Unraveling the Molecular Recognition of "three methylene spacer" Bis(benzimidazolium)

Moiety by Dibenzo-24-crown-8: Pseudorotaxanes Under Study

Chhanda Mukhopadhyay*, Sabari Ghosh and

Ann Marie Schmiedekamp

Supplementary Information Part 1

Index

(1)	General procedure for preparation of solutions for pseudorotaxane formation:	2
(2)	Association constant determination:	2
(3)	Materials and methods:	2
(4)	Scheme S1.	2
(5)	Spectral data of the pseudorotaxane followed by that of its corresponding salt:	3
(6)	Spectral data for the compound 5,6-Dimethyl-2, 2'-(1,3-propanediyl)bis-1 <i>H</i> -benzimidazole:	7
(7)	Solubility chart:	8
(8)	Calculation Methods:	8
(9)	Details of DFT calculations:	8

- (1) General procedure for preparation of solutions for pseudorotaxane formation: The solutions of the pseudorotaxanes were made by dilutions using volumetric glassware and pipettes. A typical experiment is as follows. 1f (50.8 mg, 0.0001 mol) and dibenzo-24-crown-8 (44.8 mg, 0.0001 mol) were dissolved in CD₃CN (5 ml) giving a thread and crown concentration of 20 mM each respectively. The ¹H NMR spectrum of this clear solution was recorded immediately. The ratio for bound to unbound threads was obtained from the integration of the thread and crown peaks in the ¹H NMR spectra and averaged over two experiments. The resonances for the aromatic protons were chosen for this purpose, since the resolution was better in this region (δ 6.5 - 8.0) minimizing errors. The association constant (K_a) was then measured.
- (2) The association constants reported in the paper should be considered as approximate as they do not take into account the extent of ion pair dissociation¹⁻⁴ of the dicationic thread and its counter ions as an intrinsic part of the thread / crown binding event. K_a was calculated from the formula below.

 $K_a = [pseudorotaxane] / {[thread]_unbound x [crown]_unbound}$

 $[thread]_{unbound}$ and $[crown]_{unbound}$ are the original concentrations of thread and crown set up in the experiment minus the concentration of thread or crown bound in the pseudorotaxane. These values are calculated from the ratio of bound and unbound thread and crown obtained from the integrals of the ¹H NMR experiment. The units of K_a are expressed in M⁻¹.

- (3) Materials and methods: All the reagents used were purchased from Aldrich and used as received without further purification. NMR spectra were recorded in CD₃CN unless otherwise mentioned. Chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane as internal standard. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a Bruker 300 MHz spectrometer. Only the low temperature ¹H NMR spectra at 240 K and 253 K were recorded on a Bruker 400 MHz spectrometer. The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, m = multilpet and br = broad. Letters in diagrams below are used to specify hydrogen positions in ¹H NMR of pseudorotaxanes, their corresponding salts and also carbon positions in ¹³C NMR spectra of the salts.
- (4) Scheme S1. Schematic representation for formation of the salts prior to complexation with the crown to form the pseudorotaxane complex.

General procedure for the formation of the salts **1a-1g**: Initially, the bis-1*H*-benzimidazoles (i) were prepared by the methodology developed in our laboratory.⁵ Next, for the preparation of the salts, to 1.0 mmol of a bis-benzimidazole, 1.0 mmol of 45 % aqueous fluoroboric acid / 1.0 mmol of 70 % perchloric acid was added and stirred at room temperature for 5 minutes. The solid was filtered, washed with a small amount of water and air-dried to get the corresponding salt. The salt was finally recrystallised by dissolving in acetonitrile and filtering, then adding diethyl ether till saturation. On standing colourless flakes separated.

(5) Spectral data of the pseudorotaxane followed by that of its corresponding salt:

<u>1a ⊂ dibenzo-24-crown-8 (BF₄)</u>₂

¹H NMR: separate sets of peaks for bound and unbound signals not possible at room temperature (308 K).

Spectral data for the corresponding salt 1a.

¹**H** NMR: δ 7.79-7.73 (m, 4H, *b*), 7.58-7.53 (m, 4H, *c*), 3.30 (t, *J* = 7.5 Hz, 4H, *d*) and 2.51-2.43 (m, 2H, *j*). ¹³**C** NMR: δ 153.0 (N_{*a*}-<u>C</u>-C_{*d*}), 131.0 (N_{*a*}-<u>C</u>-C_{*b*}), 126.2 (C_{*b*}), 113.9 (C_{*c*}), 25.4 (C_{*d*}) and 23.9 (C_{*j*}). **FT-IR** (cm⁻¹): 3343.9, 1630.9, 1570.0, 1464.5, 1070.0, 763.2, 622.8 and 519.6. Anal. calcd. for C₁₇H₁₈B₂F₈N₄ : C: 44.98; H: 4.44; N: 12.34 and found C: 44.90; H: 4.42; N: 12.36. Melting point (CH₃CN-Et₂O): 230 °C. Yield: 95 % (grey solid).

<u>1b ⊂ dibenzo-24-crown-8 (ClO₄)</u>2

In ¹H NMR spectra, separate sets of peaks for bound and unbound signals were not observed at room temperature (308 K). Spectra were obtained at 240 K and 253 K. The splitting patterns of these two spectra were similar at both 240 K and 253 K; the extent of threading was different.

¹**H NMR (at 240 K)**: δ 12.48-12.42 (br s, 8H, *a* and threaded *a*), 7.76 (br s, 4H, *b*), 7.63-7.52 (m, 8H, *c* and threaded *b*), 7.33 (br s, 4H, threaded *c*), 6.84 (s, 8H, *e* and *f*), 6.62 (br s, threaded *e* and threaded *f*), 4.04-3.98 (m, 16H, *g* and threaded *g*), 3.78 (br s, 16H, *h* and threaded *h*), 3.69 (br s, 8H, *i*), 3.58-3.55 (m, 8H, threaded *i*), 3.36- 3.27 (m, 8H, *d* and threaded *d*), 2.67 (m, 2H, *j*) and 2.42 (m, 2H, threaded *j*).

Spectral data for the corresponding salt 1b.

¹**H NMR**: δ 12.23 (br s, 4H, *a*), 7.88-7.71 (m, 4H, *b*), 7.61-7.54 (m, 4H, *c*), 3.36 (t, J = 7.5 Hz, 4H, *d*) and 2.56-2.48 (m, 2H, *j*). ¹³**C NMR**: δ 152.8 (N_{*a*}-<u>C</u>-C_{*d*}), 130.4 (N_{*a*}-<u>C</u>-C_{*b*}), 126.6 (C_{*b*}), 113.9 (C_{*c*}), 25.4 (C_{*d*}) and 23.8 (C_{*j*}). **FT-IR** (cm⁻¹): 3305.9, 1628.0, 1566.7, 1462.2, 1106.4, 759.8 and 618.6. Anal. calcd. for C₁₇H₁₈Cl₂N₄O₈ : C: 42.60; H: 4.21; N: 11.69 and found C: 42.66; H: 4.18; N: 11.73. Melting point (CH₃CN-Et₂O): 232 °C. Yield: 93 % (light brown solid).

<u>1c ⊂ dibenzo-24-crown-8 (BF₄)</u>₂

¹**H** NMR: δ 7.75 (br s, 2H, *j*), 7.57-7.48 (m, 6H, *b*, threaded *b*, threaded *j* and threaded *k*), 7.27 (s, 2H, *k*), 6.90 (s, 8H, *e* and *f*), 6.69-6.66 (m, 8H, threaded *e* and threaded *f*), 4.26-4.25 (m, 16H, *g* and threaded *g*), 4.09-3.80 (m, 16H, *h* and threaded *h*),3.70 (s, 8H, *i*), 3.60 (s, 8H, threaded *i*), 3.32-3.24 (m, 8H, *c*, *l*, threaded *c* and threaded *l*), 2.40-2.29 (m, 8H, *d* and C<u>H</u>₃) and 2.13-2.09 (m, 8H, threaded *d* and threaded C<u>H</u>₃). ESI-MS: m/z C₄₃H₅₃N₄O₈[{**1c** \subset dibenzo-24-crown-8} – H⁺]⁺ calc.: 753.39, found: 753.41.

Spectral data for the corresponding salt 1c

¹**H** NMR: δ 7.77 (br s, 2H, *j*), 7.58 (br s, 2H, *b*), 7.49 (d, *J* = 6.6 Hz, 2H, *k*), 3.32-3.28 (m, 4H, *c* and *l*) and 2.40 (br s, 8H, *d* and C<u>H</u>₃). ¹³**C** NMR: δ 151.4 (N_a-<u>C</u>-C_c), 143.2 (N_a-<u>C</u>-C_l), 136.7 (N_a-<u>C</u>-C_b), 130.4 (N_a-<u>C</u>-C_j), 128.9 (<u>C</u>-CH₃), 126.5 (C_k), 113.8 (C_j), 113.3 (C_b), 25.3 (C_c and C_l), 23.9 (C_d) and 19.4 (<u>C</u>H₃). Anal. calcd. for C₁₉H₂₂B₂F₈N₄ : C: 47.54; H:

4.62; N: 11.67 and found C: 47.55; H: 4.60; N: 11.66. GC-MS (EI+): 480. **FT-IR** (cm⁻¹): 3347.8, 2928.0, 1629.0, 1465.5, 1060.3 and 756.2. Melting point (CH₃CN-Et₂O): 200 °C. Yield: 95 % (off-white solid).

<u>1d ⊂ dibenzo-24-crown-8 (ClO₄)</u>2

¹**H** NMR: δ 7.62-7.54 (m, 4H, *b* and *j*), 7.42-7.21 (m, 8H, *k*, threaded *b*, threaded *j* and threaded *k*), 6.91 (s, 8H, *e* and *f*), 6.70-6.65 (m, 8H, threaded *e* and threaded *f*), 4.09 (br s, 16H, *g* and threaded *g*), 3.82-3.59 (m, 32H, *h*, *i*, threaded *h* and threaded *i*), 3.30 (br s, *c* and threaded *c*) and 2.51-2.42 (m, 16H, *d*, CH₃, threaded *d* and threaded CH₃). ESI-MS: m/z C₄₃H₅₃N₄O₈[{**1d** ⊂ dibenzo-24-crown-8} – H⁺]⁺ calc.: 753.39, found: 753.40.

Spectral data for the corresponding salt 1d

¹**H** NMR: δ 12.04 (br s, 4H, *a*), 7.64 (d, J = 8.4 Hz, 2H, *b*), 7.55 (s, 2H, *j*), 7.41 (d, J = 8.4 Hz, 2H, *k*), 3.30 (t, J = 7.5 Hz, 4H, *c*) and 2.51-2.41 (m, 8H, *d* and CH₃). ¹³**C** NMR: δ 151.8 (N_{*a*}-C-C_{*c*}), 137.0 (N_{*a*}-C-C_{*b*} and N_{*a*}-C-C_{*j*}), 128.1 (C_{*k*}), 127.7 (C- CH₃), 113.0 (C_{*b*}), 112.9 (C_{*j*}), 24.9 (C_{*c*}), 23.5 (C_{*d*}) and 20.2 (CH₃). **FT-IR** (cm⁻¹): 3184.4, 1629.2, 1568.4, 1459.8, 1419.8, 1090.9, 814.8 and 622.8. Anal. calcd. for C₁₉H₂₂Cl₂N₄O₈ : C: 45.16; H: 4.39; N: 11.09 and found C: 45.18; H: 4.37; N: 11.09. GC-MS (EI+): 504. Melting point (CH₃CN-Et₂O): 172 °C. Yield: 90 % (greenish-blue solid).

<u>1e ⊂ dibenzo-24-crown-8 (BF₄)</u>₂

¹**H** NMR: δ 7.64-7.62 (d, J = 7.5 Hz, 2H, b), 7.54 (s, 2H, j), 7.42-7.39 (m, 8H, k, threaded b, threaded j and threaded k), 6.95 (s, 8H, e and f), 6.69-6.65 (m, 8H, threaded e and threaded f), 4.12 (br s, 16H, g and threaded g), 3.80-3.79 (m, 16H, h and threaded h), 3.69-3.66 (m, 16H, i and threaded i), 3.29-3.26 (m, 8H, c and threaded c) and 2.51-2.41 (m, 16H, d, CH₃, threaded d and threaded CH₃). ESI-MS: m/z C₄₃H₅₃N₄O₈[{**1e** C dibenzo-24-crown-8} – H⁺]⁺ calc.: 753.39, found: 753.40.

Spectral data for the corresponding salt 1e.

¹**H** NMR: δ 7.63 (d, J = 8.4 Hz, 2H, b), 7.53 (s, 2H, j), 7.39 (d, J = 7.8 Hz, 2H, k), 3.30 (t, J = 7.5 Hz, 4H, c) and 2.50-2.40 (m, 8H, d and CH₃). ¹³C NMR: δ 151.9 (N_a-C-C_c), 137.1 (N_a-C-C_b), 130.4 (N_a-C-C_j), 128.2 (C- CH₃), 127.8 (C_k), 113.1 (C_b), 112.9 (C_j), 25.0 (C_c), 23.6 (C_d) and 20.3 (CH₃). **FT-IR** (cm⁻¹): 3234.1, 1629.4, 1568.5, 1458.2, 1067.9 and 811.9. Anal. calcd. for C₁₉H₂₂B₂F₈N₄ : C: 47.54; H: 4.62; N: 11.67 and found C: 47.54; H: 4.60; N: 11.66. GC-MS (EI+): 480. Melting point (CH₃CN-Et₂O): 260 °C. Yield: 90 % (grey solid).

<u>1f⊂ dibenzo-24-crown-8 (BF₄)</u>₂

¹**H** NMR: δ 7.47 (s, 4H, *b*), 7.26 (s, 4H, threaded *b*), 6.93-6.86 (m, 8H, *e* and *f*), 6.72-6.69 (m, 4H, threaded *e*), 6.68-6.62 (m, 4H, threaded *f*), 4.10-4.07 (m, 8H, *g*), 4.02- 4.00 (m, 8H, threaded *g*), 3.81-3.76 (m, 16H, *h* and threaded *h*), 3.69 (s, 8H, *i*), 3.60 (s, 8H, threaded *i*), 3.32 (t, *J* = 7.5 Hz, 4H, threaded *c*), 3.22 (t, *J* = 7.5 Hz, 4H, *c*), 2.39 (s, 14 H, CH₃ and *d*) and 2.28 (s, 14 H, threaded CH₃ and threaded *d*). HR-ESI-MS: m/z C₄₅H₅₇N₄O₈[{**1f** ⊂ dibenzo-24-crown-8} - H⁺]⁺ calc.: 781.4170, found: 781.4172.

Spectral data for the corresponding salt 1f.

¹**H** NMR: δ 7.49 (s, 4H, *b*), 3.24 (t, *J* = 7.5 Hz, 4H, *c*) and 2.47-2.41 (m, 14 H, C<u>H</u>₃ and *d*). ¹³**C** NMR: δ 151.2 (N_{*a*}-<u>C</u>-C_{*c*}), 136.1 (N_{*a*}-<u>C</u>-C_{*b*}), 129.0 (<u>C</u>- CH₃), 113.1 (C_{*b*}), 25.0 (C_{*c*}), 23.7 (C_{*d*}) and 19.1 (<u>C</u>H₃). **FT-IR** (cm⁻¹): 3285.9, 2931.3, 1630.0, 1472.5, 1079.4, 861.8 and 776.9. Anal. calcd. for C₂₁H₂₆B₂F₈N₄ : C: 49.64; H: 5.16; N: 11.03 and found C: 49.62; H: 5.17; N: 11.03. GC-MS (EI+): 508. Melting point (CH₃CN-Et₂O): 260 °C. Yield: 95 % (off-white solid). **1g** ⊂ dibenzo-24-crown-8 (ClO₄)₂

¹**H** NMR: δ 12.11-12.03 (m, 8 H, *a* and threaded *a*), 7.49 (s, 4H, *b*), 7.28 (s, 4H, threaded *b*), 6.94- 6.87 (m, 8H, *e* and *f*), 6.73-6.64 (m, 8H, threaded *e* and threaded *f*), 4.11-4.08 (m, 8H, *g*), 4.03-4.01 (m, 8H, threaded *g*), 3.83- 3.78 (m, 16H, *h* and threaded *h*), 3.71 (s, 8H, *i*), 3.62 (s, 8H, threaded *i*), 3.34 (t, *J* = 7.8 Hz, 4H, threaded *c*), 3.26 (t, *J* = 7.5 Hz, 4H, *c*), 2.50-2.40 (m, 14H, CH₃ and *d*) and 2.29-2.27 (m, 14H, threaded CH₃ and threaded *d*). HR-ESI-MS: m/z C₄₅H₅₇N₄O₈[{**1g C** dibenzo-24-crown-8} – H⁺]⁺ calc.: 781.4170, found: 781.4167.

Spectral data for the corresponding salt 1g.

¹**H** NMR: δ 12.08 (br s, 4H, *a*), 7.49 (s, 4H, *b*), 3.28 (t, *J* = 7.5 Hz, 4H, *c*) and 2.48-2.38 (m, 14H, C<u>H</u>₃ and *d*). ¹³**C** NMR: δ 151.4 (N_{*a*}-<u>C</u>-C_{*c*}), 136.6 (N_{*a*}-<u>C</u>-C_{*b*}), 128.9 (<u>C</u>- CH₃), 113.3 (C_{*b*}), 25.3 (C_{*c*}), 24.02 (C_{*d*}) and 19.4 (<u>C</u>H₃). **FT-IR** (cm⁻¹): 3223.9, 2948.3, 1626.7, 1470.9, 1111.3, 863.3 and 623.7. Anal. calcd. for C₂₁H₂₆Cl₂N₄O₈ : C: 47.29; H: 4.91; Cl: 13.29; N: 10.50; O: 24.00 and found C: 47.30; H: 4.90; N: 10.51. GC-MS (EI+): 532. Melting point (CH₃CN-Et₂O): 265 °C. Yield: 93 % (off-white solid).

(6) Spectral data for the compound 5,6-Dimethyl-2, 2'-(1,3-propanediyl)bis-1H-benzimidazole:

¹**H NMR** (**DMSO**-*d*₆): δ 7.46-7.43 (m, 2H, C₄[,] and C₇), 7.20 (s, C₄ and C₇), 7.10-7.07 (m, 2H, C₅[,] and C₆), 2.92-2.80 (m, 4H, C₂-C<u>H₂</u> and C₂[,]-C<u>H₂</u>) and 2.27-2.23 (m, 8H, C₂-CH₂-C<u>H₂</u> and C<u>H₃</u>). ¹³**C-NMR** (**DMSO**-*d*₆): δ 153.5 (C₂ and C₂[,]), 137.0 (C_{3'a} and C_{7'a}), 129.3 (C_{7a} and C_{3a}), 117.8 (C₅ and C₆), 114.5 (C₄, C₇, C_{4'}, C₇, C_{5'} and C_{6'}), 27.9 (C₂-<u>C</u>H₂ and C_{2'}-<u>C</u>H₂), 25.8 (C₂-CH₂-<u>C</u>H₂) and 19.9 (<u>C</u>H₃). **FT-IR** (cm⁻¹):2939.2, 1541.8, 1452.7, 1309.6, 999.8 and 847.1.Anal. calcd. for C₁₉H₂₀N₄ : C: 74.97; H: 6.62; N: 18.41 and found C: 74.92; H: 6.65; N: 18.40. Melting point (DMSO-H₂O): 270 °C. Yield: 75 % (off-white solid).

compound	solubility (mol ·L ⁻¹) in acetonitrile
bis(benzimidazolium)ethane $(BF_4)_2$	0.15
(1,3-propanediyl) bis-1 <i>H</i> -benzimidazolium $(BF_4)_2$	1.33
(1,3-propanediyl) bis-1 <i>H</i> -benzimidazolium (ClO ₄) ₂	2.31
5, 6, 5', 6'-Tetramethyl-2,2'-(1,3-propanediyl) bis-1 <i>H</i> -	2.95
benzimidazolim (BF ₄) ₂	

(7) Solubility chart: Solubilities (mol $\cdot L^{-1}$) at 35°C in solvent acetonitrile.

(8) Calculation Methods:

Calculations were used to explore several models of the protonated bis-benzimidazole threaded through the cavity of dibenzo-24-crown-8 ether. Structures were built and then optimized with molecular mechanics with Macromodel⁶ using the OPLS 2005 force field. Macromodel geometries were obtained by constraining the crown ether dihedral angles along its backbone to the values in the crystal structure. All hydrogen atoms were allowed to move in the optimization. Then optimizations with the same dihedral angle constraints as in the Macromodel optimizations were performed with the hybrid B3LYP functional as implemented in the program Jaguar.⁷ Our choice of basis set was 6-31G**++ and this was based on the work of Pudzianowski⁸ who determined that basis sets with diffuse functions when used with the B3LYP functional yield results approaching "chemical accuracy" in the characterization of hydrogen bonding. When a local minimum was reached using this procedure, the entire molecule was optimized, relaxing the dihedral angle constraints. Geometries were optimized to default criteria.

(9) Details of DFT calculations:

Comparison of geometric parameters describing hydrogen bonding of protonated bis-benzimidazole thread to dibenzo-24crown-8 ether (excluding anion and solvent effects). All bondlengths are in Angstroms and angles are in degrees. Energies are given in Hartrees and ΔE is in kJ/mole. O1, O2, O3, O4 and O1, O2', O3', O4' are as defined in the Scheme S2 given below.

A protonated benzimidazole can easily bridge an approximately 7 Å nonbonded distance between O atoms of the crown and there are multiple ways that the bis(benzimidazolium) dication can fit, especially when the crown ether is also allowed to adjust. In each case at least one protonated benzimidazole bridges two available O atoms of the ether, forming two hydrogen bonds, one being approximately 1.8 Å and the other slightly more than 2.0 Å. On the other end of the thread, the second benzimidazole forms a strong hydrogen bond to only one ether O atom. The other NH proton points away from the crown. As protonated bis-benzimidazoles hydrogen bond to O atoms, the dibenzo-24-crown-8 accommodates by increasing most adjacent nonbonded O...O distances. For Cases F and cases B, C, D, E, one end of the thread bridged O_1 to O_4 and the other end of the thread provided an H bond only to $O_{2'}$. The four cases, **B**, **C**, **D** and **E** were created to compare the binding energy of the thread when CH₃ groups were substituted for H while the locations of the dication H-bonds were preserved. In Table 2, the binding energies are listed relative to case E, the lowest energy isomer. Structures **B** and **D** were only slightly more than 1 kJ/mole higher in energy, but in case **C**, where two methyl groups are on the same end of the thread which has the double H-bonds to the crown ether, the energy is 5.69 kJ/mole higher. Therefore hydrogen bond formation is slightly less stable with two methyl substituents. Cases A and H differ from the other cases because the double H-bond bridge spans between $O_{1'}$ and O_{3} . These conformations are much higher in energy (15 to 16 kJ/mole). On this end of the thread (R_1 and R_2 end), the hydrogen bonded distances are greater than when the bridge is along one side of the ether and a significant increase in energy occurs.

1c ⊂ dibenzo-24- crown-8	DFT Case A					
Energy	Δ E	H bond bridge				
-2491.57052	16.16					
R ₁	Н	$O_{1'}$ to O_3	NO _{1'}	H ₁ O _{1'}	<n-h<sub>1-O_{1'}</n-h<sub>	N-H ₁
			2.858	1.862	162.6	1.026
R ₂	Н	$O_{1^{\prime}}$ to O_{3}	NO ₃	H ₂ O ₃	<n-h<sub>2-O₃</n-h<sub>	N-H ₂
			2.854	1.912	151.5	1.024
R ₃	CH ₃	O _{4'}	NO _{4'}	H ₃ O _{4'}	<n-h<sub>3-O_{4'}</n-h<sub>	N-H ₃
			2.933	1.960	175	1.029
R ₄	CH ₃	none				
	O _{1'} O ₃ bridge		O ₁ O _{1'}	O ₂ O _{2'}	O ₃ O _{3'}	O ₄ O _{4'}
	6.953		2.676	6.236	6.512	2.670

DFT Case A

Figure S1. DFT Case A.

Energy	components, in hartrees:		
(A)	Nuclear repulsion	8263.27356262336	
(E)	Total one-electron terms	-19779.08616419636	
(I)	Total two-electron terms	9024.24207803027	
(J)	Coulomb	9373.68000591611	
(K)	Exchange + Correlation	-349.43792788584	
(L)	Electronic energy	-10754.84408616609	(E+I)
(N)	Total energy	-2491.57052354273	(A+L)
SCFE:	SCF energy: DFT (b3lyp) -24	191.57052354273 hartı	cees

	J 1		Angstrom	S	
Atom		Х	У		Z
01	4.686	53030432	0.6791604	723	-4.1242082387
02	2.077	9230764	-0.7695132	892	-3.7896721280
03	0.393	31442609	-1.7721127	434	-1.4536841581
04	0.557	73840363	-3.1202216	974	1.1163481502
C5	5.395	52428167	1.8529685	769	-4.2842407606
C6	6.412	20365474	2.1210637	622	-3.3391135575
С7	7.145	57855105	3.3043437	626	-3.4300079545
C8	6.895	5406639	4.2194236	664	-4.4590047646
С9	5.909	9318003	3.9505212	745	-5.3990511863
C10	5.161	5593214	2.7716581	392	-5.3104140648
C11	3.740)5109039	0.3514885	020	-5.1514128614
C12	3.033	35212033	-0.95086143	316	-4.8403221501
C13	1.042	29496739	-1.7485127	137	-3.8075032117
C14	-0.029	0965620	-1.4231457	130	-2.7866716114
C15	-0.652	24855144	-1.7751022	907	-0.4733210129
C16	-0.627	6374044	-3.0691688	563	0.3105139207
017	2.687	7247651	-3.1837225	920	2.7242729235
018	5.276	6188972	-1.6237712	108	2.4220586138
019	6.973	35122020	0.0754104	336	0.4206260867
020	6.631	.6435048	1.1630710	854	-2.3517733895
C21	1.947	/3548205	-4.3558562	462	2.6062288827
C22	0.804	9845712	-4.3128622	495	1.7746881527
C23	-0.003	39050510	-5.4463535	404	1.6615858864
C24	0.322	20347110	-6.6264161	695	2.3393926931
C25	1.458	32039968	-6.6760803	559	3.1359477177
C26	2.266	58172070	-5.5417931	683	3.2715072860
C27	3.882	21269505	-3.2814751	933	3.5260951271
C28	4.613	8655590	-1.9610743	366	3.6353586755
C29	6.419)5879852	-0.7851277	726	2.6318810912
C30	7.367	/9654230	-0.8317903	256	1.4510438952
C31	7.984	2866183	0.1949398	453	-0.5755586524
C32	7.745	52751051	1.3910057	643	-1.4692806406
Н33	7.922	25381535	3.5300512	428	-2.7112924831
Н34	7.481	4285449	5.1304540	274	-4.5162528982
Н35	5.713	34423478	4.6467582	678	-6.2073517613
Н36	4.399	8997325	2.5807197	121	-6.0549684927
Н37	4.266	58123553	0.2453874	535	-6.1088479711
Н38	2.992	2754674	1.1478914	140	-5.2444951066
Н39	2.515	57712218	-1.2604640	027	-5.7595783916
H40	3.752	28293704	-1.7384560	981	-4.5748877962
H41	1.449	0140006	-2.7536616	527	-3.6189139886
H42	0.563	35346143	-1.75938612	248	-4.7979396165

H43	-0.2834752727	-0.3561831318	-2.8339761913
H44	-0.9232062574	-2.0084621071	-3.0371725908
H45	-1.6310688196	-1.6936250010	-0.9606020831
H46	-0.5373578780	-0.9092282290	0.1917711841
H47	-1.5174077023	-3.1316456972	0.9506391415
H48	-0.6381731520	-3.9078870193	-0.3949449954
Н49	-0.8965004177	-5.4283993396	1.0499832933
Н50	-0.3196522229	-7.4948379127	2.2360402877
Н51	1.7250256323	-7.5857541015	3.6631651204
Н52	3 1415243861	-5.6037746889	3.9048965601
н53	3.6065286214	-3.5948459148	4.5407138809
н54	4 5496660725	-4 0307807075	3 0868140510
н55	5 3525874580	-2 0935814535	4 4394783584
н56	3 9360647418	-1 1547863268	3 9552178866
н57	6 1131392620	0 2537549332	2 8257934661
н58 н58	6 9687880840	-1 1/55933733	3 5130947993
н50 н50	7 4248048115	-1 8597648087	1 0639463476
1159	0 2672204041	-0.5474254252	1 01/150/026
1160	0.0072004041	-0.3474234333	0.0065651020
ног	8.9030323230 9.0EC0340131	0.349014/20/	-0.0903031932
HOZ	8.0562342131	-0.7288542512	-1.1/1040/5/5
НОЗ	8.6488997338	1.5533059483	-2.0682960627
H64	1.5565427242	2.2804770220	-0.85/05121/6
C65	-1.40016/8604	1.1045451892	5.54/2/21643
C66	-1.34863/3548	-0.3286302381	5.5102062633
C67	-0.44/9228866	-0.9868169167	4.6/1882041/
C68	0.3941487381	-0.2084658694	3.8748879522
C69	0.3425496919	1.1895253306	3.9142269494
C70	-0.5490141354	1.8667067391	4.7462453858
N71	1.3889364068	-0.5398527205	2.9508417337
C72	1.9308877418	0.5754261580	2.4426226531
N73	1.3128762057	1.6306496718	3.0086384375
C74	3.8772439858	-0.8505470417	-1.3101019315
N75	3.2082491983	-1.9824954140	-1.0332238184
C76	3.9967007826	-3.0804970525	-1.3813632705
C77	5.2026968923	-2.5557150402	-1.8771685784
N78	5.0769105494	-1.1710903633	-1.8007762984
C79	3.7678050992	-4.4561016645	-1.3069229914
C80	4.7944256758	-5.2826404663	-1.7581375315
C81	6.0035602918	-4.7570068159	-2.2610267262
C82	6.2331109364	-3.3848785535	-2.3290181602
C83	-2.3791144264	1.8031728020	6.4586992471
C84	2.3632670120	0.7649983975	-0.0336389224
C85	-2.2740500236	-1.1382372756	6.3853883275
C86	3.3815270369	0.5517080126	-1.1611895327
C87	2.9776244047	0.6277238188	1.3821182342
Н88	-0.4055976632	-2.0705846927	4.6434043070
Н89	-0.5851046567	2.9508585393	4.7752724878
Н90	1.6993507633	-1.4912039932	2.7142694630
Н91	1.5379526909	2.5962084981	2.8078109379
н92	2.1978843441	-2.0132159267	-0.8698522977
н93	5.7330308153	-0.4525642825	-2.1271881153
Н94	2.8415766444	-4.8612617301	-0.9141210224
н95	4.6621791048	-6.3589279873	-1.7227001816
н96	6 7732685206	-5 4401354887	-2 6048467734
н97	7 1612942828	-2 9848079808	-2 7227399719
н98	-2 2085672474	1 5363147946	7 5075015410
н99	-3 4125618288	1 5251728556	6 2238433603
	J. 1 T C J O T O C O O	T. 020T/20000	0.220070000

1101 1 0220102E22 1 2CC202EE01 0 1E	21112617
HIUI I.93/212/3/3 I./66/925591 -0.15	2414201/
H102 1.5339374285 0.0622278582 -0.15	19977596
H103 -2.1189380026 -0.9127122225 7.44	62515413
H104 -3.3250760154 -0.9200690301 6.16	56642527
H105 -2.1166264539 -2.2096866516 6.24	43683280
H106 2.9183100129 0.8203293009 -2.11	64552265
H107 4.2525245208 1.2015669054 -1.03	69511715
H108 3.6485285324 1.4715931604 1.57	84520182
H109 3.5869266821 -0.2798717083 1.45	61487334

1c ⊂ dibenzo-24- crown-8	DFT Case B		_			
Energy	Δ E	H bond bridge				
-2491.57627	1.08					
R ₁	Н	O_1 to O_4	NO ₁	H_1O_1	<n-h<sub>1-O₁</n-h<sub>	N-H ₁
			2.967	2.029	151.2	1.023
R ₂	Н	O_1 to O_4	NO ₄	H_2O_4	<n-h<sub>2-O₄</n-h<sub>	N-H ₂
			2.862	1.834	174.5	1.031
R ₃	CH ₃	O _{2'}	NO _{2'}	H ₃ O _{2'}	<n-h<sub>3-O_{2'}</n-h<sub>	N-H ₃
			2.969	1.946	174.0	1.027
R ₄	CH ₃	none				
	O ₁ O ₄ bridge		O ₁ O _{1'}	O ₂ O _{2'}	O ₃ O _{3'}	O ₄ O _{4'}
	7.321		2.669	6.781	6.302	2.649

DFT Case B

Figure S2. DFT Case B.

Energy	components, in hartrees:	
(A)	Nuclear repulsion	8220.03200375063
(王)	Total one-electron terms	-19693.06562764077

(I)	Total two-electron terms	8981.45735786380	
(J)	Coulomb	9330.89863574739	
(K)	Exchange+Correlation	-349.44127788359	
(L)	Electronic energy	-10711.60826977697	(E+I)
(N)	Total energy	-2491.57626602634	(A+L)

-	_	angstroms	
atom	х	У	Z
01	1.3661176982	1.7717772215	-4.6118993499
02	0.4114298928	-1.0274205293	-4.7993992341
03	-0.7381010753	-3.0117779938	-3.0375050551
04	0.8193105018	-4.4020987179	-0.8101427050
C5	1.2902429941	3.1150308518	-4.3183960382
C6	2.2431930895	3.6141529772	-3.4031101251
C7	2.2323984925	4.9626916158	-3.0494370066
C8	1.2836051042	5.8303967770	-3.6030089288
С9	0.3462025591	5.3442547925	-4.5067721103
C10	0.3476434327	3.9907474577	-4.8634457796
C11	0.5304347431	1.2839944436	-5.6606645402
C12	0.8318725053	-0.1885608673	-5.8798027412
C13	-0.9627361374	-1.4040705607	-4.8494268510
C14	-1.4281993447	-1.8301155299	-3.4744906271
C15	-1.1913571905	-3.4296788609	-1.7398789719
C16	-0.4950283630	-4.6966566952	-1.2959852694
017	3.1207666006	-3.8335140857	0.4150823389
018	4.8838448955	-1.3601448196	0.3744304354
019	4.9921276433	1.2642427730	-1.1275971446
020	3.1572485487	2.6972666162	-2.8939071702
C21	2.8130662636	-5.1747282696	0.2403406464
C22	1.5829366516	-5.4772515174	-0.3888773039
C23	1.2053235271	-6.8115816205	-0.5539888834
C24	2.0397617821	-7.8480198511	-0.1203056055
C25	3.2569066130	-7.5517445975	0.4781868957
C26	3.6413277603	-6.2183094139	0.6589506752
C27	4.2801267814	-3.5534301001	1.2280166756
C28	4.4307208776	-2.0756829210	1.5197585268
C29	5.5824597359	-0.1611187892	0.7263385177
C30	6.0701301101	0.5605757369	-0.5118476330
C31	5.4032344137	2.1162500071	-2.1925841572
C32	4.3964962559	3.2300356904	-2.3846556891
Н33	2.9612348188	5.3516725179	-2.3485671895
Н34	1.2911935228	6.8788601265	-3.3252880946
Н35	-0.3892627955	6.0093058186	-4.9469245741
Н36	-0.3854505859	3.6357853389	-5.5769118488
Н37	0.7356159890	1.8307792558	-6.5913771618
Н38	-0.5275805617	1.4299860013	-5.4053494844
Н39	0.3659181767	-0.5121242717	-6.8213095166
H40	1.9139117228	-0.3222162240	-5.9722672726
H41	-1.1067652168	-2.2128817049	-5.5825294092
H42	-1.5958809440	-0.5607471691	-5.1568448259
H43	-1.2498783062	-1.0186579208	-2.7561011674
H44	-2.5083268831	-2.0318068736	-3.5131630180
H45	-2.2706550461	-3.6320160025	-1.7880560778
H46	-1.0257391941	-2.6244760838	-1.0118649476
H47	-1.0843780446	-5.1616714582	-0.4952596447

H48	-0.4448662154	-5.3993495263	-2.1372442233
Н49	0.2556259309	-7.0635609739	-1.0078496919
Н50	1.7232222670	-8.8774449476	-0.2498700441
Н51	3.9126369785	-8.3452653412	0.8200946065
Н52	4.5894332646	-6.0114354871	1.1371271390
Н53	4.1722124459	-4.0806880490	2.1832084977
Н54	5,1808942117	-3.9137143548	0.7181564829
H55	5.1760821767	-2.0000242733	2.3252572684
н56	3 4917381534	-1 6466388418	1 8993738710
H57	4 9323296497	0 5080427739	1 3079901266
н58 н58	6 1513128987	-0 /191870717	1 3/53852562
1150 1150	6 5224005506		_1 2122559015
1159	6 9400022422	1 2751761124	-0.2072402060
H00 UC1	6 2660604704	2 5002652806	1 0510710550
HOL	5.3000094704	2.3903653696	-1.9512/10552
H62	5.5312845338	1.5428687843	-3.1229939799
H63	4.7932122465	3.9523818402	-3.10/1344351
H64	4.2239613935	3./349299//4	-1.42/0829320
C65	-0.3167688563	1./288304265	1.4280972013
C66	-0.4604822341	0.4550221184	2.0171679256
C67	0.1802596763	-0.6685466182	1.4992900718
C68	0.9752003316	-0.4665525363	0.3676836949
C69	1.1209092823	0.8035479987	-0.2171553979
C70	0.4747952224	1.9290500816	0.3000899510
N71	1.7436746867	-1.3369503295	-0.4060481953
C72	2.3371732864	-0.6494492363	-1.3959583272
N73	1.9671172640	0.6312557662	-1.3110138469
C74	2.5405839290	-4.1895306908	-4.8656666298
N75	1.2319322176	-4.4494701121	-4.7302665176
C76	0.8981896688	-5.5971287148	-5.4555962031
C77	2.0804412980	-6.0443288369	-6.0541520630
N78	3.0714043520	-5.1406756820	-5.6561233812
C79	-0.3088663316	-6.2737608433	-5.6419398871
C80	-0.3043930359	-7.4130820547	-6.4475301829
C81	0 9097142450	-7 8696594866	-7 0594590959
C82	2 1076891239	-7 1822341200	-6 8603054013
C83	-1 5934001256	-8 1647565907	-6 6748927995
C84	2 6609682513	-2 5626592648	-2 95985991/6
C 8 5	0 8008588516	-9 1016551413	-7 9305881406
C05	2 2720502005	-2 0101565000	-1.2012720162
C00 C07	2 2240051025	-3.0101303900 -1.2256104502	-4.2912729103
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1.2230194392	-2.4490017300
ноо	-0.0303499020	2.3/39333634	1.0070490209
H89	-1.0857848111	0.3491197532	2.89/5042492
H90	0.0709183747	-1.6461807016	1.956413/6/5
H91	0.5829424533	2.9081369108	-0.1538700457
Н92	1.9151108208	-2.3270062950	-0.2137152966
Н9З	2.3469031258	1.3702634639	-1.9209096256
Н94	0.5806645009	-3.8915793039	-4.1653832363
Н95	4.0479879022	-5.1810712996	-5.9172129109
Н96	-1.2276448367	-5.9237492934	-5.1830666575
Н97	3.0265818840	-7.5265604349	-7.3235099235
Н98	-1.8514720250	-8.2030380677	-7.7390193721
Н99	-1.5182515050	-9.2018791510	-6.3294876136
H100	-2.4253948045	-7.6945506097	-6.1458316728
Н101	1.5873282219	-2.4355185851	-3.0971447023
H102	2.8086921891	-3.3412726304	-2.2075753390
H103	0.5569926867	-9.9807975283	-7.3742379704
H104	0.2235022980	-8.9814998120	-8.7842271841

H105	1.8960323647	-9.3199443868	-8.3209410826
H106	3.2212401877	-2.2013877329	-5.0241734615
H107	4.3310952380	-3.2825245133	-4.1831925344
H108	3.2876583999	-0.4914310854	-3.2581003093
H109	4.2238917641	-1.3485477755	-2.0207162039

1c ⊂ dibenzo-24- crown-8	DFT Case C					
Energy	Δ E	H bond bridge				
-2491.57451	5.69					
R ₁	CH ₃	O_1 to O_4	NO ₁	H_1O_1	<n-h<sub>1-O₁</n-h<sub>	$N-H_1$
			2.985	2.054	150.3	1.022
R ₂	CH ₃	O_1 to O_4	NO ₄	H ₂ O ₄	<n-h<sub>2-O₄</n-h<sub>	N-H ₂
			2.863	1.837	174.5	1.030
R ₃	Н	O _{2'}	NO _{2'}	H ₃ O _{2'}	<n-h<sub>3-O_{2'}</n-h<sub>	N-H ₃
			2.955	1.930	173.9	1.028
R ₄	Н	none				
	O ₁ O ₄ bridge		O ₁ O _{1'}	O ₂ O _{2'}	O ₃ O _{3'}	O ₄ O _{4'}
	7.33		2.667	6.783	6.300	2.644

DFT Case C

Figure S3. DFT Case C.

Energy	components,	in	hartrees:
/			

Nuclear repulsion	8279.52971384305	
Total one-electron terms	-19812.06335643398	
Total two-electron terms	9040.95913116739	
Coulomb	9390.40107371731	
Exchange+Correlation	-349.44194254992	
Electronic energy	-10771.10422526658	(E+I)
Total energy	-2491.57451142353	(A+L)
	Nuclear repulsion Total one-electron terms Total two-electron terms Coulomb Exchange+Correlation Electronic energy Total energy	Nuclear repulsion 8279.52971384305 Total one-electron terms -19812.06335643398 Total two-electron terms 9040.95913116739 Coulomb 9390.40107371731 Exchange+Correlation -349.44194254992 Electronic energy -10771.10422526658 Total energy -2491.57451142353

-	-	angstroms	
atom	Х	У	Z
01	1.3798205539	1.7928269631	-4.5952379305
02	0.4360790547	-1.0179529837	-4.8080080515
03	-0.7326446569	-3.0106850473	-3.0546111408
04	0.8210262816	-4.4033749140	-0.8330117442
C5	1.2920287408	3.1321755298	-4.2872374463
C6	2.2498554495	3.6309711281	-3.3765237438
C7	2.2275105416	4.9749114613	-3.0061881232
C8	1.2627684672	5.8380985905	-3.5393231065
C9	0.3212698507	5.3523658900	-4.4390313522
C10	0.3339811420	4.0031229179	-4.8120252795
C11	0.5429917827	1.3062459010	-5.6431507345
C12	0.8549086719	-0.1624036837	-5.8767672200
C13	-0.9388288007	-1.3921779948	-4.8614950077
C14	-1.4103031948	-1.8202516579	-3.4891932254
C15	-1.18/3133982	-3.4237584091	-1.7549511587
C16	-0.4968970647	-4.6936367356	-1.3100004577
017	3.1251001557	-3.8395664902	0.3856/09104
018	4.8848864252	-1.3614367728	0.3/05//9044
019	4.9944597633	1.2///913166	-1.1143498257
020	3.1//1018403	2./1662/3621	-2.8900582362
	2.8229382305	-5.1/91988433	0.1983457910
C22	1.3900481203	-5.4804204378	-0.4264463242
C23	2 0570747121	-0.0141009950	-0.1071406661
C24 C25	2.03/9/4/131	-7.5571023001	-0.1071490001
C25	2 6592012790	-6.2240667928	0.4059199500
C20	1 2808671938	-3 5614690293	1 2038098661
C28	4 4226174498	-2 0851579955	1 5068674749
C29	5 5671735610	-0 1577988684	0 7374348903
C30	6 0673052184	0 5745070829	-0 4897048235
C31	5 4154645528	2 1449220596	-2 1628931760
C32	4 4032677842	3 2535615189	-2 3558798378
Н33	2.9594217800	5.3641277680	-2.3087618841
Н34	1.2616179307	6.8833120365	-3.2493517200
H35	-0.4260709076	6.0144241724	-4.8634364010
Н36	-0.4027247524	3.6481072988	-5.5218271675
Н37	0.7388104391	1.8622750050	-6.5704538471
Н38	-0.5150075985	1.4416276374	-5.3817599518
Н39	0.3943559045	-0.4782889219	-6.8235305015
H40	1.9381221776	-0.2879429596	-5.9664891246
H41	-1.0834362743	-2.1981132476	-5.5977368060
H42	-1.5696598532	-0.5468698750	-5.1679575345
Н4З	-1.2250091890	-1.0137387252	-2.7672208906
H44	-2.4920923194	-2.0121936570	-3.5304919285
H45	-2.2677557936	-3.6198037868	-1.8021380403

H46	-1.0151076043	-2.6180054170	-1.0294308199
H47	-1.0847950616	-5.1534024215	-0.5051342663
H48	-0.4559022565	-5.3995448373	-2.1491620844
Н49	0.2633467528	-7.0651108711	-1.0515357474
н50	1 7446516982	-8 8812772298	-0 3257223220
н51	3 9398167119	-8 3517055200	0 7341142068
1151 1152	4 6095506220	-6 0191347050	1 0740740021
1152	4.000000000000	4 0075462159	2 1541400021
HJJ HL	4.1/294/995/	-4.0975463158	2.1341408088
H54	5.1852384525	-3.9125320030	0.693/441530
H55	5.1597159180	-2.0115286872	2.3202636546
Н56	3.4777758780	-1.6623424328	1.8789046495
Н57	4.9023691533	0.5030139970	1.3120743005
Н58	6.4319636876	-0.4109561839	1.3684724946
Н59	6.5331032222	-0.1355721137	-1.1901468338
Н60	6.8388264163	1.2904649187	-0.1698483615
H61	6.3711689884	2.6230974791	-1.9018078574
Н62	5.5611548186	1.5838632505	-3.0981903066
Н63	4.8047417610	3.9891885669	-3.0623225637
Н64	4.2120867929	3.7434189363	-1.3939949801
C 65	-0 3540618181	1 7768467170	1 3649676791
C 6 6	-0 5148412783	0 4885413637	1 9710373867
C 67	0 1404272949	-0 6290739692	1 4493064429
C 6 9	0.0547420121	-0.0290739092	0 2206516247
000	1 1151527607	-0.4301/31336	0.3280310347
069	1.1151537687	0.8103287548	-0.2593787778
C70	0.4639878465	1.9369344019	0.2458382061
N71	1.7275592431	-1.3314853823	-0.4299649897
C'/2	2.3388212231	-0.6526868666	-1.4165179907
N73	1.9752897803	0.6303662890	-1.3406443815
C74	2.5336240678	-4.2161759558	-4.8576674412
N75	1.2243601860	-4.4683327008	-4.7203666777
C76	0.8857575214	-5.6254372845	-5.4284909974
C77	2.0718497691	-6.0888999323	-6.0181995011
N78	3.0634145118	-5.1809188287	-5.6313598333
C79	-0.3286121991	-6.2937850448	-5.6022320957
C80	-0.2976284934	-7.4413919289	-6.3892594808
C81	0.8970913026	-7.9063738956	-6.9785302063
C82	2.1071705212	-7.2406930662	-6.8057273054
C83	-1.0702206107	2.9773331478	1.9359374630
C84	2.6642205651	-2.5761572685	-2.9646137978
C85	-1.3979259095	0.3304561298	3.1857694344
C86	3.2702421961	-3.0415916440	-4.2955007644
C87	3 2326236666	-1 2394446507	-2 4592813929
н88	-1 2163234501	-7 9933467890	-6 5570349638
н89	0 8707763245	-8 8057533608	-7 5843127364
H00	0 0211879350	-1 6046242769	1 9101531295
н91	0 5866752877	2 9105574441	-0 2175822699
1102	1 9994004577	2.212440905	0.2175022055
П 92 1102	2 2650040225	1 2692641059	1 0/2020701
нэз	2.3030949233	1.3003041030	-1.9455059751
П94 ПОБ	0.5757050257	-3.9001079901	-4.1020410074
H95	4.0410522183	-5.2289505651	-5.8882002/58
ную	-1.2492140196	-5.9356040648	-5.1550854051
ну/	3.0232390294	-/.6002099580	-/.2010303404
Н98	-0.7757598377	3.1623319028	2.9/48009549
Н99	-2.1569674233	2.8364309927	1.9345623478
H100	-0.8493240412	3.8791871798	1.3606184128
H101	1.5908674297	-2.4454180368	-3.1001508980
H102	2.8102515444	-3.3519902254	-2.2094221059

H103	-1.0476796056	0.9501447597	4.0189603973
H104	-2.4289000567	0.6370957830	2.9759137659
H105	-1.4198767818	-0.7067647237	3.5281305519
H106	3.2137599524	-2.2316796271	-5.0356173955
H107	4.3286427741	-3.3065206591	-4.1920088754
H108	3.3055915383	-0.5106097252	-3.2717458237
H109	4.2292674245	-1.3660951647	-2.0237156401

1d ⊂ dibenzo-24- crown-8 or 1e ⊂ dibenzo-24- crown-8	DFT case D					
Energy	ΔE	H bond bridge				
-2491.57615	1.39					
R ₁	CH ₃	O_1 to O_4	NO ₁	H_1O_1	<n-h<sub>1-O₁</n-h<sub>	N-H ₁
			2.967	2.030	151.2	1.022
R ₂	Н	O_1 to O_4	NO ₄	H_2O_4	<n-h<sub>2-O₄</n-h<sub>	N-H ₂
			2.877	1.851	174	1.03
R ₃	CH ₃	O _{2'}	NO _{2'}	H ₃ O _{2'}	<n-h<sub>3-O_{2'}</n-h<sub>	N-H ₃
			2.937	1.914	172.8	1.028
R ₄	Н	none				
	O ₁ O ₄ bridge		O ₁ O _{1'}	O ₂ O _{2'}	O ₃ O _{3'}	O ₄ O _{4'}
	7.329		2.666	6.766	6.277	2.648

DFT Case D

Figure S4. DFT Case D.

Energy	components,	in	hartrees:
(7)	7 7		

Nuclear repulsion	8255.37143112118	
Total one-electron terms	-19763.71650436666	
Total two-electron terms	9016.76892577462	
Coulomb	9366.20883765319	
Exchange+Correlation	-349.43991187857	
Electronic energy	-10746.94757859205	(E+I)
Total energy	-2491.57614747087	(A+L)
	Nuclear repulsion Total one-electron terms Total two-electron terms Coulomb Exchange+Correlation Electronic energy Total energy	Nuclear repulsion 8255.37143112118 Total one-electron terms -19763.71650436666 Total two-electron terms 9016.76892577462 Coulomb 9366.20883765319 Exchange+Correlation -349.43991187857 Electronic energy -10746.94757859205 Total energy -2491.57614747087

2	2		
		angstroms	_
	X 1 4005020400	y	
01	1.4085838490	1.7700200375	-4.0391914830
02	0.4497713824	-1.02/2/63980	-4.//43302502
03	-0./13/584424	-3.0046452017	-3.02058/3390
04	0.8489111578	-4.40/9296012	-0.81836/050/
05	1.32/6426965	3.1184/33690	-4.3/13598105
C6	2.2511225400	3.6290893334	-3.4328/48954
C'7	2.2325225586	4.9830123360	-3.1008233539
C8	1.3069620965	5.8447478435	-3.7009198739
C9	0.4000809780	5.3472829119	-4.6293566366
C10	0.4082016373	3.9880388114	-4.9635628010
C11	0.5895993571	1.2635240726	-5.6913797011
C12	0.8840857981	-0.2158632743	-5.8702333571
C13	-0.9297478228	-1.3835362055	-4.8201258469
C14	-1.3929816825	-1.8118765427	-3.4451095728
C15	-1.1695473681	-3.4372697075	-1.7281921441
C16	-0.4671343288	-4.7053834230	-1.2965883674
017	3.1468850260	-3.8330550664	0.4045670772
018	4.8813965049	-1.3409586032	0.3998098621
019	4.9694869161	1.2941170428	-1.0889515334
020	3.1455075319	2.7186983846	-2.8803423527
C21	2.8538616327	-5.1744092631	0.2133907833
C22	1.6243742213	-5.4813616931	-0.4149269913
C23	1.2596781056	-6.8168604610	-0.5971673057
C24	2.1075567995	-7.8501679654	-0.1817870000
C25	3.3243786373	-7.5490867340	0.4155842088
C26	3.6953585430	-6.2142709561	0.6138066457
C27	4.2982795137	-3.5482546856	1.2270031904
C28	4.4267570743	-2.0716404645	1.5345358062
C29	5.5516189907	-0.1309545033	0.7680507487
C30	6.0477127027	0.6036683639	-0.4590527151
C31	5.3864327124	2.1537088681	-2.1453448263
C32	4.3726681213	3.2586359358	-2.3496646224
Н33	2.9368414751	5.3800527677	-2.3796657894
Н34	1.3082269218	6.8973865479	-3.4394588768
Н35	-0.3166422736	6.0076299393	-5.1059822479
Н36	-0.3008234463	3.6242751683	-5.6966703010
Н37	0.8168426705	1.7846874009	-6.6317688365
Н38	-0.4718338364	1.4250547038	-5.4608118007
Н39	0.4253356003	-0.5598695133	-6.8082114031
H40	1.9662657058	-0.3572117079	-5.9486114076
H41	-1.0894445964	-2.1856083168	-5.5575746447
H42	-1.5525472964	-0.5293922071	-5.1186449404
Н4З	-1.2004232129	-1.0078191388	-2.7222250178
H44	-2.4754591107	-2.0008763602	-3.4791084496
Н45	-2.2477378929	-3.6438285372	-1.7818430947

H46	-1.0084967978	-2.6387882530	-0.9920541312
Н47	-1.0499408621	-5.1776337270	-0.4952253985
H48	-0.4202332765	-5.4029099349	-2.1424007188
Н49	0.3102193421	-7.0722241729	-1.0500054208
Н50	1.8017329552	-8.8811355041	-0.3243615197
Н51	3.9901400139	-8.3403151008	0.7431502763
Н52	4.6432507062	-6.0031142548	1.0907298777
Н53	4.1919839817	-4.0880663708	2.1753201690
н54	5.2066007098	-3.8904675135	0.7180754084
н55	5 1634796234	-1 9933754388	2 3477973243
н56	3 4782044429	-1 6587402692	1 9083961453
H57	4 8795091406	0 5242977326	1 3405534075
н59 н58	6 /171968001	-0 3756449474	1 /012790170
1150	6 5226006009	-0.3750449474	_1 1562265076
пју	0.3220000008	1 2202405011	-1.1303303070
HOU UC1	6.8110/18239	1.3203403911	-0.1393400701
HOL	6.3408468862	2.6369696549	-1.8888228639
H6Z	5.5338/11181	1.5846698280	-3.0/5568//9/
H63	4.//61564632	3.985/366595	-3.0634835245
H64	4.1801513883	3.7601331167	-1.3940545850
C65	-0.3992313184	1.6407926042	1.4115680200
C66	-0.5367878324	0.3591306580	2.0078868803
C67	0.1496603078	-0.7307749525	1.4678126085
C68	0.9548804984	-0.4995484676	0.3484397047
C69	1.0830862033	0.7733016614	-0.2272114726
C70	0.4003490199	1.8741823091	0.2987202413
N71	1.7471998604	-1.3509488516	-0.4208460126
C72	2.3397713895	-0.6483264324	-1.4018415923
N73	1.9453731740	0.6250857302	-1.3133594787
C74	2.5404683759	-4.1937583410	-4.8479871765
N75	1.2275814982	-4.4261099585	-4.7044899549
C76	0.8634862538	-5.5665367854	-5.4245216630
C77	2.0348808831	-6.0426026379	-6.0275255768
N78	3.0468657485	-5.1584589130	-5.6375546996
C79	-0.3687357491	-6.2028056139	-5.5955367738
C80	-0 3994755275	-7 3448275356	-6 3974236374
C81	0 8002127276	-7 8157314038	-6 9965722983
C82	2 0277831849	-7 1866/611/8	-6 8293278607
C83	-1 6917529657	-8 0857051938	-6 6405613140
C03	2 6002200201	-2 5666622170	-2.0460642905
C04 C05	-1 4220422414	-2.3000003179	2 2105062120
C0J	2 2056715051	0.1942907039	1 2017060220
	3.2930713931	-3.031/441304	-4.2017909329
	3.2390017635	-1.212/428100	-2.4532/86289
H88	-0.94314/100/	2.4/42325684	1.846384880/
Н89	0./53260/536	-8.7065421575	-/.615/183851
Н90	0.0648956724	-1.7196800123	1.9072334192
Н91	0.4865944572	2.8630413986	-0.1386/32314
Н92	1.9298982035	-2.3394332800	-0.2338092083
Н93	2.3187107913	1.3740813074	-1.9138695112
Н94	0.5885583438	-3.8574289551	-4.1343140928
Н95	4.0210269166	-5.2203443305	-5.9041046224
Н96	-1.2708847189	-5.8194830492	-5.1304564450
Н97	2.9268531754	-7.5679110094	-7.3012783033
Н98	-1.9272164332	-8.1209790957	-7.7096374336
Н99	-1.6204220260	-9.1212389048	-6.2914934052
H100	-2.5313877310	-7.6126607087	-6.1258780701
H101	1.6209509342	-2.4594007125	-3.0675349570
Н102	2.8701776102	-3.3343225807	-2.1878392863

H103	-1.0743456367	0.8200728893	4.0483198893
H104	-2.4521258405	0.4979571828	2.9984568121
H105	-1.4438555658	-0.8415354455	3.5668968264
H106	3.2478447675	-2.2173649854	-5.0176443031
H107	4.3510517344	-3.3097601142	-4.1829348856
H108	3.2842674103	-0.4849428144	-3.2686771266
H109	4.2427815812	-1.3116517417	-2.0272475120

1d ⊂ dibenzo-24- crown-8 or 1e ⊂ dibenzo-24- crown-8	DFT Case E					
Energy	ΔE	H bond bridge				
-2491.57668	0.00					
R ₁	Н	O_1 to O_4	NO ₁	H_1O_1	<n-h<sub>1-O₁</n-h<sub>	N-H ₁
			3.001	2.083	148.4	1.022
R ₂	CH ₃	O_1 to O_4	NO ₄	H_2O_4	<n-h<sub>2-O₄</n-h<sub>	N-H ₂
			2.854	1.826	175	1.030
R ₃	Н	O _{2'}	NO _{2'}	H ₃ O _{2'}	<n-h<sub>3-O_{2'}</n-h<sub>	N-H ₃
			2.993	1.968	175.5	1.027
R ₄	CH ₃	none				
	O ₁ O ₄ bridge		O ₁ O _{1'}	O ₂ O _{2'}	O ₃ O _{3'}	O ₄ O _{4'}
	7.326		2.671	6.804	6.31	2.642

DFT Case E

Figure S5. DFT Case E.

Energy	components,	in	hartrees:

(A)	Nuclear repulsion	8219.10766205818	
(E)	Total one-electron terms	-19691.47829383753	
(I)	Total two-electron terms	8980.79395585427	
(J)	Coulomb	9330.22997757135	
(K)	Exchange+Correlation	-349.43602171708	
(L)	Electronic energy	-10710.68433798326	(E+I)
(N)	Total energy	-2491.57667592508	(A+L)

		angstroms	
atom	Х	У	Z
01	1.3318668600	1.8135116058	-4.5472113261
02	0.3871935596	-1.0044163927	-4.8181129495
03	-0.7779434299	-3.0450824948	-3.1005542372
04	0.7679348970	-4.4092657165	-0.8434321731
C5	1.2538112950	3.1483629786	-4.2193157122
C6	2.2441542480	3.6366780768	-3.3381505566
С7	2.2368356412	4.9760662713	-2.9515829836
C8	1.2524486873	5.8450301334	-3.4374805367
С9	0.2770061599	5.3692794922	-4.3059559037
C10	0.2759230950	4.0247366892	-4.6961732263
C11	0.4761680066	1.3423346198	-5.5878925803
C12	0.7987583810	-0.1170735466	-5.8636727806
C13	-0.9755106427	-1.4165301200	-4.9035043943
C14	-1.4675915161	-1.8653819835	-3.5452960506
C15	-1.2350627028	-3.4478072975	-1.7989122001
C16	-0.5421857798	-4.7096296078	-1.3365833443
017	3.0702822166	-3.8347203278	0.3836959329
018	4.8643702804	-1.3762924059	0.3170187767
019	5.0175535274	1.2524658971	-1.1727688170
020	3.1854204145	2.7145806514	-2.8947834011
C21	2.7595958754	-5.1759188946	0.2184573798
C22	1.5300385345	-5.4815278458	-0.4112286082
C23	1.1500245111	-6.8165585051	-0.5664655394
C24	1.9811164865	-7.8516934137	-0.1235077900
C25	3.1973881347	-7.5531415078	0.4752464259
C26	3.5838893656	-6.2191930100	0.6467894905
C27	4.2320224775	-3.5545434308	1.1921972833
C28	4.3964808647	-2.0751225534	1.4672530307
C29	5.6007539229	-0.1982168015	0.6623137672
C30	6.0870591591	0.5176989009	-0.5799025571
C31	5.4318818148	2.1167566119	-2.2261729458
C32	4.4301222979	3.2390420927	-2.3925530802
Н33	2.9955436847	5.3573734027	-2.2788696482
Н34	1.2626057223	6.8868752486	-3.1358592428
Н35	-0.4865859516	6.0358123521	-4.6928114819
Н36	-0.4876023495	3.6772668438	-5.3809920069
Н37	0.6458172351	1.9237641269	-6.5045594933
Н38	-0.5771807353	1.4582241815	-5.2993335418
Н39	0.3382930144	-0.4100982360	-6.8175348759
H40	1.8826796035	-0.2316685567	-5.9603229973
H41	-1.0817773344	-2.2207943416	-5.6479922259
H42	-1.6218895547	-0.5860960631	-5.2187204966
Н43	-1.3147513370	-1.0594022626	-2.8149921669
H44	-2.5445099149	-2.0773846149	-3.6112309231

H45	-2.3146178912	-3.6483580852	-1.8473118643
H46	-1.0692699050	-2.6340792653	-1.0805100019
H47	-1.1377565269	-5.1669738720	-0.5360795953
H48	-0.4852647575	-5.4213064009	-2.1700399606
Н49	0.2004995995	-7.0703313202	-1.0197419157
Н50	1.6623234482	-8.8812387517	-0.2460184936
Н51	3.8509036323	-8.3451599124	0.8246072799
Н52	4.5312140393	-6.0114362500	1.1258791886
н53	4.1207278575	-4.0697334259	2.1536409251
н54	5 1298114809	-3 9279822093	0 6864015833
н55	5 1383479544	-1 9991198604	2 2757773610
н56	3 4605014214	-1 6312178676	1 8365218740
н50 н57	1 9783282894	0 4853588356	1 2572319311
н57 н58	6 4754090020	-0 4827064391	1 2656968644
1150 1150	6 5104519229	-0.2060922757	-1 2022052210
нсо	6 9900207290	1 2009675519	-1.2932032310
ПОU U.C.1	6 2007675160	2 5704474190	1 0026005467
нот	0.399/0/3109 E E40E21022E	2.3/944/4109	-1.9020900407
HOZ	5.5495210235	1.55/38039/0	-3.1003982102
H63	4.8207753439	3.9/13/13854	-3.10834/3013
H64	4.2695322174	3.7289486237	-1.4251856852
C65	-0.2310770699	1.899/194434	1.4153802039
C66	-0.4212072020	0.6204448682	2.0021241308
C67	0.1548319869	-0.5389314636	1.4928123687
C68	0.9530150963	-0.3944710605	0.3537535335
C69	1.1539933435	0.8637870419	-0.2335814870
C70	0.5681058019	2.0246566319	0.2777015125
N71	1.6734109862	-1.3041965790	-0.4248256452
C72	2.2946062761	-0.6454870103	-1.4181282196
N73	1.9843944316	0.6509574253	-1.3308056840
C74	2.5311982911	-4.2327251776	-4.8693006288
N75	1.2271394810	-4.5229655297	-4.7597160617
C76	0.9391299142	-5.6892782692	-5.4774687433
C77	2.1483483865	-6.1159068895	-6.0427097585
N78	3.1042374471	-5.1810453623	-5.6333033975
C79	-0.2441182534	-6.4044355186	-5.6868829659
C80	-0.1503585722	-7.5441277395	-6.4761449240
C81	1.0696184677	-7.9879817350	-7.0538907905
C82	2.2415857185	-7.2623088474	-6.8335405522
C83	-0.8915207458	3.1093431862	2.0329635569
C84	2.5959258689	-2.5805347004	-2.9760059535
C85	1.0787910363	-9.2369419396	-7.9008469995
C86	3 2266255335	-3 0386885552	-4 2976222869
C87	3 1677257110	-1 2473502825	-2 4690729778
н88	-1 0500227748	-8 1227898349	-6 6637062990
н89	-1 0444105322	0 5459721696	2 8885928675
H90	-0 0067515448	-1 5028046185	1 9638127129
цо1	0 7272176260	2 9889182535	_0 19/1022658
1191	1 2045221626	-2 2002051205	-0.2225016612
1192	2 2004177010	1 2750206099	-0.2323010013
п95	2.3904177010	2 0712017512	-1.9412559245
1194 1195	1 0875005200	-5.9/1201/313	-4.2102034032
1190	4.00/3093290	-J.1990030224 _6 0966300306	-5.060000419410
07 1107			-0.2033520410
ну/ ноо	3.105/268089	-1.5/915502/9	-/.2042200216
нух		3.201108/69/	3.049352/9/4
НУУ	-1.9/61606532	2.9/46495110	2.10281/0/14
HIUU	-0./0066/0052	4.0129/41644	1.4492487287
HIUI	1.5245901544	-2.448/996/9/	-3.1278946585

H102	2.7316055979	-3.3569210976	-2.2193944100
H103	0.7261129709	-10.1006914857	-7.3270656402
H104	0.4129417273	-9.1278742738	-8.7637530713
H105	2.0795570826	-9.4651839068	-8.2738595428
H106	3.1619142769	-2.2310282618	-5.0396552388
H107	4.2896356776	-3.2774907337	-4.1778800652
H108	3.2409742038	-0.5187765212	-3.2818525810
H109	4.1668348204	-1.3795204224	-2.0402867022

1f⊂ dibenzo-24- crown-8 or 1g⊂ dibenzo-24- crown-8	DFT case F					
Energy		H bond bridge				
-2570.22023						
R ₁	CH ₃	O_1 to O_4	NO ₁	H_1O_1	<n-h<sub>1-O₁</n-h<sub>	$N-H_1$
			2.987	2.059	149.7	1.022
R ₂	CH ₃	O_1 to O_4	NO ₄	H_2O_4	<n-h<sub>2-O₄</n-h<sub>	N-H ₂
			2.865	1.839	174.7	1.029
R ₃	CH ₃	O _{2'}	NO _{2'}	H ₃ O _{2'}	<n-h<sub>3-O_{2'}</n-h<sub>	N-H ₃
			2.974	1.951	178.3	1.027
R ₄	CH ₃	none				
	O ₁ O ₄ bridge		O ₁ O _{1'}	O ₂ O _{2'}	O ₃ O _{3'}	O ₄ O _{4'}
	7.326		2.665	6.778	6.298	2.644

DFT Case F

Figure S6. DFT Case F.

Energy	components,	in	hartrees:
(7)	37 7		

(A)	Nuclear repulsion	8725.14398485008	
(E)	Total one-electron terms	-20805.68271188870	
(I)	Total two-electron terms	9510.31849790886	
(J)	Coulomb	9872.13198386679	
(K)	Exchange+Correlation	-361.81348595793	
(L)	Electronic energy	-11295.36421397985	(E+I)
(N)	Total energy	-2570.22022912977	(A+L)

	-	angetwome	
atom		angstroms	_
	X 1 2077520012	Y 1 7802045600	
01	1.30//538913	1.7892045699	-4.5886634664
02	0.4099139261	-1.0144229152	-4./85/0489/1
03	-0./35455/643	-3.0130202238	-3.0288935237
04	0.8253/18549	-4.4099980580	-0.8166011225
C5	1.292410//08	3.1291481325	-4.2821545815
C6	2.2634521786	3.6227798926	-3.3825447440
C7	2.2562295667	4.9679887873	-3.0163949159
C8	1.2924447887	5.8372209986	-3.5414523454
C9	0.3368638661	5.3561906981	-4.4287814467
C10	0.3351192871	4.0060054481	-4.7984231136
C11	0.5168485207	1.3058133817	-5.6268759130
C12	0.8199520170	-0.1644334180	-5.8614842493
C13	-0.9640029201	-1.3922123465	-4.8293647260
C14	-1.4224060955	-1.8256185294	-3.4544899325
C15	-1.1887004372	-3.4394111718	-1.7341276421
C16	-0.4889969951	-4.7072919776	-1.2989466307
017	3.1262277267	-3.8367721893	0.4004609779
018	4.8876194186	-1.3623703206	0.3767703411
019	5.0053261961	1.2619739466	-1.1290727906
020	3.1871488952	2.7020627344	-2.9016178356
C21	2.8290044294	-5.1777749232	0.2159334583
C22	1.5982339927	-5.4838504539	-0.4104751568
C23	1.2296985357	-6.8190591643	-0.5874910333
C24	2.0742663752	-7.8533838119	-0.1681627265
C25	3.2916779402	-7.5537072542	0.4283760067
C26	3.6667731391	-6.2191660707	0.6211023164
C27	4.2777362031	-3.5544091904	1.2226271751
C28	4 4191492029	-2 0763329373	1 5165200517
C29	5 5729029583	-0 1582383679	0 7350470371
C30	6 0761976672	0 5610859856	-0 4985149319
C31	5 4263238763	2 1107940134	-2 1922963164
C32	1 1257298621	3 22951/7773	-2 387/51852/
n33 C22	2 9989301/06	5 3530208083	-2.3074510524
пзv 1122	1 3027000007	6 8832261120	-2.3201002477
ПЈ4 1125	1.302/09990/	6 0228150285	-3.2343300941
пор	-0.4102955565	0.0220130203	-4.0402910410 5.0000000110
H30 H37	-0.4121189171	3.6544943167	-5.498892/110
H3/	0.7030872206	1.8601863447	-0.000/1/4943
H38 H30	-0.53/49/4//5	1.44614/1563	-5.3535255837
H39	0.3469435184	-0.4806105291	-6.802004/808
H4U	1.1110004553	-U.2946694U3U	-5.9638/65902
H41	-1.11190845/2	-2.19/152101/	-5.5660222552
H42	-1.5996687981	-0.54//346900	-5.12854685/4
Н43	-1.2363073253	-1.019/134609	-2./3184/551/
H44	-2.5036696372	-2.0226771346	-3.4885724465
H45	-2.2676699663	-3.6436565388	-1.7838967317

H46	-1.0240516369	-2.6385963021	-1.0011799334
Н47	-1.0742916729	-5.1783073037	-0.4986373962
H48	-0.4397618586	-5.4054301144	-2.1440984958
Н49	0.2796591232	-7.0734728759	-1.0394189219
Н50	1.7652233423	-8.8839194519	-0.3068904346
Н51	3.9548750774	-8.3456407993	0.7594837200
Н52	4,6151376980	-6.0094325179	1.0976612581
Н53	4.1647936962	-4.0849096620	2.1755931432
н54	5.1846185328	-3.9086372305	0.7192758738
н55	5 1523895391	-1 9973614518	2 3328872563
н56	3 4728294613	-1 6498057906	1 8803988957
н57	4 9094056838	0 5097474110	1 3028831637
н59 н58	6 4361263733	-0 /085389355	1 369/217332
1150 1150	6 5388957009	-0 1575/13719	-1 1922725955
H60	6 9504570901	1 2772072207	-1.1922725955
ПОU 1161	6 2005622561	2 5901272067	-0.1039390190
нот	0.3903022301 E EEEOECE7EE	2.JOUIJ/290/	-1.94/1011/2/
нод	3.3330363733	1.00000000	-3.1221194012
HOS	4.82/82/4443	3.9523909280	-3.1065970450
H64	4.251/348412	3./322161264	-1.4289/31268
C65	-0.3725342902	1.//6625/9/6	1.3486864/41
C66	-0.5383639168	0.4888861344	1.9541620774
C6'/	0.1215147595	-0.6290010022	1.4388829990
C68	0.9453835025	-0.4507765120	0.3251056592
C69	1.1106823155	0.8093872334	-0.2625422779
C70	0.4550107454	1.9361184060	0.2364395926
N71	1.7234826372	-1.3329173230	-0.4269036122
C72	2.3416667972	-0.6552078235	-1.4097905519
N73	1.9780522266	0.6280544194	-1.3377349681
C74	2.5423871682	-4.2025664233	-4.8637666997
N75	1.2327615729	-4.4573376014	-4.7269070937
C76	0.8955741537	-5.6082541184	-5.4455341613
C77	2.0768071141	-6.0635308554	-6.0398833607
N78	3.0702764470	-5.1602647064	-5.6480130552
C79	-0.3134106871	-6.2822902720	-5.6284672580
C80	-0.3113658919	-7.4282579397	-6.4246665155
C81	0.9023706304	-7.8946079935	-7.0296533035
C82	2.1019066337	-7.2085692343	-6.8356485249
C83	-1.0935820724	2.9774055432	1.9130110175
C84	-1.6028144649	-8.1766390641	-6.6493218664
C85	2.6673866635	-2.5740689081	-2.9629786723
C86	-1.4317875439	0.3314988890	3.1614596161
C.87	0.8911642051	-9.1355241376	-7.8878194166
C88	3 2790450688	-3 0327461497	-4 2929611676
C89	3 2394025235	-1 2431155335	-2 4477821768
H00	-0 0013248696	-1 6043368942	1 8992929509
н91	0 5814505896	2 9093649611	-0.2267199282
u02	1 8795671022	-2 3236045084	-0 2312247552
1192	2 3699195919	1 3628370051	-1 9/29302867
1195	0 5927416627	-2 9064506972	-1.9429502007
1194 1194	0.J0J/41002/ 1 0160701010	-J.UJU4JJU0/Z _5 2055700057	-4.1023319193 _5 0077003565
1190	4.0409/04040	-5.0056010607	
ПУ0 1107	-1.231/29241U	-J. YZJOZIJOU/	- J. L / JOU4193U
пу/ 1100	3.020509/14/	-/.559/440159	-/.2942531965
нух	-0.80/4503/13	3.1035323101	2.9540/39091
нуу	-2.1802353133	2.0362/20283	1.9031403598
HIUU	-0.8683585872	3.8/88288454	1.3386960989
H101	-1.85/83/9043	-8.2229345415	-7.7138762509
H102	-1.5331459594	-9.2110834349	-6.2948506539

H103	-2.4344225955	-7.6983635698	-6.1269078413
H104	1.5952153501	-2.4379782259	-3.1033512327
H105	2.8060175143	-3.3551406184	-2.2115299473
H106	-1.0884802687	0.9514184133	3.9973664565
H107	-2.4609598457	0.6381048543	2.9429503929
H108	-1.4566640771	-0.7055901691	3.5040892189
H109	0.5415583441	-10.0073466347	-7.3242412861
H110	0.2197807821	-9.0208194589	-8.7458021839
H111	1.8882233223	-9.3622258547	-8.2710626771
H112	3.2301626028	-2.2168767478	-5.0271131075
H113	4.3362108568	-3.3007795114	-4.1840888950
H114	3.3225269844	-0.5116712704	-3.2568786364
H115	4.2321057219	-1.3773943901	-2.0058610716

1a ⊂ dibenzo-24- crown-8 or 1b ⊂ dibenzo-24- crown-8	DFT Case G					
Energy	ΔE	H bond bridge				
-2412.93079	0.00					
R ₁	Н	O_1 to O_4	NO ₁	H_1O_1	<n-h<sub>1-O₁</n-h<sub>	N-H ₁
			2.961	2.023	151.2	1.023
\mathbf{R}_{2}	Н	O_1 to O_4	NO ₄	H_2O_4	<n-h<sub>2-O₄</n-h<sub>	N-H ₂
			2.856	1.828	174.2	1.031
R ₃	Н	O _{2'}	NO _{2'}	H ₃ O _{2'}	<n-h<sub>3-O_{2'}</n-h<sub>	N-H ₃
			2.933	1.906	175	1.029
\mathbf{R}_4	Н	none				
	O ₁ O ₄ bridge		0 ₁ 0 _{1'}	O ₂ O _{2'}	O ₃ O _{3'}	O ₄ O _{4'}
	7.289		2.670	6.781	6.306	2.652

DFT Case G

Figure S7. DFT Case G.

Energy	components,	in	hartrees:
(7)	7 7	-	

(A)	Nuclear repulsion	7785.99542587105	
(E)	Total one-electron terms	-18722.61476565001	
(I)	Total two-electron terms	8523.68854803173	
(J)	Coulomb	8860.76317153252	
(K)	Exchange+Correlation	-337.07462350080	
(L)	Electronic energy	-10198.92621761829	(E+I)
(N)	Total energy	-2412.93079174723	(A+L)

		angstroms	
atom	Х	У	Z
01	1.3847466503	1.7648515513	-4.6552934317
02	0.4622479235	-1.0382632661	-4.8871285105
03	-0.7409483906	-2.9891946489	-3.1067327621
04	0.7801666197	-4.3689317145	-0.8493643687
C5	1.2844343207	3.1034228339	-4.3469434633
C6	2.2049788086	3.6032168087	-3.4004054163
С7	2.1678141156	4.9465850399	-3.0297879670
C8	1.2247476541	5.8100710613	-3.5983416353
С9	0.3185326139	5.3235189670	-4.5335142815
C10	0.3460681923	3.9749933398	-4.9066431547
C11	0.5800232035	1.2820661348	-5.7299234999
C12	0.8929118705	-0.1871170461	-5.9550913903
C13	-0.9130302063	-1.4110879900	-4.9526356090
C14	-1.4076896945	-1.8064477766	-3.5786164575
C15	-1.2051593779	-3.3644343984	-1.7983683811
C16	-0.5428950444	-4.6391953009	-1.3250359662
017	3.0979096518	-3.8379732606	0.3653773936
018	4.8922163139	-1.3824839361	0.3092492927
019	4.9872532136	1.2665191366	-1.1478485874
020	3.1157039519	2.6927223354	-2.8726669062
C21	2.7634196278	-5.1740635420	0.1980000108
C22	1.5237643070	-5.4560632573	-0.4219226825
C23	1.1173814757	-6.7834005524	-0.5730994606
C24	1.9339608039	-7.8335756125	-0.1388869065
C25	3.1622406984	-7.5579481463	0.4464336082
C26	3.5744644589	-6.2314348508	0.6155924757
C27	4.2762233025	-3.5771890276	1.1576597612
C28	4.4528883387	-2.1038385229	1.4563626413
C29	5.6132196279	-0.1969047641	0.6630561028
C30	6.0747288241	0.5423335209	-0.5744157760
C31	5.3778331774	2.1251641994	-2.2149071480
C32	4.3617804753	3.2332084291	-2.3859792552
Н33	2.8723562396	5.3336040063	-2.3031633860
Н34	1.2111494696	6.8549520247	-3.3077224222
Н35	-0.4130728138	5.9849959929	-4.9853457330
Н36	-0.3635238514	3.6212899535	-5.6440763796
Н37	0.8060044874	1.8376025048	-6.6505717865
Н38	-0.4843602421	1.4214048151	-5.5011181346
Н39	0.4430770407	-0.5059334723	-6.9058923337
H40	1.9769848681	-0.3133706365	-6.0334076175
H41	-1.0479943574	-2.2333051523	-5.6722691926
H42	-1.5369038488	-0.5720494967	-5.2884112134
Н43	-1.2314846034	-0.9843666652	-2.8721021593
H44	-2.4890882052	-1.9965223032	-3.6322800881

H45	-2.2892991170	-3.5379051077	-1.8429493544
H46	-1.0167671703	-2.5465355568	-1.0906322903
H47	-1.1429530161	-5.0695614926	-0.5130069729
H48	-0.5148568124	-5.3622751113	-2.1497657570
Н49	0 1586342355	-7 0195129938	-1 0163578323
H50	1 5951802930	-8 8570987899	-0 2581259503
1150 1151	2 0052202550	-9 2621200712	0.2301233303
IIJI IIFO	4 520659525	-0.5021500712	1 0942202605
HJZ	4.5506565525	-0.0400933639	1.0043303603
HD3	4.1/8081/111	-4.1068012677	2.1124620105
H54	5.16168/9/52	-3.9485527434	0.6292264091
H55	5.2155628418	-2.0460855509	2.246944/104
Н56	3.5282439893	-1.6655836930	1.8597423606
Н57	4.9861010689	0.4683038534	1.2736273382
Н58	6.4984351714	-0.4749990168	1.2537030647
Н59	6.5016774841	-0.1662041891	-1.3009550138
H60	6.8687466413	1.2439884051	-0.2791615973
H61	6.3419100953	2.6033719935	-1.9863788812
H62	5.4938164592	1.5566279903	-3.1499436950
Н63	4.7396872444	3.9590693702	-3.1146584125
Н64	4.2039973441	3,7359786070	-1,4248649121
C65	-0.2198725323	1.6976321034	1.6321741953
C 6 6	-0 3511248212	0 4065821035	2 1858054412
C67	0 2546682526	-0 7043074077	1 6027620365
C68	1 0013810953	-0 /719879082	0 1111853235
C69	1 1353963062	0 81/0381681	-0 1048388554
C70	0 5232175192	1 0276250107	0.1772510123
N71	1 727/231000	-1 32/31500//	-0 3880726506
072	2 2004002414	0 6101222012	1 2700609662
C72	1 0221662527	-0.0101323912	1 220220720
N73	2 5240472545	4 1642952525	-1.2300399709
C74 N75	1 2206261270	-4.1043032323	-4.042JU40170
N75 C76	0 0272000525	-4.4433078320	-4./1001/0020
C76	0.9272690333	-5.01/4441556	-5.4102307010 E 0070202400
U//	2.1316310816	-6.0593800106	-5.98/9283480
N / 8	3.0967265412	-5.1247958114	-5.5983045607
C79	-0.2690905252	-6.3153251004	-5.6005628637
C80	-0.2006992751	-7.4699132730	-6.3/482/0662
C81	1.0122144207	-7.9131378937	-6.9436643333
C82	2.20446/9502	-7.2180438312	-6./626/00026
Н83	-1.1040169735	-8.0448508974	-6.5486447362
C84	2.6559139597	-2.5347455197	-2.9323231084
Н85	1.014458/328	-8.8190862178	-7.5400833554
C86	3.2330590747	-2.9635949084	-4.2895852500
C87	3.1434995261	-1.1500637720	-2.4776749370
H88	-0.7108327048	2.5328046762	2.1203765395
Н89	-0.9380705668	0.2769362432	3.0889190696
Н90	0.1546657377	-1.6959414595	2.0309650235
H91	0.6204362757	2.9206650148	0.0521296724
Н92	1.9009838232	-2.3198831671	-0.2296628881
Н9З	2.2990992697	1.4228111696	-1.8419761032
Н94	0.5599756390	-3.8852699111	-4.1741408883
Н95	4.0781625406	-5.1521331706	-5.8431902872
Н96	-1.2037323018	-5.9742319948	-5.1694971345
Н97	3.1344399939	-7.5608943351	-7.2029413650
H101	1.5698257524	-2.4936146597	-3.0118296705
H102	2.9035878402	-3.2864526008	-2.1787311955
H106	3.1096431208	-2.1509817827	-5.0175268603
H107	4.3057211673	-3.1777772504	-4.2262613680

H108	3.1032487070	-0.4296644971	-3.3001402089
H109	4.1741101510	-1.1900424497	-2.1098733470

1a ⊂ dibenzo-24- crown-8 0r 1b ⊂ dibenzo-24- crown-8	DFT Case H					
Energy	ΔE	H bond bridge				
-2412.92496	15.31					
R ₁	Н	$O_{1'}$ to O_3	NO _{1'}	H ₁ O _{1'}	<n-h<sub>1-O_{1'}</n-h<sub>	N-H ₁
			2.855	1.858	162.9	1.027
R ₂	Н	$O_{1'}$ to O_3	NO ₃	H ₂ O ₃	<n-h<sub>2-O₃</n-h<sub>	N-H ₂
			2.853	1.911	151.6	1.024
R ₃	Н	O _{4'}	NO _{4'}	H ₃ O _{4'}	<n-h<sub>3-O_{4'}</n-h<sub>	N-H ₃
			2.925	1.929	161.7	1.030
R ₄	Н	none				
	$O_{1'}O_3$ bridge		O ₁ O _{1'}	O ₂ O _{2'}	O ₃ O _{3'}	O ₄ O _{4'}
	6.95		2.675	6.511	6.232	2.668

DFT Case H

Figure S8. DFT Case H.

Energy	components,	in	hartrees:
--------	-------------	----	-----------

(A)	Nuclear repulsion	7820.43875254055	
(E)	Total one-electron terms	-18791.03546582833	
(I)	Total two-electron terms	8557.67175154672	
(J)	Coulomb	8894.74372777411	
(K)	Exchange+Correlation	-337.07197622739	
(L)	Electronic energy	-10233.36371428161	(E+I)
(N)	Total energy	-2412.92496174106	(A+L)

	<u>1</u>	angstroms	
atom		angscroms	-
	X 4 6020400752	Y 0 6704802252	4 1220706060
01	4.0959400752	0.0794092232	2 7047000240
02	2.0/9/1245/6	-0.7391274226	-5./94/009540
03	0.3986987480	-1.7672050125	-1.4514589599
04	0.5564003143	-3.106/085093	1.1281564819
C5	5.4039019054	1.8528475691	-4.29031616/1
C6	6.4194/11660	2.1191904608	-3.3434962055
C7	7.1546022572	3.3015443403	-3.4321558073
C8	6.9066633082	4.2177028936	-4.4605363883
C9	5.9222606586	3.9506360242	-5.4023548558
C10	5.1726653578	2.7725181415	-5.3161454457
C11	3.7450554676	0.3562028131	-5.1578500133
C12	3.0335725871	-0.9435257534	-4.8465684247
C13	1.0464843219	-1.7402943575	-3.8071746433
C14	-0.0235534617	-1.4143513163	-2.7844157165
C15	-0.6481711900	-1.7674608112	-0.4724205247
C16	-0.6259538857	-3.0579187534	0.3174612780
017	2.6878085302	-3.1677716499	2.7324508699
018	5.2754237882	-1.6077675914	2.4259633404
019	6.9752378946	0.0731414761	0.4156492557
020	6.6365066426	1.1601572352	-2.3562646162
C21	1.9374268234	-4.3362893461	2.6303123921
C22	0.7950445841	-4.2940231864	1.7997524861
C23	-0.0239580774	-5.4215357653	1.7018601881
C24	0.2923522200	-6.5951675960	2.3949643999
C25	1.4292668837	-6.6443174918	3.1904809196
C26	2.2480806001	-5.5157514178	3.3100092806
C27	3.8817957122	-3.2636927508	3.5361237766
C28	4.6159789307	-1.9443422600	3.6408546547
C29	6.4217111030	-0.7722542490	2.6320800283
C30	7.3694377037	-0.8276712536	1.4515017197
C31	7.9872571424	0.1887631199	-0.5801604619
C32	7.7517845069	1.3847124982	-1.4746823482
н33	7.9305666286	3.5258109931	-2.7121054963
н34	7.4934196420	5.1281797145	-4.5159927610
н35	5 7276104602	4 6476864380	-6 2103546991
н36	4 4121572285	2 5829936752	-6.0622962702
н37	4 2690878621	0 2490744397	-6 1163238676
н38	2 9996010910	1 1553741206	-5 2487823951
н30	2 5135783013	-1 2510310380	-5 7651969433
нл0	3 7/987810/3	-1 7339706601	-1 5821820807
ции ции	1 /5/8351507	-2 7444596064	-3 6173573684
H42	1.1010001007 0.5642799775	-1 7546618166	-4 7962765221
1174	0.0074/00/10	T. 1040010100	7.1/02/03231

Н4З	-0.2753217182	-0.3465784050	-2.8292134222
H44	-0.9194519395	-1.9970955254	-3.0344631795
H45	-1.6261580286	-1.6888778524	-0.9615113180
H46	-0.5357208919	-0.8983746591	0.1894199068
нд7	-1 5181867078	-3 1157827746	0 9547021803
цля	-0 6351856681	-3 9006390293	-0 3832857007
1140 1140	-0.9167747674	-5 4041396144	1 0005001204
п49	-0.910//4/0/4	-5.4041390144	1.0905891594
HSU	-0.35/2111530	-7.4592224341	2.3042725605
H51	1.688534819/	-7.5493/11430	3.7291701316
H52	3.1235727665	-5.5777336696	3.9420766359
Н53	3.6046804397	-3.5709166357	4.5519878718
H54	4.5474064107	-4.0169571362	3.1011194548
Н55	5.3563952207	-2.0770737986	4.4432635341
Н56	3.9399859835	-1.1371293207	3.9629309337
Н57	6.1186174470	0.2683557451	2.8211614454
Н58	6.9693552837	-1.1308206460	3.5147705004
Н59	7.4253419649	-1.8582251399	1.0713865475
н60	8 3689552632	-0 5418622992	1 8125552936
ноо н61	8 9660/15085	0 3/175165/2	-0 1005968236
1101	0.5000415005	-0 7260266722	-1 17/2501670
П02 ЦС2	0.0072000120	1 5425602652	-1.1/433010/0
HOS	8.6555345100	1.5435692652	-2.0/43//2689
H64	7.5664463045	2.2/51021066	-0.862/196615
C65	-1.3950192336	1.0394362176	5.5352991349
C66	-1.3340493731	-0.3698728836	5.4893459972
C67	-0.4417865041	-1.0395141130	4.6573234247
C68	0.3892433294	-0.2402030404	3.8680695533
C69	0.3270793719	1.1621045192	3.9163484159
C70	-0.5656783769	1.8361646866	4.7514947543
N71	1.3863416051	-0.5566441265	2.9417294297
C72	1.9193498812	0.5651027311	2.4412885216
N73	1.2945952790	1.6133375091	3.0122468177
C74	3.8826353440	-0.8538152357	-1.3125669599
N75	3 2143542751	-1 9881710069	-1 0425212009
C76	4 0023469121	-3 0831158140	-1 4009037884
C77	5 2064848630	-2 5540636350	-1 8958399223
N78	5 0809327793	_1 1700980337	-1 8082576040
070	2 7747207705	4 4502250705	1 2251051020
C79	3.7747397793	-4.4393336793	-1.3331031626
080	4.8007898155	-5.28193/3/52	-1./939880142
C81	6.0081391912	-4.7519034298	-2.295/310152
C82	6.2363643130	-3.3/93493201	-2.3551623859
H83	-2.1069823159	1.5144096790	6.2016758886
C84	2.3618877067	0.7570097043	-0.0332697537
H85	-2.0010239227	-0.9451275113	6.1224986262
C86	3.3865217542	0.5476650644	-1.1561358287
C87	2.9710373275	0.6279285091	1.3860187509
H88	-0.3941623971	-2.1224330006	4.6246457989
Н89	-0.6139498072	2.9189978822	4.7922200486
Н90	1.7083250291	-1.5058376456	2.7047085836
Н91	1.5134997748	2.5817405167	2.8172678700
Н92	2.2044528177	-2.0205279059	-0.8783310523
н93	5.7353127140	-0.4491676296	-2.1335081103
н94	2 8497459387	-4 8680760244	-0 9433711157
ну і 119 і	1 6695569190	-6 3585636310	_1 765//66510
1195	4.009JJ09L00 6 7775000200	-0.5505050510	-1.70J4400JIZ
1190	0.1110000323	-J.43ZI3ZZZ94	-2.04030U4U15
ПУ/ U101		-2.9/0903/040	-2.141/900142
HIUI	1.9301651184	1./558122144	-0.1562035963
HIU2	1.53//59664/	0.0486545278	-0.1539222759

H106	2.9273952159	0.8216375751	-2.1120428869
H107	4.2570922828	1.1968293927	-1.0249562162
H108	3.6311585210	1.4793035223	1.5856253711
H109	3.5889117812	-0.2736990687	1.4643243430

References

- 1. J. W. Jones and H. W. Gibson, J. Am. Chem. Soc. 2003, 125, 7001-7004.
- 2. F. Huang, J. W. Jones, C. Slebodnick, and H. W. Gibson, J. Am. Chem. Soc. 2003, 125, 14458-14464.
- 3. T. B. Gasa, J. M. Spruell, W. R. Dichtel, T. J. Sørensen, D. Philp, J. F. Stoddart, and P. Kuzmic, *Chem. Eur. J.* 2009, **15**, 106 116.
- 4. H. W. Gibson, J. W. Jones, L. N. Zakharov, A. L. Rheingold and C. Slebodnick, *Chem. Eur. J.* 2011, **17**, 3192 3206.
- 5. C. Mukhopadhyay, S. Ghosh and R. J. Butcher, Arkivoc, 2010, ix, 75.
- 6. MacroModel, version 9.7, Schrödinger, LLC, New York, NY, 2009.
- 7. Jaguar, version 7.6, Schrodinger, LLC, New York, NY, 2009.
- 8. A. T. Pudzianowski, A systematic appraisal of density functional methodologies for hydrogen bonding in binary ionic complexes, *J. Phys. Chem.*, 1996, **100**, 4781-4789.