Supporting Information

Perfluoroalkylation in Flow Microreactors: Generation of Perfluoroalkyllithiums in the Presence and Absence of Electrophiles

Aiichiro Nagaki, Shinya Tokuoka, Shigeyuki Yamada, Yutaka Tomida, Kojun Oshiro, Hideki Amii, and Jun-ichi Yoshida

Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 (Japan), E-mail: yoshida@sbchem.kyoto-u.ac.jp Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University

General

GC analysis was performed on a SHIMADZU GC-2014 gas chromatograph equipped with a flame ionization detector using a fused silica capillary column (column, CBP1; 0.22 mm x 25 m). ¹H NMR spectra were recorded on Varian MERCURYplus-400 (400 MHz) spectrometer with Me₄Si or CDCl₃ as a standard in CDCl₃ unless otherwise noted. ¹³C NMR spectra were recorded on JEOL ECA-600P (150 MHz) spectrometer with CDCl₃ as a standard in CDCl₃ unless otherwise noted. ¹⁹F NMR spectra were recorded on Varian MERCURYplus-400 (377 MHz) spectrometer with trifluorotoluene as a standard in CDCl₃ unless otherwise noted. ¹⁹F NMR spectra were recorded on JMS-SX102A spectrometer. APCI mass spectra were recorded on EXACTIVE spectrometer. FT-IR spectrum was recorded on Japan Analytical Industry LC-908 and LC-9201. Diethyl ether was purchased from Kanto Chemical Co., Inc. as a dry solvent and used without further purification. Perfluoroalkyl halide, benzaldehyde, acetophenone, phenyl isocyanate, *n*-butyl isocyanate, chlorotributylstanane, trimethylsilyl triflate, methanol, MeLi were commercially available. All solutions used for flow reactions were prepared under the argon atmosphere using dry solvents.

Stainless steel (SUS304) T-shaped micromixer with inner diameter of 250 and 500 μ m were manufactured by Sanko Seiki Co., Inc. Stainless steel (SUS316) microtube reactors with inner diameter of 1000 μ m was purchased from GL Sciences. The micromixer and microtube reactors were connected with stainless steel fittings (GL Sciences, 1/16 OUW). The microflow system was dipped in a cooling bath to control the temperature. Solutions were introduced to the flow microreactor system using syringe pumps, Harvard Model 11, equipped with gastight syringes purchased from SGE.

Generation of Tridecafluorohexyllithium in the Presence of Benzaldehyde in a Macro Batch System

A solution of MeLi (0.42 M in Et₂O, 2.25 mL) was added dropwise to a mixture solution of tridecafluorohexyl iodide (0.10 M) and benzaldehyde (0.12 M) in Et₂O (9 mL) at T $^{\circ}$ C at regular pace for 1.0 min. After stirring for 1 min, methanol (neat, 3.0 mL) was added dropwise to this mixture at regular pace for 1.0 min. After stirring at T $^{\circ}$ C for 10 min, a cooling bath was removed. When the reaction mixture reached room temperature, the yield of 1-phenyl-2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptan-1-ol were determined by GC analysis using an internal standard (pentadecane). The results are summarized in Table S-1.

Table S-1. The reaction of tridecafluorohexyllithium with benzaldehyde using a conventional batch macro reactor.

T (°C)	yield (%)	
-78	67	
0	46	

Typical Procedure for Generation of Perfluoroalkyllithiums in the Presence of Electrophiles in the Flow Microreactor System

A flow microreactor system consisting of two T-shaped micromixers (**M1** and **M2**), two microtube reactors (**R1** and **R2**), and three tube pre-cooling units (**P1** (inner diameter $\phi = 1000 \ \mu m$, length L = 150 cm), **P2** ($\phi = 1000 \ \mu m$, L = 50 cm) and **P3** ($\phi = 1000 \ \mu m$, L = 50 cm)) was used. A mixing solution of CF₃(CF₂)_nCF₂X (0.10 M in Et₂O) and an electrophile (0.12 M in Et₂O) (flow rate: 9.0 mL min⁻¹) and a solution of MeLi (0.42 M in Et₂O) (flow rate: 2.25 mL min⁻¹) were introduced to **M1** ($\phi = 250 \ \mu m$) by syringe pumps. The resulting solution was passed through **R1** ($\phi = 1000 \ \mu m$, L = 50 cm) and was mixed with methanol (neat) (flow rate: 3.0 mL min⁻¹) in **M2** ($\phi = 500 \ \mu m$). The resulting solution was passed through **R2** ($\phi = 1000 \ \mu m$, L = 50 cm). After a steady state was reached, an aliquot of the product solution was collected for 30 s and was treated with sat. aqueous NH₄Cl solution. The reaction mixture was analyzed by GC using an internal standard.

1-Phenyl-2,2,3,3,3-pentafluoropropan-1-ol: Obtained in 84% yield (GC ${}^{t}R$ 11.6 min). The spectral data were identical to those reported in the literature.^[1]

1-Phenyl-2,2,3,3,4,4,4-heptafluorobutan-1-ol: Obtained in 80% yield (GC ${}^{t}R$ 12.4 min). The spectral data were identical to those reported in the literature.^[2]

1-Phenyl-2,2,3,3,4,4,5,5,5-nonafluoropentan-1-ol: Obtained in 85% yield (GC ${}^{t}R$ 13/4 min). The spectral data were identical to those reported in the literature.^[2]

1-Phenyl-2,2,3,3,4,4,5,5,6,6,6-undecafluorohexan-1-ol: Obtained in 86% yield (GC ^{*t*}*R* 14.3 min). After extraction, the crude product was purified by column chromatography (hexane/ethyl acetate = 20/1 to 10/1): ¹H NMR (400 MHz, CDCl₃) δ 2.51 (d, *J* = 5.2 Hz, 1H), 5.22 (dt, *J* = 5.6 Hz, *J* = 17.6 Hz, 1H), 7.41-7.49 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 72.3 (dd, *J* = 23.0 Hz, *J* = 28.0 Hz), 106.2-107.4 (m), 108.0-115.4 (m), 116.2-117.1 (m), 118.3 (t, *J* = 33.0 Hz), 120.3 (t, *J* = 33.0 Hz), 128.1, 128.6, 129.7, 134.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -81.2 (t, *J* = 10.2 Hz, 3F), -118.0-(-127.6) (m, 8F); HRMS (APCI) *m/z* calcd for C₁₂H₇F₁₁OCl ([M+Cl]⁻): 411.0004, found: 441.0014.

1-Phenyl-2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptan-1-ol: Obtained in 74% yield (GC ${}^{t}R$ 15.2 min). Isolated yield was 74% (purified by column chromatography (hexane/ethyl acetate = 10/1)). The spectral data were identical to those reported in the literature.^[2]

1-Methyl-1-phenyl-2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptan-1-ol: Obtained in 70% yield (GC ${}^{t}R$ 15.5 min). The spectral data were identical to those reported in the literature.^[3]

2,2,3,3,4,4,5,5,6,6,7,7,7-Tridecafluoro-*N***-phenylheptanamide:** Obtained in 79% yield (GC ^{*T*}*R* 16.1 min). After extraction, the crude product was purified by column chromatography (hexane/ethyl acetate = 5/1): ¹H NMR (400 MHz, CDCl₃) δ 7,24-7.28 (m, 1H), 7.38-7.43 (m, 2H), 7.55-7.58 (m, 2H), 7.15-7.22 (m, 3H), 7.91 (brs, 1H); ¹³C NMR (150 MHz, DMSO) δ 105.5-112.7 (m), 113.8 (t, *J* = 33.0 Hz), 115.7 (t, *J* = 33.0 Hz), 117.6 (t, *J* = 33.0 Hz), 119.5 (t, *J* = 33.0 Hz), 121.3, 125.7, 128.7, 136,3, 155.1 (t, *J* = 25.8 Hz); ¹⁹F NMR (377 MHz, DMSO) δ -82.3 (t, *J* = 10.2 MHz, 3F), -120.0-(-127.8) (m, 10F); HRMS (EI) *m*/*z* calcd for C₁₃H₆ONF₁₃ (M⁺): 439.0242, found: 270.439.0233.

2,2,3,3,4,4,5,5,6,6,7,7,7-Tridecafluoro-N-n-butylheptanamide: Obtained in 86% yield (GC

^{*t*}*R* 12.5 min). After extraction, the crude product was purified by column chromatography (hexane/ethyl acetate = 10/1 to 5/1): ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, *J* = 7.2 Hz, 3H), 1.32-1.42 (m, 2H), 1.53-1.61 (m, 2H), 3.39 (dt, *J* = 6.4 Hz, *J* = 6.4 Hz, 3H), 6.30 (brs, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 13.1, 19.8, 30.8, 40.0, 106.2-113.2 (m), 114.4 (t, *J* = 33.0 Hz), 116.3 (t, *J* = 33.0 Hz), 118.2 (t, *J* = 33.0 Hz), 120.1 (t, *J* = 33.0 Hz), 158.1 (t, *J* = 25.9 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -81.2 (t, *J* = 10.2 Hz, 3F), 120.1-(-236.7) (m, 10F); HRMS (APCI) m/z calcd for C₁₁H₁₁NOF₁₃ ([MH]⁺): 420.0628, found: 420.0618.

Trimethyl(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)silane: Obtained in 30% yield (GC ^{*t*}*R* 4.3 min). After extraction, the crude product was purified by GPC: ¹H NMR (400 MHz, CDCl₃) δ 0.30 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ -4.8, 106.5-107.8 (m), 108.3-114.1 (m), 114.6-115.6 (m), 116.7 (t, *J* = 33.0 Hz), 118.6 (t, *J* = 33.0 Hz), 120.5 (t, *J* = 33.0 Hz), 121.6 (t, *J* = 44.5 Hz), 123.4 (t, *J* = 44.5 Hz), 125.2 (t, *J* = 46.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -81.3 (t, *J* = 10.2 Hz, 3F), -119.4-(-128.9) (m, 10F).

Tri-*n*-**butyl**(1,1,2,2,3,3,4,4,5,5,6,6,6-**tridecafluorohexyl**)**stannane:** Obtained in 2% yield (GC ^{*t*}*R* 19.9 min). The spectral data were identical to those reported in the literature.^[4]

The I-Li Exchange Reaction of Tridecafluorohexyl Iodide Followed by Reaction with Chlorotributylstannane in the Flow Microreactor System

A flow microreactor system consisting of three T-shaped micromixers (**M1**, **M2** and **M3**), three microtube reactors (**R1**, **R2** and **R3**), and four tube pre-cooling units (**P1** (inner diameter $\phi = 1000 \ \mu\text{m}$, length L = 150 cm), **P2** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm) and **P3** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm), **P4** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm)) was used. A solution of tridecafluorohexyl iodide (0.10 M in Et₂O) (flow rate: 9.0 mL min⁻¹) and a solution of MeLi (0.48 M in Et₂O) (flow rate: 2.25 mL min⁻¹) were introduced to **M1** ($\phi = 250 \ \mu\text{m}$) by syringe pumps. The resulting solution was passed through **R1** and was mixed with a solution of chlorotributylstanane (0.84 M in Et₂O) (flow rate: 1.5 mL min⁻¹) in **M2** ($\phi = 250 \ \mu\text{m}$). The resulting solution was passed through **R2** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm) and was mixed with methanol (neat) (flow rate: 2.0 mL min⁻¹) in **M3** ($\phi = 500 \ \mu\text{m}$). The resulting solution was passed through **R3** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm). After a steady state was reached, an aliquot of the product solution was collected for 30 s and was treated with sat. aqueous NaHCO₃ solution. The reaction mixture was analyzed by GC using an internal standard. The results are summarized in Table S-1.

Table S-1.	. The I-Li	exchange	reaction of	f tridecaf	luorohexy	l iodide	followed	by	reaction	with
chlorotribu	ıtylstanna	te in flow	microreacto	or system	IS.			•		

2	2			
inner diameter of R1 (μm)	length of $\mathbf{R1}$ (cm)	$t^{\mathbf{K}_{1}}(\mathbf{s})$	$T(^{\circ}C)$	yield (%)
1000	3.5	0.147	-48	47
1000	6.0	0.251		31
1000	12.5	0.524		8
1000	25	1.05		2
1000	50	2.09		0
1000	100	4.19		0
1000	200	8.38		0
1000	3.5	0.147	-58	72
1000	6.0	0.251		68

1000	12.5	0.524		56
1000	25	1.05		31
1000	50	2.09		11
1000	100	4.19		4
1000	200	8.38		2
1000	3.5	0.147	-68	87
1000	6.0	0.251		85
1000	12.5	0.524		84
1000	25	1.05		72
1000	50	2.09		55
1000	100	4.19		23
1000	200	8.38		15
1000	3.5	0.147	-78	75
1000	6.0	0.251		80
1000	12.5	0.524		80
1000	25	1.05		77
1000	50	2.09		71
1000	100	4.19		63
1000	200	8.38		41

A flow microreactor system consisting of three T-shaped micromixers (**M1**, **M2** and **M3**), three microtube reactors (**R1**, **R2** and **R3**), and four tube pre-cooling units (**P1** (inner diameter $\phi = 1000 \ \mu\text{m}$, length L = 150 cm), **P2** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm) and **P3** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm), **P4** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm)) was used. A solution of perfluoroalkyl halide (0.10 M in Et₂O) (flow rate: 9.0 mL min⁻¹) and a solution of MeLi (0.48 M in Et₂O) (flow rate: 2.25 mL min⁻¹) were introduced to **M1** ($\phi = 250 \ \mu\text{m}$) by syringe pumps. The resulting solution was passed through **R1** and was mixed with a solution of an electrophile (0.84 M in Et₂O) (flow rate: 1.5 mL min⁻¹) in **M2** ($\phi = 250 \ \mu\text{m}$). The resulting solution was passed through **R2** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm) and was quenched by mixing with methanol (flow rate: 2.0 mL min⁻¹) in **M3** ($\phi = 500 \ \mu\text{m}$). The resulting solution was passed through **R3** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm). After a steady state was reached, an aliquot of the product solution was collected for 30 s and was treated with sat. aqueous NaHCO₃ solution. The reaction mixture was analyzed by GC using an internal standard.

Tri-*n*-**butyl**(1,1,2,2,2-pentafluroroethyl)stannane: Obtained in 98% yield (GC ${}^{t}R$ 18.0 min). The spectral data were identical to those commercially available Tributyl(perfluoroethyl)stannane.

Tri-*n*-butyl(1,1,2,2,3,3,3-heptafluoroopropyl)stannane: Obtained in 70% yield (GC ${}^{t}R$ 18.2 min). The spectral data were identical to those reported in the literature.^[5]

Tri-*n*-butyl(1,1,2,2,3,3,4,4,4-nonafluorobutyl)stannane: Obtained in 84% yield (GC ${}^{t}R$ 18.7 min). The spectral data were identical to those reported in the literature.^[4]

Tri-n-butyl(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)stannane: Obtained in 90% yield (GC *R* 19.2 min). After extraction, the crude product was purified by GPC: ¹H NMR (400 MHz, CDCl₃) δ 0.30 (s, 9H), 0.92 (t, *J* = 7.4 Hz, 3H), 1.10-1.39 (m, 4H), 1.46-1.67 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 10.7, 13.4, 27.3, 28.5, 106.4-107.6 (m), 108.2-115.1 (m), 116.8 (t, *J* = 33.0 Hz), 118.7 (t, *J* = 33.0 Hz), 120.6 (t, *J* = 33.0 Hz), 127.7-133.2 (m); ¹⁹F NMR (377 MHz, CDCl₃) δ -81.3 (t, *J* = 10.2 Hz, 3F), -117.8-(-126.8) (m, 8F); ¹¹⁹Sn NMR (224 MHz, CDCl₃) δ 0.51 (t, *J* = 191 Hz); HRMS (EI) *m*/*z* calcd for C₁₃H₁₈F₁₁Sn ([M-Bu]⁺): 503.0255, for the formula for the second found: 503.0254.

[1] G. K. S. Prakash, Y. Wang, R. Mogi, J. Hu, T. Mathew, G. A. Olah, Org. Lett., 2010, 12, 2932.

[2] K. Mikami, T. Murase, Y. Itoh, J. Am. Chem. Soc., 2007, 129, 11686.
[3] G. Santini, M. L. Blanc, J. G. Riess, J. Organomet. Chem., 1977, 140, 1.
[4] J. E. Stanley, A. C. Swain, K. C. Molloy, D. W. H. Rankin, H. E. Robertson, B. F. Johnston, Appl. Organometal. Chem., 2005, 19, 644.
[5] D. J. Burton, V. Jairaj, J. Fluorine Chem., 2005, 126, 797.

Ы

¹H NMR spectrum of 1-phenyl-2,2,3,3,4,4,5,5,6,6,6-undecafluorohexan-1-ol

¹³C NMR spectrum of 1-phenyl-2,2,3,3,4,4,5,5,6,6,6-undecafluorohexan-1-ol

¹³C NMR spectrum of 1-phenyl-2,2,3,3,4,4,5,5,6,6,6-undecafluorohexan-1-ol

¹⁹F NMR spectrum of 1-phenyl-2,2,3,3,4,4,5,5,6,6,6-undecafluorohexan-1-ol

52 471.2643 509.2490 577.3479 621.1288

650

600

550

500

APCI mass spectrum of 1-phenyl-2,2,3,3,4,4,5,5,6,6,6-undecafluorohexan-1-ol

¹H NMR spectrum of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-*N*-phenylheptanamide

¹³C NMR spectrum of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-*N*-phenylheptanamide

¹³C NMR spectrum of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-*N*-phenylheptanamide

¹⁹F NMR spectrum of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-*N*-phenylheptanamide

EI mass spectrum of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-N-phenylheptanamide

¹³C NMR spectrum of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-*N-n*-butylheptanamide

¹³C NMR spectrum of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-*N-n*-butylheptanamide

¹⁹F NMR spectrum of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-*N-n*-butylheptanamide

APCI mass spectrum of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-N-n-butylheptanamide

¹H NMR spectrum of trimethyl(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)silane

¹³C NMR spectrum of trimethyl(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)silane

¹³C NMR spectrum of trimethyl(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)silane

FT-IR spectrum of trimethyl(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)silane

¹³C NMR spectrum of tri-*n*-butyl(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)stannane

¹³C NMR spectrum of tri-*n*-butyl(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)stannane

¹⁹F NMR spectrum of tri-*n*-butyl(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)stannane

¹¹⁹Sn NMR spectrum of tri-*n*-butyl(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)stannane

