Supporting information

Effect of capping groups at the *N*-and *C*-termini on the conformational preference of α , β -peptoids.

Emiliana De Santis,^a Thomas Hjelmgaard,^{b,c} Cécile Caumes,^{b,c} Sophie Faure,^{b,c} Bruce D. Alexander,^d Simon J. Holder,^e Giuliano Siligardi,^f Claude Taillefumier,^{b,c*} Alison A. Edwards.^{a*}

^a Medway School of Pharmacy, Universities of Kent and Greenwich at Medway, Central Avenue, Chatham Maritime, Kent, ME4 4TB, United Kingdom. Fax: +44 (0)1634 883927; Tel: +44 (0)1634 202947; <u>a.a.edwards@kent.ac.uk</u>

^bClermont Université, Université Blaise Pascal, Laboratoire SEESIB, BP 10448, F-63000 Clermont-Ferrand

^cCNRS, UMR 6504, Laboratoire SEESIB, F-63177 AUBIERE cedex, France. Fax: +33 (0)4 73 40 77 17; Tel: +33 (0)4 73 40 54 27; E-mail: <u>claude.taillefumier@univ-bpclermont.fr</u>

^dSchool of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, United Kingdom

^e Functional materials Group, School of Physical Sciences, University of Kent, Canterbury, CN2 7NZ, United Kingdom

^fDiamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom

Contents

C	D studies
	Fig. S1 Molar ellipticity spectra of dimers in MeCN by ECD. All spectra were recorded at 20 °C at known concentrations in the range $650 - 700 \mu$ M
	Fig. S2 ECD spectra of dimers in MeCN processed by the number of chromophores. MCE is mean chromophore ellipticity. All spectra were recorded at 20 °C at known concentrations in the range $650 - 700 \mu$ M.
	Table S1. Molar extinction coefficient (ε) of chromophores from literature. ¹
	Table S2 Processing strategy used to obtain MCE spectra. $[\theta]$ is molar ellipticity and (2n-1) is the number of peptoid linkages within the backbone
	Table S3 Position of positive and negative maxima for α , β -peptoid dimers in MeCN. All spectra were recorded at 20 °C at known concentrations in the range 650 – 700 μ M
	Fig. S3 MeCN/TFE solvent titration of 7 by ECD. All spectra were recorded at 20 °C at 699 μ M or 700 μ M.
	Fig. S4 ECD spectra of compounds (a) 7 , (b) 1 , (c) 10 , (d) 4 and (e) 13 . All spectra were recorded at 20 °C at known concentrations in the range 650 - 750 μM
	Table S4 H-bonding ability of functional groups at the <i>N</i> - and <i>C</i> -termini. ²⁻⁷

Fig. S5 Concentration studies of compounds (a) 4 and (b) 1 in MeCN by ECD. All spectra were recorded at 20 °C at the concentrations stated
Fig. S6 Molar ellipticity spectra of (a) tetramers and (b) hexamers by ECD in MeCN. All spectra were recorded at 20 °C at known concentrations in the range $499 - 500 \mu$ M for tetramers and $249 - 300 \mu$ M for hexamers.
Fig. S7 ECD spectra of hexamers in (a) MeCN, (b) TFE, (c) HFIP and (d) MeOH. All spectra were recorded at 20 °C at known concentrations in the range $326 - 430 \mu$ M
Fig. S8 ECD spectra of hexamers of compounds (a) 9, (b) 3, (c) 12, (d) 6 and (e) 15 in different solvents. All spectra were recorded at 20 °C at known concentrations in the range $326 - 430 \mu$ M 9
Fig. S9 ECD spectra of dimers of a series in MeCN. (a) Molar ellipticity spectra and (b) MRE spectra. All spectra were recorded at 20 °C at known concentrations in the range 299 - 700 μ M 9
Fig. S10 ECD spectra of dimers of b series in MeCN. (a) Molar ellipticity spectra and (b) MRE spectra. All spectra were recorded at 20 °C at known concentrations in the range $299 - 700 \mu$ M. 10
Fig. S11 ECD spectra of dimers of d series in MeCN. (a) Molar ellipticity spectra and (b) MRE spectra. All spectra were recorded at 20 °C at known concentrations in the range 200 - 700 μ M 10
Fig. S12 ECD spectra of dimers of e series in MeCN. (a) Molar ellipticity spectra and (b) MRE spectra. All spectra were recorded at 20 °C at known concentrations in the range $299 - 700 \mu$ M. 10
Table S5 Actual concentrations used for CD analyses. All data have been recorded on a ChirascanCD instrument (unless stated otherwise) by using a 0.01 cm path length cell.11
IR studies and molecular modelling12
Fig. S13 Molecular modelling (PM6) for α,β -peptoid dimers 1 , 4 and 13 12
Table S6. Assignment of IR bands for α,β -peptoid dimers 1 , 4 , 7 and 10 in CHCl ₃
Fig. S14 N-H bonding spectral region and for α , β -peptoid 1 in CHCl ₃ . All spectra were recorded at room temperature at known concentrations in the range 1.43 – 23 mM but data are only shown for the concentration range 5.75 – 23.0 mM.
Fig. S15 C=O bonding spectral region and for α , β -peptoid 1 in CHCl ₃ . All spectra were recorded at room temperature at known concentrations in the range 1.43 – 23 mM
Fig. S16 N-H bonding spectral region and for α , β -peptoid 1 in CHCl ₃ . All spectra were recorded at room temperature at known concentrations in the range 1.43 – 23 mM but data are only shown for
the concentration range 5.75 – 23.0 mM
the concentration range $5.75 - 23.0 \text{ mM}$
the concentration range $5.75 - 23.0 \text{ mM}$

Table S7. Actual concentration used for IR of α , β -peptoid dimers and hexamers in CHCl ₃ . All spectra have been recorded by using a KBr cell of 0.1 cm pathlength	16
Chemical structure of compounds 1a, 2a, 4a, 5a.	17
Fig. S19 Chemical structure of intermediates 1a, 2a, 4a and 5a	17
NMR studies	17
Table S8. Cis/trans ratio for α , β -peptoid dimers in CDCl ₃ and CD ₃ CN by NMR	17
Table S9. K _{cis/trans} for α , β -peptoid 1 , 2 and 3 in CD ₃ CN calculated by ¹ H NMR	18
1 H (400 MHz) and 13 C (100.9 MHz) NMR spectra of compounds 1-20, 1a, 2a, 4a and 5a	19
Analytical HPLC analysis of peptoids	51
References	55

CD studies

Fig. S1 Molar ellipticity spectra of dimers in MeCN by ECD. All spectra were recorded at 20 °C at known concentrations in the range $650 - 700 \,\mu\text{M}$.

Fig. S2 ECD spectra of dimers in MeCN processed by the number of chromophores. MCE is mean chromophore ellipticity. All spectra were recorded at 20 °C at known concentrations in the range 650 $-700 \,\mu\text{M}$.

Mean chromophore ellipticity (MCE) spectra were obtained by dividing the molar ellipticity spectra by the number of chromophores that should contribute to the far UV region *i.e.* not only the tertiary amide in the backbone. Therefore, this took into account the tertiary amide in the backbone, the carbamate in the protecting group (Boc) and the free amine when the *N*-terminus was unprotected. This was based on literature values identified for the molar extinction coefficient (ϵ) (reference S1) (Table S1). The ester, the acid and the terminal amide were not considered due to their contribution to the far UV region being negligible. When doing this calculation it was found that by considering these three chromophores, all the compounds would have been divided by the same number. For this reason it was decided to repeat the calculation without considering the amine chromophore which was the least intense of the three (Table S2). However, it is of note that the values of ϵ reported for the isolated chromophores are an approximation obtained from the value of the simplest molecule containing the functional group considered. In addition to this MCE data were not corrected for the relative contribution of the isolated chromophore *i.e.* all the contributing chromophores were assumed to have the same contribution (same ϵ value). Due to these approximations, processing by MCE is arbitrary.

Despite this, the processing is still adequate to show that additional chromophores would change the spectral intensity but not the spectral shape. This confirms that the difference observed in the MRE spectra (Figure 2) was due to the effect of protecting groups on the conformational preference and not simply to the presence of the additional chromophores.

Isolated chromophore	Reference compound	Typical wavelength	ε (liter mol ⁻¹ cm ⁻¹)
Tertiary amide	CH ₃ CON(CH ₃) ₂	218	1000
•	CH ₃ CON(CH ₃)(Ph)	224	7870
Primary amide	CH ₃ CONH ₂	205	162
•	HCONH ₂	205	158
Ester	CH ₃ COOEt	209	72
Carbamate	NO ₂ NHCOOC ₂ H ₅	215	7943
Carboxyl	CH ₃ COOH	208	32
Secondary amine (CH ₃) ₂ NH		191	3236

Table S1. Molar extinction coefficient (ε) of chromophores from literature.¹

R^{1} $(N \rightarrow N \rightarrow R^{2})$ R^{2} R^{2} R^{2}					
Series	\mathbf{R}^{1}	\mathbf{R}^2	Processing		
а	Н	OtBu	$[\theta]/[(2n-1)+0]$		
b	Н	NH_2	$[\theta]/[(2n-1)+0]$		
c	Boc	OtBu	$[\theta]/[(2n-1)+1]$		
d	Boc	NH_2	$[\theta]/[(2n-1)+1]$		
e	TFA·H	OH	$[\theta]/[(2n-1)+0]$		

Table S2 Processing strategy used to obtain MCE spectra. $[\theta]$ is molar ellipticity and (2n-1) is the number of peptoid linkages within the backbone.

Dimer	λ _{max} peak I	λ _{max} peak II	λ _{max} peak III
1	184 (+ve)	194 (-ve)	219 (-ve)
4	184 (+ve)	194 (-ve)	219 (-ve)
7	180 (+ve)	200 (-ve)	217 (-ve)
10	180 (+ve)	200 (-ve)	217 (-ve)
13	184 (+ve)	194 (-ve)	216 (-ve)

Table S3 Position of positive and negative maxima for α,β -peptoid dimers in MeCN. All spectra were recorded at 20 °C at known concentrations in the range 650 – 700 μ M.

Fig. S3 MeCN/TFE solvent titration of 7 by ECD. All spectra were recorded at 20 °C at 699 μ M or 700 μ M.

Fig. S4 ECD spectra of compounds (a) **7**, (b) **1**, (c) **10**, (d) **4** and (e) **13**. All spectra were recorded at 20 °C at known concentrations in the range 650 - 750 μM.

Functional group	α-value	β-value
3° Amide	0.00	0.69 - 0.78
Carbamate	0.00	0.6 - 0.65
2° Amine	0.08	0.6 - 0.7
Ester	0.00	0.47
1° Amide	0.54	0.66-0.69
Acid	0.55	0.45

Table S4 H-bonding ability of functional groups at the N- and C-termini.²⁻⁷

Fig. S5 Concentration studies of compounds (a) 4 and (b) 1 in MeCN by ECD. All spectra were recorded at 20 °C at the concentrations stated.

Fig. S6 Molar ellipticity spectra of (a) tetramers and (b) hexamers by ECD in MeCN. All spectra were recorded at 20 °C at known concentrations in the range $499 - 500 \mu$ M for tetramers and $249 - 300 \mu$ M for hexamers.

Fig. S7 ECD spectra of hexamers in (a) MeCN, (b) TFE, (c) HFIP and (d) MeOH. All spectra were recorded at 20 °C at known concentrations in the range 326 – 430 μM.

Fig. S8 ECD spectra of hexamers of compounds (a) 9, (b) 3, (c) 12, (d) 6 and (e) 15 in different solvents. All spectra were recorded at 20 °C at known concentrations in the range $326 - 430 \mu$ M.

Fig. S9 ECD spectra of dimers of a series in MeCN. (a) Molar ellipticity spectra and (b) MRE spectra. All spectra were recorded at 20 °C at known concentrations in the range 299 - 700 μ M.

Fig. S10 ECD spectra of dimers of **b series** in MeCN. (a) Molar ellipticity spectra and (b) MRE spectra. All spectra were recorded at 20 °C at known concentrations in the range $299 - 700 \,\mu$ M.

Fig. S11 ECD spectra of dimers of **d series** in MeCN. (a) Molar ellipticity spectra and (b) MRE spectra. All spectra were recorded at 20 °C at known concentrations in the range 200 - 700 μ M.

Fig. S12 ECD spectra of dimers of **e series** in MeCN. (a) Molar ellipticity spectra and (b) MRE spectra. All spectra were recorded at 20 °C at known concentrations in the range $299 - 700 \,\mu$ M.

Series	peptoid	MeCN	TFE	HFIP	MeOH
	1	700 µM	779 µM	718 µM	705 μΜ
а	2	500 µM	-	-	-
	3	299 μM 441 μM*	402 µM*	384 µM*	381 μM*
	4	700 µM	699 µM	750 µM	743 μM
b	5	500 µM	-	-	-
2	6 299 μM 365 μM ³	299 μM 365 μM*	399 µM*	371 μM*	366 µM*
	7	652 μM 2.3 mM* MeCN/TFE MeCN/TFE MeCN/TFE MeCN/TFE	700 μM 1:0 699 μM 3:1 699 μM 1:1 699 μM 1:3 699 μM	700 µM	734 µM
c		MeCN/TFE	0:1 700 μM		
c	8	499 μM 666 μM*	-	-	-
	9	249 μM 385 μM* 385 μM*	365 µM*	326 µM*	392 µM*
	17	188 µM*	-	-	-
	18	150 μM*	-	-	-
		700 µM	710 µM	727 µM	710 µM
đ	10	MeCN/TFE MeCN/TFE MeCN/TFE MeCN/TFE MeCN/TFE	1:0 700 μM 3:1 700 μM 1:1 700 μM 1:3 700 μM 0:1 698 μM	-	-
u	11	500 µM	-	-	-
	12	300 μM 430 μM*	415 μM*	405 µM*	429 µM*
	19	200 µM	-	-	-
	20	200 µM	-	-	-
	13	700 µM	703 µM	700 µM	724 µM
e	14	499 μΜ	-	-	-
	15	299 μM 352 μM*	370 µM*	399 µM*	382 μM*

* Data recorded by SRCD

Table S5 Actual concentrations used for CD analyses. All data have been recorded on a Chirascan CD instrument (unless stated otherwise) by using a 0.01 cm path length cell.

IR studies and molecular modelling

Fig. S13 Molecular modelling (PM6) for α,β -peptoid dimers 1, 4 and 13.

Compound	λ (cm ⁻¹)	Assignment
	3420	NH (amine) unassociated
1	3314	NH (amine) H-bonded
1	1714	C=O (ester)C=O (3° amide) H-bonded
	1636	
	3516	N-H (asym, 1° amide) unassociated
	~3485	N-H (sym, 1° amide) H-bonded
	3402	N-H (asym, 1° amide) unassociated
	3321	NH (amine) H-bonded and
4		N-H (asym, 1°amide) H-bonded
	1681	C=O (carbamate)
	1636	C=O (3° amide) H-bonded
	1600	δNH_2 H-bonded H-bonded
	1592	δ NH ₂ H-bonded unassociated
	1721	C=O (ester)
7	1688	C=O (carbamate)C=O (3° amide) unassociated
	1660	
	3526	N-H (asym, 1° amide) unassociated
	3485	N-H (sym, 1°amide) H-bonded
	3409	N-H (asym, 1° amide) unassociated
10	3344	N-H (asym, 1°amide) H-bonded
10	1687	C=O (carbamate)
	1656	C=O (3° amide)
	1601(sh)	δ NH ₂ H-bonded H-bonded
	1592	δ NH ₂ H-bonded unassociated

Table S6. Assignment of IR bands for α,β -peptoid dimers 1, 4, 7 and 10 in CHCl₃.

Fig. S14 N-H bonding spectral region and for α,β -peptoid 1 in CHCl₃. All spectra were recorded at room temperature at known concentrations in the range 1.43 - 23 mM but data are only shown for the concentration range 5.75 - 23.0 mM.

Fig. S15 C=O bonding spectral region and for α , β -peptoid **1** in CHCl₃. All spectra were recorded at room temperature at known concentrations in the range 1.43 – 23 mM.

Fig. S16 N-H bonding spectral region and for α,β -peptoid **4** in CHCl₃. All spectra were recorded at room temperature at known concentrations in the range 1.55 - 25.0 mM.

Fig. S17 C=O bonding spectral region and for α , β -peptoid **4** in CHCl₃. All spectra were recorded at room temperature at known concentrations in the range 1.55 – 25.0 mM.

Fig. S18. N-H bonding spectral region and for α,β -peptoid hexamers 3, 6, 9, 12 and 15 in CHCl₃. All spectra were recorded at room temperature at known concentrations in the range 2-6 mM.

Series	Peptoid	Concentration (mM)
0	1	23.7
a	3	5.6
h	4	25.1
0	6	5.8
C	7	10.0
C	9	5.6
d	10	21.3
u	12	5.1
0	13	21.0
e	15	5.1

Table S7. Actual concentration used for IR of α , β -peptoid dimers and hexamers in CHCl₃. All spectra have been recorded by using a KBr cell of 0.1 cm pathlength.

Chemical structure of compounds 1a, 2a, 4a, 5a.

Fig. S19 Chemical structure of intermediates 1a, 2a, 4a and 5a.

NMR studies

Structure	Peptoid	<i>cis/trans</i> ratio in CDCl ₃	<i>cis/trans</i> ratio in CD ₃ CN	
PhO O HN N O'Bu Ph	1	0.61 (38:62) (¹ H)	0.64 (39:61) (¹ H)	
Pho O HN NH ₂ Ph	4	0.43 (30:70) (¹ H) 0.39 (28:72) (HSQC)	0.89 (47:53) (¹ H)	
BocN N O'Bu Ph	7	inconclusive/overlapping signals	inconclusive/overlapping signals	
PhO O BocN N NH ₂	10	inconclusive/overlapping signals	inconclusive/overlapping signals	
TFA·HN N OH	13	0.69 (41:59) (¹ H)	0.85 (46:54) (¹ H)	

Table S8. *Cis/trans* ratio for α , β -peptoid dimers in CDCl₃ and CD₃CN at 298 K by NMR.

Structure	Peptoid	K _{cis/trans} (cis/trans ratio)		
		298K	318K	338K
Pho O HN N O'Bu Ph	1	0.65 (39:61)	0.63 (38:62)	-
H PhO O'Bu Ph	2	0.92 (48:52)	0.94 (49:51)	0.93 (48:52)
H PhO O H PhO O Ph O'Bu	3	1.08 (52:48)	1.08 (52:48)	1.10 (53:47)

Table S9. $K_{cis/trans}$ for α,β -peptoid 1, 2 and 3 in CD₃CN calculated by ¹H NMR.

¹H (400 MHz) and ¹³C (100.9 MHz) NMR spectra of compounds 1-20, 1a, 2a, 4a and 5a.

¹H and ¹³C NMR spectra of compound **1** (CDCl₃)

¹H NMR spectrum of compound **1** (CD₃CN)

¹H and ¹³C NMR spectra of compound **1a** (CDCl₃)

ppm (t1)

 ^1H NMR spectrum of compound **2** (CD₃CN)

¹H NMR spectrum of compound **3** (CD₃CN)

¹H NMR spectrum of compound 4 (CD₃CN)

 1 H and 13 C NMR spectra of compound 7 (CDCl₃)

¹H NMR spectrum of compound **7** (CD₃CN)

¹H and ¹³C NMR spectra of compound **8** (CDCl₃)

¹H and ¹³C NMR spectra of compound **9** (CDCl₃)

¹H and ¹³C NMR spectra of compound **10** (CDCl₃)

¹H NMR spectrum of compound **10** (CD₃CN)

ppm (t1)

Analytical HPLC analysis of peptoids

General conditions: Solvent A: water (1% TFA); solvent B: MeCN; solvent C: MeOH; 214 nm.

Peptoid **4** (A/C 40:60, flow = 0.40).

Peptoid **18** after purification by preparative HPLC (A/C 5:95, flow = 0.80).

References

- 1 Chemical Rubber Co, Robinson, James W, Handbook of spectroscopy, Boca Raton, Fla. CRC Press 1974.
- 2 Kamlet MJ, Abboud JL, Abraham MH and Taft RW (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π^* , α and β and some methods for simplifying the generalized solvatochromic equation. *J Org Chem* **48**: 2877-2887.
- 3 Kamlet MJ, Doherty RM, Abraham MH, Marcus Y and Taft RW (1988) Linear solvation energy relationship. 46. An improved equation for correlation and prediction of octanol/water partition coefficients of organic nonelectrolytes (including strong hydrogen bond donor solutes). *J Phys Chem* **92**: 5244-5255.
- 4 Besseau F, Laurence C and Berthelot M (1994) Hydrogen-bond basicity of esters, lactones and carbonates. *J Chem Soc*, *Perkin Trans* 2 485-489.
- 5 Le Questel JY, Laurence C, Lachkar A, Helbert M and Berthelot M (1992) Hydrogen-bond basicity of secondary and tertiary amides, carbamates, ureas and lactams. *J Chem Soc*, *Perkin Trans 2* 2091-2094.
- 6 Leo AJ (2000) Evaluating hydrogen-bond donor strength. *J Pharm Sci* 89: 1567-1578.
- 7 Schwöbel J, Ebert RU, Kühne R and Schüürmann G (2009) Prediction of the intrinsic hydrogen bond acceptor strength of chemical substances from molecular structure. *J Phys Chem A* **113**: 10104-10112.