Supplementary Information for

Synthesis of Functionalized 2,3-Dihydroisoxazoles by Domino Reactions in Water and Unexpected Ring-Opening Reactions of 2,3-Dihydroisoxazoles

Ping Li^a, Bo-Tao Teng^a, Fa-Gen Jin^a, Xin-Sheng Li,^a Wei-Dong Zhu^a, Jian-Wu

Xie^a*

^{*a*}Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry and Life Science, Zhejiang Normal University, 321004

Jinhua;

Corresponding Author: xiejw@zjnu.cn

 General methods. Experimental Section. ¹H NMR, ¹³CNMR spetra. 	1 1 10		
		4. X-ray crystal data of compound 4a	43
		5. Photo of the reactions of 1a (15.4 g, 0.1 mol) with NH ₂ OH. HCl	
6. DFT Calculations	45		

1. General Methods:

NMR spectra were recorded with tetramethylsilane as the internal standard. TLC was performed on glass-backed silica plates. Column chromatography was performed using silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. ¹H NMR spectra were recorded at 400 MHz, and ¹³C NMR spectra were recorded at 100 MHz. Chemical shifts (δ) are reported in ppm downfield from CDCl₃(δ = 7.26 ppm) or DMSO-D6 (δ = 2.49 ppm) for ¹H NMR and relative to the central CDCl₃ resonance (δ = 77.0 ppm) or DMSO-D6 (δ = 39.5 ppm) for ¹³C NMR spectroscopy. Coupling constants (*J*) are given in Hz. Commercial grade solvents were dried and purified by standard procedures as specified in Purification of Laboratory Chemicals.

2. Experimental Section

Synthesis of benzaldehyde oxime 3a

Hydroxylamine hydrochloride (345 mg, 5 mmol) was stirred in 5 mL H₂O at room temperature and 1N NaOH was added at a rate such that the reaction pH value reached 12. Then2-benzylidenemalononitrile **1a** (154 mg, 1 mmol) was added to the resulting solution. The mixture was then stirred for 4 h. benzaldehyde oxime **3a** was isolated by flash chromatography on silica gel (10% ethyl acetate/petroleum ether).

benzaldehyde oxime 3a ¹H NMR (400 MHz, CDCl₃) δ 9.18 (s, 1H), 8.17 (s, 1H), 7.57 (m, 2H), 7.38 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 130.1, 128.8, 127.1, 127.0; ESI-HRMS: calcd. for C₇H₇NO +H 122.0599, found 122.0601.

General procedure for synthesis of multifunctionalized 2,3-dihydroisoxazoles (2a-2h).

Hydroxylamine hydrochloride (345 mg, 5 mmol) was stirred in 5 mL H₂O at room temperature and 1 N NaOH was added at a rate such that the reaction pH value reached 9~10. Then 2-benzylidenemalononitrile **1a** (154 mg, 1 mmol) was added into the resulting solution. The mixture was then stirred for 4 h. The pure 2,3-dihydroisoxazole **2a** was easily isolated by filtration, then washed with water.

5-amino-3-phenyl-2,3-dihydroisoxazole-4-carbonitrile 2a ¹H NMR (400 MHz, DMSO) δ 8.72 (s, 1H), 7.30 – 7.38 (m, 5H), 5.23 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (100 MHz, DMSO) δ 168.6, 128.5, 127.83, 126.8, 118.4, 109.5, 65.6, 54.9; IR (KBr) cm⁻¹ 3356, 3219, 3164, 2918, 2168, 1654, 1600, 1398, 1109, 810, 571; ESI-HRMS: calcd. for C₁₀H₉N₃O +Na 210.0638, found 210.0627.

5-amino-3-(*p*-tolyl)-2,3-dihydroisoxazole-4-carbonitrile 2b ¹H NMR (400 MHz, DMSO) δ 8.55 (s, 1H), 7.96 – 6.46 (m, 4H), 5.18 (d, *J* = 8.8 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 168.5, 129.4, 129.1, 129.1, 128.9, 128.9, 128.3, 127.8, 118.3, 54.9, 20.7; IR (KBr) cm⁻¹ 3363, 3220, 3157, 2924, 2179, 1644, 1599, 1400, 1107, 808, 577; ESI-HRMS: calcd. for C₁₁H₁₁N₃O +Na 224.0794, found 224.0797.

5-amino-3-(4-fluorophenyl)-2,3-dihydroisoxazole-4-carbonitrile 2c ¹H NMR (400 MHz, DMSO) δ 8.65 (s, 1H), 7.35 (d, *J* = 7.2 Hz, 4H), 7.19 (t, *J* = 8.7 Hz, 2H), 5.24 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO) δ 168.6, 118.2, 115.3, 115.3, 115.1,

109.5, 54.9; IR (KBr) cm⁻¹ 3349, 3266, 3225, 2932, 2178, 1639, 1575, 1404, 1116, 809, 799, 601; ESI-HRMS: calcd. for C₁₀H₈FN₃O +Na 228.0545, found 228.0547.

5-amino-3-(4-chlorophenyl)-2,3-dihydroisoxazole-4-carbonitrile 2d ¹H NMR (400 MHz, DMSO) δ 8.79 (s, 1H), 7.56 – 7.15 (m, 4H), 5.25 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO) 167.5, 131.3, 127.5, 127.5, 127.1, 127.0, 117.3, 53.7; IR (KBr) cm⁻¹ 3368, 3270, 3215, 2925, 2181, 1646, 1599, 1408, 1106, 819, 800, 555; ESI-HRMS: calcd. for C₁₀H₈ClN₃O +Na 244.0241, found 224.0248.

5-amino-3-(4-bromophenyl)-2,3-dihydroisoxazole-4-carbonitrile 2e ¹H NMR (400 MHz, DMSO) δ 8.78 (s, 1H), 7.72 – 7.07 (m, 4H), 5.23 (s, 1H); ¹³C NMR (100 MHz, DMSO) δ 168.5, 131.4, 130.9, 130.9, 130.2, 130.2, 128.9, 118.3, 54.7; IR (KBr) cm⁻¹ 3345, 3267, 3209, 2925, 2179, 1650, 1587, 1421, 1114, 820, 812, 563; ESI-HRMS: calcd. for C₁₀H₈BrN3O +Na 287.9743, found 287.9734.

5-amino-3-(4-(trifluoromethyl)phenyl)-2,3-dihydroisoxazole-4-carbonitrile 2f ¹H NMR (400 MHz, DMSO) δ 8.91 (s, 1H), 8.52 – 6.43 (m, 4H), 5.34 (d, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, DMSO) δ 168.5, 128.4, 127.2, 125.7, 125.5, 125.5, 123.0, 118.2, 64.7, 54.7; IR (KBr) cm⁻¹ 3356, 3245, 3209, 2925, 2173, 1651, 1623, 1412, 1137, 807, 756, 498; ESI-HRMS: calcd. for C₁₁H₈F₃N₃O +Na 278.0512, found 278.0510.

5-amino-3-(3-chlorophenyl)-2,3-dihydroisoxazole-4-carbonitrile 2g ¹H NMR (400 MHz, DMSO) δ 8.83 (s, 1H), 7.79 – 7.12 (m, 4H), 5.26 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (100 MHz, DMSO) δ 168.5, 133.1, 130.5, 127.6, 126.3, 118.2, 64.7, 54.6; IR (KBr) cm⁻¹ 3355, 3267, 3225, 2936, 2179, 1643, 1601, 1422, 1121, 809, 795, 601; ESI-HRMS: calcd. for C₁₀H₈CIN₃O +Na 244.0241, found 244.0252.

5-amino-3-(2-chlorophenyl)-2,3-dihydroisoxazole-4-carbonitrile 2h ¹H NMR (400 MHz, DMSO) δ 8.94 (s, 1H), 7.72 – 6.96 (m, 4H), 5.59 (d, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, DMSO) δ 168.9, 129.8, 129.5, 129.4, 127.7, 127.4, 118.0, 62.5, 53.3; IR (KBr) cm⁻¹ 3347, 3260, 3211, 2932, 2184, 1647, 1549, 1421, 1110, 823, 810, 521; ESI-HRMS: calcd. for C₁₀H₈ClN₃O +Na 244.0241, found 224.0248.

3. General procedure for synthesis of multifunctionalized 2,3-dihydroisoxazoles (2i-2q) and spiro-2,3-dihydro- isoxazoles (2r-2s).

Hydroxylamine hydrochloride (345 mg, 5 mmol) was stirred in 5 mL solvent (H₂O:THF = 1:1) at room temperature, then 1 N NaOH was added at a rate such that the reaction pH value reached 9~10. α , α -Dicyanoolefin **1i** (168 mg, 1 mmol) was added into the resulting solution.. The mixture was then stirred for 14 h. The mixture was extracted with EtOAc (10 mL), dried with anhydrous sodium sulfate. The solvent was removed and flash chromatography on silica gel (10% ethyl acetate/petroleum ether) gave **2i** as a pale yellow solid.

5-amino-3-methyl-3-phenyl-2,3-dihydroisoxazole-4-carbonitrile 2i ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.7 Hz, 2H), 7.48 – 7.14 (m, 3H), 6.61 (s, 1H), 5.12 (s, 2H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 129.3, 128.6, 127.8, 126.3, 124.7, 117.6, 106.6, 96.5, 80.2, 26.0; IR (KBr) cm⁻¹ 3446, 3428, 3179, 2981, 2179, 1662, 1406, 1049, 818; ESI-HRMS: calcd. for C₁₁H₁₁N₃O +Na 224.0794, found 224.0795.

5-amino-3-methyl-3-(*p***-tolyl)-2,3-dihydroisoxazole-4-carbonitrile 2j** ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.7 Hz, 2H), 7.18 (d, *J* = 7.2 Hz, 2H), 6.59 (s, 1H), 5.20 (s, 2H), 2.34 (s, 3H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 129.2, 126.3, 124.7, 123.4, 121.6, 117.6, 83.2, 25.8, 20.9; IR (KBr) cm⁻¹ 3449, 3428, 3176, 2980, 2187, 1671, 145, 1056, 817; ESI-HRMS: calcd. for C₁₂H₁₃N₃O +Na 238.0951, found 238.0946.

5-amino-3-(4-methoxyphenyl)-3-methyl-2,3-dihydroisoxazole-4-carbonitrile 2k ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 6.54 (s, 1H), 5.05 (s, 2H), 3.81 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 125.9, 118.2, 118.0, 113.3, 113.0, 54.9, 25.6; IR (KBr) cm⁻¹ 3451, 3430, 3178, 2982, 2189, 1673, 1407, 1056, 819; ESI-HRMS: calcd. for C₁₂H₁₃N₃O₂ +Na 254.0901, found 254.0899.

5-amino-3-(4-chlorophenyl)-3-methyl-2,3-dihydroisoxazole-4-carbonitrile 21 ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.59 (s, 1H), 5.10 (s, 2H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 142.9, 129.0, 128.9, 128.8, 120.6, 117.0, 85.1, 25.9; IR (KBr) cm⁻¹ 3433, 3317, 3173, 2977, 2167, 1645, 1401, 1004, 811; ESI-HRMS: calcd. for C₁₁H₁₀ClN₃O +Na 258.0405, found

258.0405.

5-amino-3-(4-bromophenyl)-3-methyl-2,3-dihydroisoxazole-4-carbonitrile 2m ¹H NMR (400 MHz, CDCl₃) δ 7.48 (q, *J* = 8.7 Hz, 4H), 6.58 (s, 1H), 4.93 (s, 2H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 131.0, 126.7, 126.7, 126.6, 126.6, 126.5, 117.9, 77.3, 77.0, 76.6, 60.7, 25.3; IR (KBr) cm⁻¹ 3438, 3331, 3163, 2953, 2169, 1653, 1410, 1007, 821; ESI-HRMS: calcd. for C₁₁H₁₀BrN₃O +Na 301.9900, found 301.9897.

5-amino-3-(3-chlorophenyl)-3-methyl-2,3-dihydroisoxazole-4-carbonitrile 2n ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.45 (d, *J* = 7.3 Hz, 1H), 7.33-7.29 (m, 2H), 6.61 (s, 1H), 5.12 (s, 2H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 129.9, 127.6, 124.9, 117.1, 109.9, 25.8; IR (KBr) cm⁻¹ 3436, 3325, 3178, 2977, 2172, 1650, 1406, 1009, 815; ESI-HRMS: calcd. for C₁₁H₁₀ClN₃O + Na 258.0405, found 258.0403.

5-amino-3-ethyl-3-phenyl-2,3-dihydroisoxazole-4-carbonitrile 2o ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.30 (d, *J* = 6.9 Hz, 1H), 6.69 (s, 1H), 5.24 (s, 2H), 2.08-1.95 (m, 2H), 0.94 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 128.5, 128.1, 127.4, 126.0, 125.6, 118.2, 32.4, 8.6; IR (KBr) cm⁻¹ 3446, 3425, 3173, 2977, 2184, 1668, 1402, 1051, 814; ESI-HRMS: calcd. for C₁₂H₁₃N₃O +Na 238.0951, found 238.0946.

5-amino-3-ethyl-3-(p-tolyl)-2,3-dihydroisoxazole-4-carbonitrile 2p ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 2H), 6.66 (s, 1H), 5.20 (s, 2H), 2.34 (s, 3H), 2.22 – 1.93 (m, 2H), 0.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 129.3, 126.6, 126.0, 125.7, 125.3, 118.2, 43.3, 20.9, 13.7, 8.6; IR (KBr) cm⁻¹ 3438, 3420, 3169, 2965, 2182, 1668, 1400, 1049, 807; ESI-HRMS: calcd. for C₁₃H₁₅N₃O +Na 252.1107, found 252.1106.

5-amino-3-(4-chlorophenyl)-3-ethyl-2,3-dihydroisoxazole-4-carbonitrile 2q ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.5 Hz, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 6.71 (s, 1H), 5.41 (s, 1H), 2.04-2.00 (m, 1H), 0.91 (t, J = 7.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 128.9, 128.58, 128.2, 127.1, 127.0, 126.9, 118.1, 14.0, 8.5; IR (KBr) cm⁻¹ 3451, 3432, 3173, 2980, 2187, 1670, 1412, 1058, 817; ESI-HRMS: calcd. for $C_{12}H_{12}CIN_3O + Na 272.0566$, found 272.0562.

3-amino-2-oxa-1-azaspiro[4.4]non-3-ene-4-carbonitrile 2r ¹H NMR (400 MHz, CDCl₃) δ 5.50 (d, *J* = 4.3 Hz, 2H), 1.92 – 1.46 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 185.7, 117.4, 75.7, 60.8, 37.6, 35.0, 24.7, 24.2; IR (KBr) cm⁻¹ 3457, 3418, 3161, 2966, 2119, 1600; ESI-HRMS: calcd. for C₈H₁₁N₃O + Na 188.0794, found 188.0786; **3-amino-2-oxa-1-azaspiro[4.5]dec-3-ene-4-carbonitrile 2s** ¹H NMR (400 MHz, CDCl₃) δ 5.15 (s, 2H), 1.82-1.53 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 117.8, 67.9, 63.3, 31.4, 28.4, 25.5, 24.8; IR (KBr) cm⁻¹ 3451, 3419, 3169, 2968, 2117, 1608; ESI-HRMS: calcd. for C₉H₁₃N₃O +Na 202.0951, found 202.0945.

General procedure for synthesis of 2-cyano-3-phenylacrylamides (4a-4h) *via* one-pot tandem reaction

Hydroxylamine hydrochloride (345 mg, 5 mmol) was stirred in 5 mL H₂O at room temperature, then 1 N NaOH was added at a rate such that the reaction pH value reached 9~10. Then 2-benzylidenemalononitrile **1a** (154 mg, 1 mmol) was added into the resulting solution. Hydrochloric acid (2 N HCl) was added at a rate such that the reaction pH value reached 1~3 after the mixture was then stirred for 4 h. The mixture was then stirred for another 30 min extracted with EtOAc (10 mL), and dried with anhydrous sodium sulfate. The solvent was removed and flash chromatography on silica gel (10% ethyl acetate/petroleum ether) gave 4a as a white solid.

2-cyano-3-phenylacrylamide 4a ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 25.1 Hz, 1H), 7.95 (d, J = 7.0 Hz, 2H), 7.55-7.50 (m, 3H), 6.56 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 153.8, 132.9, 131.4, 130.6, 116.8, 103.2; IR (KBr) cm⁻¹ 3388, 3156, 2219, 1693, 1590, 1374, 1182, 815, 610, 459; ESI-HRMS: calcd. for C₁₀H₈N₂O +Na 195.0529, found 195.0530.

2-cyano-3-(*p*-tolyl)acrylamide 4b ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.86 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 6.40 (s, 2H); ¹³C NMR (100 MHz, DMSO) δ 167., 153.9, 144.3, 130.9, 130.9, 130.0, 129.9, 129.9, 128.9, 117.2, 21.8; IR (KBr) cm⁻¹ 3390, 3159, 2222, 1698, 1596, 1377, 1185, 821, 616, 461; ESI-HRMS: calcd. for C₁₁H₁₀N₂O + Na 209.0686, found 209.0690.

2-cyano-3-(4-fluorophenyl)acrylamide 4c¹H NMR (400 MHz, CDCl₃) δ 8.31 (s,

1H), 8.09 - 7.87 (m, 2H), 7.20 (t, J = 8.6 Hz, 2H), 6.18 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 161.7, 161.1, 152.5, 133.3, 133.2, 127.9, 122.6, 116.9, 116.8, 116.8, 116.6, 116.6; IR (KBr) cm⁻¹ 3439, 3137, 2190, 1693, 1583, 1329, 809, 447; ESI-HRMS: calcd. for C₁₀H₇FN₂O +Na 213.0435., found 213.0436.

3-(4-chlorophenyl)-2-cyanoacrylamide 4d ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.90 (d, J = 10.7 Hz, 2H), 7.49 (d, J = 6.8 Hz, 2H), 6.33 (s, 1H), 5.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 150.0, 137.5, 130.9, 130.9, 129.6, 128.6, 128.6, 128.6, 115.7, 104.7; IR (KBr) cm⁻¹ 3451, 3149, 2209, 1701, 1600, 1396, 819, 460; ESI-HRMS: calcd. for C₁₀H₇ClN₂O +Na 229.0139., found 229.0139.

3-(4-bromophenyl)-2-cyanoacrylamide 4e ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.66 (d, *J* = 8.6 Hz, 2H), 6.32 (s, 1H), 5.75 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 150.2, 131.7, 131.0, 130.0, 126.3, 115.8, 104.8; IR (KBr) cm⁻¹ 3449, 3146, 2204, 1700, 1599, 1392, 821, 451; ESI-HRMS: calcd. for C₁₀H₇Br N₂O +Na 272.9634., found 272.9638.

2-cyano-3-(4-(trifluoromethyl)phenyl)acrylamide 4f ¹H NMR (400 MHz, CDCl₃) δ 8.40 – 8.35 (m, 1H), 8.04 (d, *J* = 8.2 Hz, 2H), 7.76 (d, *J* = 8.3 Hz, 2H), 6.50 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 152.0, 130.7, 126.2, 126.2, 126.1, 126.1, 116.2, 105.9; IR (KBr) cm⁻¹ 3447, 3145, 2204, 1707, 1593, 1392, 819, 452; ESI-HRMS: calcd. for C₁₁H₇F₃N₂O +Na 263.0403, found 263.0405.

3-(3-chlorophenyl)-2-cyanoacrylamide 4g ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.97 – 7.78 (m, 2H), 7.49 (dt, J = 15.7, 8.0 Hz, 2H), 6.38 (s, 1H), 6.05 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 152.3, 135.3, 133.1, 132.8, 130.5, 130.4, 130.4, 128.5, 116.4, 104.5; IR (KBr) cm⁻¹ 3449, 3147, 2207, 1695, 1598, 1388, 821, 451; ESI-HRMS: calcd. for C₁₀H₇CIN₂O +Na 229.0140, found 229.0142;

3-(2-chlorophenyl)-2-cyanoacrylamide 4h ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.14 (dd, J = 7.8, 1.4 Hz, 1H), 7.60 – 7.37 (m, 4H), 6.38 (s, 1H), 6.17 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 150.4, 150.4, 136.4, 133.4, 133.4, 130.4, 130.3, 130.0, 129.4, 129.4, 127.3, 127.3, 116.3; IR (KBr) cm⁻¹ 3451, 3148, 2209, 1701, 1604, 1395, 823, 461; ESI-HRMS: calcd. for C₁₀H₇ClN₂O +Na 229.0140, found 229.0142. **2-cyano-3-(m-tolyl)acrylamide 4t** ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.85 – 7.68 (m, 2H), 7.45 – 7.29 (m, 2H), 6.68 (s, 1H), 6.49 (s, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 154.1, 139.0, 133.9, 131.4, 131.3, 129.0, 127.8, 117.0, 102.7, 21.2; IR (KBr) cm⁻¹ 3390, 3157, 2220, 1695, 1591, 1377, 1183, 817, 617, 464; ESI-HRMS: calcd. for C₁₁H₁₀N₂O +Na 209.0686, found 209.0689.

2-cyano-3-(3-methoxyphenyl)acrylamide 4u ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.53-7.49 (m, 2H), 7.42 (t, *J* = 7.9 Hz, 1H), 7.17 – 7.07 (m, 1H), 6.40 (s, 1H), 6.20 (s, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 159.8, 154.0, 132.6, 130.2, 130.2, 123.8, 119.7, 117.0, 114.4, 103.11, 55.4; IR (KBr) cm⁻¹ 3390, 3160, 2222, 1695, 1592, 1377, 1185, 818, 614, 462; ESI-HRMS: calcd. for C₁₁H₁₀N₂O₂ +Na 225.0635, found 225.0636.

General procedure for synthesis of 2-cyanobut-2-enoic acid derivatives 5 *via* one-pot tandem reaction

Hydroxylamine hydrochloride (345 mg, 5 mmol) was stirred in 5 mL solvent ($H_2O:THF = 1:1$) at room temperature and 1 N NaOH was added at a rate such that the reaction pH value reached 9~10. Then 1 mmol of **1s** was added into the resulting solution. Hydrochloric acid (2 N HCl) was added at a rate such that the reaction pH value reached 1~3 after the mixture was stirred for 14 h. The mixture was then stirred for another 1 h, extracted with EtOAc (10 mL), and dried with anhydrous sodium sulfate. The solvent was removed and flash chromatography on silica gel (10% ethyl acetate/petroleum ether) gave **5j** as a white solid.

2-cyano-3-(p-tolyl)but-2-enoic acid 5j ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 7.53 (d, *J* = 8.1 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 2.38 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 156.3, 139.7, 134.1, 129.6, 126.4, 129.6, 126.4, 21.7, 12.8; IR (KBr) cm⁻¹ 3451, 3172, 2283, 1737, 1602, 1381, 1191, 878, 673, 509.ESI-HRMS: calcd. for C₁₂H₁₁NO₂ +Na 224.0682, found 224.0692;

2-cyano-3-phenylpent-2-enoic acid 50 ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 7.71 – 7.53 (m, 2H), 7.39 (dd, J = 5.1, 1.8 Hz, 3H), 2.84 (q, J = 7.6 Hz, 2H), 1.18 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 161.2, 135.9, 129.6, 129.0, 126.7, 126.7, 20.2, 11.3; IR (KBr) cm⁻¹ 3472, 3210, 2327, 1763, 1609, 1451, 1201,901, 667, 518; ESI-HRMS: calcd. for C₁₂H₁₁NO₂ +Na 224.0682, found 224.0685. **2-cyano-2-cyclohexylideneacetic acid 5s** ¹H NMR (400 MHz, CDCl₃) δ 10.51 (s, 1H), 3.07 – 2.96 (m, 1H), 2.76 – 2.63 (m, 1H), 2.55 (t, *J* = 6.0 Hz, 1H), 2.26 (t, *J* = 6.1 Hz, 1H), 1.91 – 1.54 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 181.9, 167.1, 116.2, 102.5, 66.1, 37.4, 33.8, 30.6, 27.1, 27.0, 25.0; IR (KBr) cm⁻¹ 3420, 3208, 2278, 1701, 1609, 1387; ESI-HRMS: calcd. for C₉H₁₁NO₂ +Na 188.0682, found 188.0692.

3. ¹H NMR, ¹³CNMR

2b

2c

2d

2f

2i

4. X-ray crystal data of compound 4a

Figure 1. X-ray Crystal Structure of 4a.

Crystal data for **4a** C₁₀H₈N₂O (172.18), Monoclinic, space group P2(1)/n, a = 10.3225(7) Å, b = 11.2447(8) Å, c = 16.7681(11) Å, U = 1776.5(2) Å³, Z = 8, specimen 0.492 x 0.453 x 0.259 mm³, T = 296(2) K, SIEMENS P4 diffractometer, absorption coefficient 0.086 mm⁻¹, reflections collected 26305, independent reflections 4096 [R(int) = 0.0497], refinement by Full-matrix least-squares on F^2 , data/restraints/parameters 4096 / 0 / 235, goodness-of-fit on $F^2 = 1.010$, final *R* indices [$I > 2\sigma(I)$] R1 = 0.0483, wR2 = 0.1209, *R* indices (all data) R1 = 0.1016, wR2 = 0.1477, largest diff. peak and hole 0.129 and -0.175 e Å⁻³.

5. Photo of the reactions of 1a (15.4 g, 0.1 mol) with NH₂OH. HCl

Figure 2 Photo of the reactions of 1a with NH₂OH. HCl

A pale yellow precipitate was formed when the reactions were carried out at room temperature for 4 h and 2,3-dihydroisoxazoles were easily isolated by filtration, then washed with water to give the pure 2,3-dihydroisoxazoles in excellent yields.

6. DFT Calculations

All calculations were performed based on the density functional theory, using the program package of DMol³ in the Materials Studio of Accelrys Inc. In DMol₃ the physical wave functions were expanded in terms of the doubled numerical basis set with p-polarization function for hydrogen and d-polarization functions for other atoms (DNP). The generalized gradient corrected functional by Perdew andWang (PW91) was employed. The tolerances of energy, maximum force, and displacement convergence are 10^{-5} Ha, 2×10^{-3} Ha/Å, and 5×10^{-3} Å, respectively. The real space cutoff of atomic orbital was set at 3.7 Å, and a Fermi smearing of 0.01 Ha was used to count the orbital occupancy. The linear synchronous transit/quadratic synchronous transit (LST/QST) method at the same level was used for the calculation of reaction transition states. The activation barrier was defined as the total energy difference between the transition state and the corresponding initial stable structure. Frequency analysis was carried out to ensure that there is no imaginary frequency for the stable structures, while there is a single imaginary one for the TS structure.

N-O cleavage

Figure 2a Path A

C-N cleavage

Figure 2b Path B

Compared Path A with Path B, the activation energy of Path A (N-O cleavage) is lower than Path the activation energy of Path B (C-N cleavage). Therefore, the Path A is more preferable than Path B.