.0, 126.9 (2C), 128.0 (2C), 128.5 (2C), 136.5 (2C), 143.8.

MS (EI): m / z (\%) $322\left[\mathrm{M}^{+}\right]$(100), 245 (60).

bis(2,4,5-Trimethoxyphenyl)(4-methoxyphenyl)methane (8a). ${ }^{7}$
Chromatographic eluent: PE-AcOEt (6:4); white solid (0.40 g , 91% yield); mp $129.9-130.2^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)$ [lit. $\left.{ }^{7} 131^{\circ} \mathrm{C}\right]$;
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.58(\mathrm{~s}, 6 \mathrm{H}), 3.60(\mathrm{~s}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H})$, $6.36(\mathrm{~s}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}): $\delta=41.5,55.0,55.9$ (2C), 56.5 (2C), 56.9 (2C), 98.3 (2C), 113.2 (2C), 114.3 (2C), 124.8 (2C), 129.7 (2C), 136.1, 142.5 (2C), 147.7 (2C), 151.3 (2C), 157.4.
MS (EI): m / z (\%) $454\left[\mathrm{M}^{+}\right](100), 423$ (9).

bis(4-Hydroxyphenyl)(4-methoxyphenyl)methane (8b) and isomer. ${ }^{10}$
Chromatographic eluent: PE-AcOEt (6:4); oil ($0.25 \mathrm{~g}, 82 \%$ yield). Mixture of isomers (p, p and o, p, the former always prevalent) not completely separable.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=3.67(\mathrm{~s}, 3 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H})(p, p), 5.68(\mathrm{~s}, 1 \mathrm{H})(o, p), 6.53-6.92(\mathrm{~m}$, 12 H).
MS (EI): $m / z(\%) 306\left[\mathrm{M}^{+}\right](100), 275(40), 213$ (60), 197 (45) (p, p isomer); $306\left[\mathrm{M}^{+}\right](75), 213$ (40), 197 (100), 181 (80) (o, p isomer).

[^7]

bis(3-Indolyl)(4-methoxyphenyl)methane (8c). ${ }^{7}$

Chromatographic eluent: PE-AcOEt (6:4); brown solid (0.31 g, 89\% yield); mp 195.5-196.5 ${ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)$ [lit..$^{7} 187^{\circ} \mathrm{C}$].
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.73(\mathrm{~s}, 3 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.76$ (br s, 2H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=39.1,55.0,110.8$ (2C), 113.4 (2C), 119.0 (2C), 119.9 (4C), 121.7 (2C), 123.4 (2C), 126.9 (2C), 129.4 (2C), 136.0, 136.5 (2C), 157.7.

(4-Hydroxyphenyl)bis(3-indolyl)methane (9a). ${ }^{\mathbf{1 1}}$

Chromatographic eluent: PE-AcOEt (4:6); red solid (0.25 g, 73\% yield); mp 213-214 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ PE) [lit. $\left.{ }^{11} 210-211^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=5.76(\mathrm{~s}, 1 \mathrm{H}), 6.64-6.70(\mathrm{~m}, 4 \mathrm{H}), 6.82-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.14$ $(\mathrm{m}, 4 \mathrm{H}), 7.24-7.35(\mathrm{~m}, 4 \mathrm{H}), 8.99(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=38.9,111.4(2 \mathrm{C})$, 114.6 (2C), 118.4 (2C), 119.2 (4C), 121.2 (2C), 123.3 (2C), 126.8 (2C), 129.3 (2C), 136.0, 136.7 (2C), 154.9.

General procedure for Friedel-Crafts hydroxyalkylation in the absence of catalyst:

A mixture of aldehyde $\mathbf{2 a}(1.0 \mathrm{mmol})$ and aromatic compound $4(2 \mathrm{mmol})$ was stirred under heating at $100{ }^{\circ} \mathrm{C}$ in a vial until TLC analyses showed almost complete conversion of the starting reagents. The reaction mixture was then treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}(1: 1,20 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by column chromatography on a short column of silica gel. Details are reported in Table 4.

[^8]
bis(2-Methyl-3-indolyl)(4-nitrophenyl)methane (5j). ${ }^{\mathbf{1 2}}$
Chromatographic eluent: $\mathrm{PE}-\mathrm{AcOEt}$ (4:6); yellow solid (0.38 g , quantitative yield); dp 239-242 ${ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)$ [lit. $\left.{ }^{12} 241-243{ }^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=2.05(\mathrm{~s}, 6 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.69-6.81(\mathrm{~m}, 4 \mathrm{H}), 6.88-6.96(\mathrm{~m}, 2 \mathrm{H})$, $7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.01(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=11.1$ (2C), 38.9, 110.3 (2C), 111.2 (2C), 118.4 (2C), 118.5 (2C), 120.2 (2C), 123.0 (2C), 128.0 (2C), 129.6 (2C), 132.6 (2C), 135.2 (2C), 146.2, 152.5.

General procedure for trisindolylmethane 11a-c synthesis:

A mixture of 3-formylindole $2 \mathrm{f}(0.15 \mathrm{~g}, 1.0 \mathrm{mmol})$, aromatic compound $\mathbf{4}(2.2 \mathrm{mmol})$ and o benzenedisulfonimide ($\mathbf{1}, \mathrm{mol} \%$ as in Table 5) in $\mathrm{EtOH}(2 \mathrm{~mL})$ was stirred at r.t. in a vial until TLC analyses showed almost complete conversion of $\mathbf{2 f}$. The reaction mixture was then treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}(1: 1,20 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by column chromatography on a short column of silica gel; eluent: $\mathrm{PE}-\mathrm{AcOEt}$ (6:4).

Tris(3-indolyl)methane (11a). ${ }^{13}$
Chromatographic eluent: PE-AcOEt (4:6); light orange solid ($0.33 \mathrm{~g}, 92 \%$ yield); dp $229-234^{\circ} \mathrm{C}$ (Acetone-PE) [lit. $\left.{ }^{13} 240^{\circ} \mathrm{C}\right]$;
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=6.08(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.90(\mathrm{~m}, 6 \mathrm{H}), 6.95-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.40$ $(\mathrm{m}, 6 \mathrm{H}), 9.07(\mathrm{br} \mathrm{s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=31.0,111.1$ (3C), 118.3 (3C), 118.7 (3C), 119.2 (3C), 121.1 (3C), 123.0 (3C), 126.8 (3C), 136.7 (3C).

[^9]

Bis(2-methyl-3-indolyl)(3-indolyl)methane (11b). ${ }^{13}$
Chromatographic eluent: $\mathrm{PE}-\mathrm{AcOEt}$ (4:6); orange solid ($0.28 \mathrm{~g}, 72 \%$ yield); dp $250-255{ }^{\circ} \mathrm{C}$ (Acetone-PE) [lit. $\left.{ }^{13} 260-262{ }^{\circ} \mathrm{C}\right]$.
${ }^{1}$ H NMR (200 MHz, DMSO- d_{6}): $\delta=2.04(\mathrm{~s}, 6 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 6.50-6.67(\mathrm{~m}, 3 \mathrm{H}), 6.69-6.87(\mathrm{~m}$, $3 \mathrm{H}), 6.90-7.00(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H}), 10.57(\mathrm{br} \mathrm{s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (50 MHz, DMSO-d d_{6} : $\delta=12.1,30.5,110.4,111.6,112.9$ 118.0, 118.3, 118.7, 119.2, 119.6, 121.1, $123.5,127.5,128.6,131.5,135.2,136.8$.

Bis(1-methyl-3-indolyl)(3-indolyl)methane (11c). ${ }^{14}$

Chromatographic eluent: $\mathrm{PE}-\mathrm{AcOEt}(4: 6)$; orange solid ($0.35 \mathrm{~g}, 90 \%$ yield); dp $218-223{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)\left[\mathrm{lit} .{ }^{14} 219-220{ }^{\circ} \mathrm{C}\right]$;
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.60(\mathrm{~s}, 6 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.90-7.00(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=30.1,32.5,108.8,110.8,117.8,118.2$ 118.8, 119.6, 120.0, 121.0, 121.5, 123.1, 127.0, 127.3, 127.8, 136.5, 137.2.

Tris(1-methyl-3-indolyl)methane (11d). ${ }^{13}$

[^10]Title product was isolated when $\mathbf{2 f}$ and 1-methylindole ($\mathbf{4 g}$) were reacted in the presence of OBS 10 $\mathrm{mol} \%$. The immediate formation of two products was observed: the expected TIM 11c and the symmetric TIM 11d. The reaction was heated to $50^{\circ} \mathrm{C}$ and stopped after 24 h . After usual work-up and chromatographic purification, TIM 11d was obtained as orange solid ($0.16 \mathrm{~g}, 41 \%$ yield). GC and GC-MS analyses confirmed indole (4f) formation in the reaction mixture (MS (EI): m / z (\%) $\left.117\left[\mathrm{M}^{+}\right](100), 90(45)\right)$.
Dp $244{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PE}\right)\left[\right.$ lit. $\left.{ }^{13} 255-257^{\circ} \mathrm{C}\right]$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.60(\mathrm{~s}, 9 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 3 \mathrm{H}), 6.93-6.99(\mathrm{~m}, 3 \mathrm{H}), 7.13-$ $7.22(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.5,108.8,118.0,118.2,120.0$, 121.0, 127.3, 127.8, 137.2.

[^0]: ${ }^{1}$ M. Barbero, M. Crisma, I. Degani, R. Fochi and P. Perracino, Synthesis, 1998, 1171.

[^1]: ${ }^{2}$ Y. Leng, F. Chen, L. Zuo and W. Duan, Tetrahedron Lett., 2010, 51, 2370

[^2]: ${ }^{3}$ S. Podder, J. Choudhury, U. K. Roy and S. Roy, J. Org. Chem., 2007, 72, 3100.

[^3]: ${ }^{4}$ K. Rad-Moghadam and M. Sharifi-Kiasaraie, Tetrahedron, 2009, 65, 8816

[^4]: ${ }^{5}$ B.-S. Liao, J.-T. Chen and S.-T. Liu, Synthesis, 2007, 3125
 ${ }^{6}$ S. Ch. Gagieva, T. A. Sukhova, D. V. Savinov, V. A. Tuskaev, K. A. Lyssenko, N. M. Bravaya, Yu. N. Belokon and B. M. Bulychev, Russ. Chem. Bull. Int. Ed., 2006, 55, 1794

[^5]: ${ }_{8}^{7}$ P. Thirupathi and S. S. Kim, J. Org. Chem., 2010, 75, 5240.
 ${ }^{8}$ N. Mibu, K. Yokomizo, M. Uyeda and K. Sumoto, Chem. Pharm. Bull., 2003, 51, 1325.

[^6]: ${ }^{9}$ J.-T. Li, M.-X. Sun, G.-Y. He and X.-Y. Xu, Ultrason. Sonochem., 2011, 18, 412.

[^7]: ${ }^{10}$ N. Mibu and K. Sumoto, Chem. Pharm. Bull., 2000, 48, 1810.

[^8]: ${ }^{11}$ H. Firouzabadi, N. Iranpoor and A. A. Jafari, J. Mol. Catal. A: Chem., 2006, 244, 168.

[^9]: ${ }^{12}$ A. Hasaninejad, A. Zare, H. Sharghi, K. Niknam and M. Shekouhy, Arkivoc, 2007, (xiv), 39.
 ${ }^{13}$ A. Hazra, P. Paira, K. B. Sahu, S. Banerjee and N. B. Mondal, Catal. Commun., 2008, 9, 1681.

[^10]: ${ }^{14}$ H. Koshima and W. Matsusaka, J. Heterocycl. Chem., 2002, 39, 1089.

