## Electronic Supporting Information (ESI)

## Chemo-enzymatic syntheses of drimane-type sesquiterpenes and of a cyclic core of the meroterpene by recombinant squalene-hopene cyclase

Yukie Yonemura, Takuro Ohyama, and Tsutomu Hoshino*

Department of Applied Biological Chemistry, Faculty of Agriculture, and Graduate School of Science and Technology, Niigata University, Nishi-ku, Ikarashi 2-8050, Niigata 950-2181, Japan *hoshitsu@agr.niigata-u.ac.jp

## Contents

Page

1. Syntheses of substrates $\mathbf{9 , 1 3}$ and $\mathbf{1 4}$. S3-S5
2. GC trace of reaction mixture of $\mathbf{1 4}$ with SHC S5
3. Spectroscopic data of product 15
(1) EIMS spectrum, (2) NMR data analyses and other data,
(3) ${ }^{1} \mathrm{H}$-NMR spectrum, (4) ${ }^{13} \mathrm{C}$-NMR spectrum
4. Spectroscopic data of product 16
(1) EIMS spectrum, (2) NMR data analyses and other data
5. Spectroscopic data of product $\mathbf{1 7}$
(1) EIMS spectrum, (2) NMR data analyses and other data,
(3) ${ }^{1} \mathrm{H}$-NMR spectrum, (4) ${ }^{13} \mathrm{C}$-NMR spectrum
6. Spectroscopic data of product $\mathbf{1 8}$
(1) EIMS spectrum, (2) NMR data analyses and other data,
(3) ${ }^{1} \mathrm{H}$-NMR spectrum, (4) ${ }^{13} \mathrm{C}$-NMR spectrum
7. Spectroscopic data of product 19 S13
(1) EIMS spectrum, (2) NMR data analyses and other data,
8. Spectroscopic data of product 20
(1) EIMS spectrum, (2) NMR data analyses and other data,
(3) ${ }^{1} \mathrm{H}$-NMR spectrum, (4) ${ }^{13} \mathrm{C}$-NMR spectrum
(5) ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum, (6) HOHAHA spectrum (7) NOESY spectrum,
(8) HMQC spectrum, (9) HMBC spectrum
9. Spectroscopic data of product 21 S22-S23
(1) EIMS spectrum, (2) NMR data analyses and other data,
(3) ${ }^{1} \mathrm{H}$-NMR spectrum, (4) ${ }^{13} \mathrm{C}$-NMR spectrum
10. Spectroscopic data of product 22 S24-S25
(1) EIMS spectrum, (2) NMR data analyses and other data,
(3) ${ }^{1} \mathrm{H}$-NMR spectrum, (4) ${ }^{13} \mathrm{C}$-NMR spectrum
11. Spectroscopic data of product $23 \quad$ S26-S27
(1) EIMS spectrum, (2) NMR data analyses and other data,
(3) ${ }^{1} \mathrm{H}$-NMR spectrum, (4) ${ }^{13} \mathrm{C}$-NMR spectrum
12. Spectroscopic data of product $\mathbf{2 4}$-acetate (25)
(1) EIMS spectrum, (2) NMR data analyses and other data,
(3) ${ }^{1} \mathrm{H}$-NMR spectrum, (4) ${ }^{13} \mathrm{C}$-NMR spectrum
13. Polycyclization reactions of $\mathbf{2 8}, \mathbf{3 1}$ and $\mathbf{3 2}$ by SHC enzyme S30

## 1. Syntheses of substrates $\mathbf{9 , 1 3}$ and 14 .

## Preparation of substrate 9

Farnesol $\mathbf{4}$ was subjected to the mesylation reaction with $\mathrm{MsCl} / \mathrm{Et}_{3} \mathrm{~N}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by $\mathrm{LiAlH}_{4}$ reduction in dry $\mathrm{Et}_{2} \mathrm{O}$, yielding the desired 9 . The synthetic method was essentially the same as our previous report (T. Hoshino, S. Nakano, T. Kondo, T. Sato and A. Miyoshi, Org. Biomol. Chem., 2004, 2, 1456-1470. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.22$ (q, J=7.0 Hz), $5.11(2 \mathrm{H}, \mathrm{m})$, 2.15-2.04 ( $4 \mathrm{H}, \mathrm{m}$ ), 2.10-1.95 ( $4 \mathrm{H}, \mathrm{m}$ ), $1.68(3 \mathrm{H}, \mathrm{s}), 1.61(9 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}){ }^{13}{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{6}$ ) $\delta 135.7$ (s), 134.9 (s), 131.2 (s), 124.4 (d), 124.3 (d), 118.2 (d), 39.71 (2xC, t), 26.73 (t), 26.61 (t), 25.68 (q), 17.66 (q), 15.95 (q), 15.64 (q), 13.33 (q). EIMS m/z (\%): 69 (100), 81 (34), 95 (23), 136 (12), 137 (13), 163 (5), 191 (12), 206 ( $\mathrm{M}^{+}, 2$ ).

## Preparation of substrates 13 and 14



All the reactions were conducted under nitrogen atmosphere.

Synthesis of 34. 2-Bromophenol 33 ( $300 \mathrm{mg}, 1.7 \mathrm{mmol}$ ) and ( $i-\operatorname{Pr})_{2} \mathrm{NEt}(0.945 \mathrm{ml}$, 3.2 equiv.) were dissolved in 6 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled on ice. To the solution, SEMCl ( $0.660 \mathrm{ml}, 2.2$ equiv.) was added in a drop-wise and stirred for 2 h . The reaction mixture was poured into ice-water and extracted with hexane ( $10 \mathrm{ml} x 3$ ), which was washed with sat. brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified with a $\mathrm{SiO}_{2}$ column chromatography (hexane: $\mathrm{EtOAc}=100: 20$ ) to yield 545 mg
( 100 \% yeold). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.53$ (dd, $J=7.8,1.6 \mathrm{~Hz}$ ), 7.18 (dd, $J=7.8,1.6 \mathrm{~Hz}$ ), 7.03 (ddd, (dd, $J=7.8,7.8,1.6 \mathrm{~Hz}$ ), 6.62 (ddd, (dd, $J=7.8,7.8,1.6 \mathrm{~Hz}$ ), 5.06 (2H, s), 3.76 (2H, t, $J=8.0 \mathrm{~Hz}), 0.946(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 0.017(9 \mathrm{H}, \mathrm{s})$.

Synthesis of 35. A solution of 34 ( $475 \mathrm{mg}, 1.5 \mathrm{mmol}$ ) dissolved in dry THF ( 7 ml ) was cooled to $-78^{\circ} \mathrm{C}$. To the solution, $n$ - BuLi ( 1.60 M in $n$-hexane, 1.05 ml , 1 equiv.) was added in a small portion and then stirred for 30 min to afford a pale yellow suspension. CuCN ( 270 mg , 2 equiv.) was added to the suspension, which was warmed up to $-10^{\circ} \mathrm{C}$, yielding a red brown colored solution (whole portion of CuCN added was dissolved). The solution was cooled again to $-78^{\circ} \mathrm{C}$ and the THF solution of farnesyl bromide $426 \mathrm{mg}, 1.5 \mathrm{mmol}$ ), prepared with $\mathrm{PBr}_{3}$, was added in a drop-wise manner into the reaction flask and stirred for 3 h . The reaction mixture was poured into ice-water and the products were extracted with hexane $(100 \mathrm{ml} \times 3)$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Two major products ( 557 mg as mixture) including 35 were visible on $\mathrm{SiO}_{2}$ TLC were used in a next reaction without purification.

Synthesis of 13. The mixture ( 145 mg ), prepared by the above reaction, was dissolved in 2 ml of a mixture of EtOH and THF (1:1). To the solution, was added 0.3 ml of a mixed solution $\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{SO}_{4}=30: 1 \mathrm{v} / \mathrm{v}\right)$ and allowed to stand overnight. $\mathrm{NaHCO}_{3}(5 \%)$ was added and the pH was adjusted to $7 \sim 8$. The products were extracted with hexane ( $10 \mathrm{ml} \times 3$ ) and washed with sat. brine, and then purified with $\mathrm{SiO}_{2}$ column chromatography ( $100: 0 \sim 0.2$ ) to afford the desired $\mathbf{1 3}$ ( 37 mg , $35 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}$ ), $7.11(\mathrm{t}, J=7.8 \mathrm{~Hz}), 6.95(J=7.8 \mathrm{~Hz}), 6.67(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}), 5.49(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 5.34(2 \mathrm{H}, \mathrm{m}), 4.681(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.44$ (d, $J=7.2 \mathrm{~Hz}), 2.29-2.08$ ( $8 \mathrm{H}, \mathrm{m}$ ), $1.79(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.69(3 \mathrm{H}, \mathrm{s}), 1.67(3 \mathrm{H}, \mathrm{s})$, ${ }^{13} \mathrm{C}$ NMR ( $\left.100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 154.8$ (s), 137.5 (s), 135.3 (s), 131.1 (s), 130.2 (d), 127.6 (d), 127.4 (s), 124.9 (d), 124.4 (d), 122.6 (d), 120.9 (d), 115.7 (d), 40.13 ( t), 39.95 ( t), 29.52 (t), 27.15 (t), 26.75 ( t), 25.83 (q), 17.74 (q), 16.09 (q), 16.04 (q).

Synthesis of 14. The synthetic method was essentially the same as our previous report (T. Hoshino, S. Nakano, T. Kondo, T. Sato and A. Miyoshi, Org. Biomol. Chem., 2004, 2, 1456-1470. ${ }^{1}$ H NMR (400 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 7.26$ (dd, $J=7.6,1.6 \mathrm{~Hz}$ ), 7.15 (ddd, $J=7.6,7.6,1.6 \mathrm{~Hz}$ ), 6.96 ((ddd, $J=7.6,7.6,1.6$ Hz), 6.94 (dd, $J=7.6,1.6 \mathrm{~Hz}$ ), 5.59 (t, $J=7.2 \mathrm{~Hz}$ ), 5.29 (t, $J=7.2 \mathrm{~Hz}$ ), 3.57 (d, $J=7.2 \mathrm{~Hz}$ ), 2.72 (t, $J=6.2 \mathrm{~Hz}), 2.22-2.07(6 \mathrm{H}, \mathrm{m}), 1.75(3 \mathrm{H}, \mathrm{s}), 1.67(2 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$

NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 100.6 \mathrm{MHz}\right) \delta 15.96(\mathrm{q}), 16.01(\mathrm{q}), 18.76(\mathrm{q}), 26.32(\mathrm{t}), 29.25(\mathrm{t}), 29.84(\mathrm{t}), 36.67(\mathrm{t})$, 39.76 (t), 58.32 (s), 63.99 (d), 115.7 (d), 120.6 (d), 123.5 (d), 124.6 (d), 127.5 (d), 130.3 (d), 134.2 (s), 136.2 (s), 155.1 (s).

## 2. GC trace of the reaction mixture of 14 with SHC (an excess of Triton $\mathbf{X}$-100 was removed).



Triton X-100 was removed by a short SiO2 column. GC conditions: column temp., $190^{\circ} \mathrm{C}$; injection temp., $280^{\circ} \mathrm{C}$; carrier gas $\left(\mathrm{N}_{2}\right), 0.5 \mathrm{~kg} / \mathrm{cm}^{2}$. Only one product $\mathbf{2 4}$ was produced.

## 3. Spectroscopic data of product 15

(1) EIMS spectrum of product 15

(2) NMR data analyses and other data for 15

Product 15 (drim-7(8)-ene)

$\begin{array}{ll}\text { HRMS M }^{+} & {[\mathrm{a}]_{\mathrm{D}}^{25}-12.5} \\ \text { Observed:206.2067 } & \left(c=0.012, \mathrm{C}_{6} \mathrm{D}_{6}\right) \\ \text { Calculated:206.2035 } & \end{array}$
cosy

| $\mathbf{N o}$ | ${ }^{\mathbf{1}} \mathbf{H}$ | ${ }^{\mathbf{1 3}} \mathbf{C}$ | $\mathbf{N o}$ | ${ }^{\mathbf{1}} \mathbf{H}$ | ${ }^{\mathbf{1 3}} \mathbf{C}$ |
| :---: | :---: | :---: | :---: | :---: | :--- |
| $\mathbf{1}$ | $0.98(\mathrm{~m}) ; 1.86(\mathrm{~m})$ | 39.81 | $\mathbf{9}$ | $1.94(\mathrm{~m})$ | 49.03 |
| $\mathbf{2}$ | $1.63(\mathrm{~m}) ; 1.50(\mathrm{~m})$ | 19.29 | $\mathbf{1 0}$ | - | 36.02 |
| $\mathbf{3}$ | $1.25(\mathrm{ddd}, 13.0,12.8,3.6 \mathrm{~Hz})$ | 42.55 | $\mathbf{1 1}$ | $0.958(\mathrm{~d}, 7.2 \mathrm{~Hz})$ | 11.58 |
| $\mathbf{4} ; 1.54(\mathrm{~m})$ |  |  |  |  |  |
| $\mathbf{5}$ | $1.29(\mathrm{dd}, J=11.8,5.2 \mathrm{~Hz})$ | 50.35 | $\mathbf{1 2}$ | $1.75(3 \mathrm{H}, \mathrm{br} \mathrm{s})$ | $21.98{ }^{a}$ |
| $\mathbf{6}$ | $1.95(\mathrm{~m}) ; 2.05(\mathrm{~m})$ | 24.10 | $\mathbf{1 3}$ | $0.977(3 \mathrm{H}, \mathrm{s})$ | 33.47 |
| $\mathbf{7}$ | $5.58(\mathrm{brs})$ | 121.93 | $\mathbf{1 4}$ | $1.008(3 \mathrm{H}, \mathrm{s})$ | $22.12 a$ |
| $\mathbf{8}$ | - | 135.25 | $\mathbf{1 5}$ | $0.917(3 \mathrm{H}, \mathrm{s})$ | 13.47 |

[^0](3) ${ }^{1} \mathrm{H}$-NMR spectrum of product $\mathbf{1 5}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

(4) ${ }^{13} \mathrm{C}$-NMR spectrum of product 15 in $\mathrm{C}_{6} \mathrm{D}_{6}$.


## 4. Spectroscopic data of product 16

(1) EIMS spectrum of product 16

(2) NMR data analyses and other data for 16


The solvent peaks: 7.28 ppm for ${ }^{1} \mathrm{H}-\mathrm{NMR}$; 128.0 ppm for ${ }^{13} \mathrm{C}-\mathrm{NMR}$

| No | ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ | No | ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.98(m); 1.65 (m) | 39.54 | 9 | 1.85 (bq, $J=6.8 \mathrm{~Hz}$ ) | 50.49 |
| 2 | 1.46 (m); 1.54 (m) | 19.64 | 10 | - | 39.02 |
| 3 | 1.22(m); 1.47(m) | 42.44 | 11 | 1.04 (3H, d, J=6.8 Hz) | 10.64 |
| 4 | - | 33.51 | 12 | 4.79 (s, Ha); 4.98 (s, Hb) | 151.5 (t) |
| 5 | 1.11 (m) | 55.41 | 13 | 0.964 (3H, s) | 33.71 |
| 6 | 1.43 (m);1.72 (m) | 24.17 | 14 | 0.927 (3H, s) | 21.97 |
| 7 | 2.51 (ddd, J=12.8.4.4, 2.0 Hz);2.15 (ddd, $\mathrm{J}=12.8,12.8,4.4 \mathrm{~Hz})$ | 37.72 | 15 | 0.833 (3H, s) | 13.48 |
| 8 | - | 151.5 |  |  |  |

## 5. Spectroscopic data of product 17

(1) EIMS spectrum of product 17

(2) NMR data analyses and other data for 17

$a$ This OH signal was observed in acetone $\mathrm{d}_{6}$, the chemical shift is expressed in relative to the solvent peak (2.04 ppm for ${ }^{1} \mathrm{H}$ NMR)
(3) ${ }^{1} \mathrm{H}$-NMR spectrum of product $\mathbf{1 7}$ in acetone- $d_{6}$

(4) ${ }^{13} \mathrm{C}$-NMR spectrum of product 17 in acetone- $d_{6}$

```
Product 3 from C15 analog
```



## 6. Spectroscopic data of product 18

(1) EIMS spectrum of product 18

(2) NMR data analyses and other data for 18

## Product 18

$[\alpha]_{D}{ }^{25}=-32.1\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$
c=0.037
HRMS M ${ }^{+}$
Observed:206.2022 (-H2O)
Calculated:206.2035
$\mathrm{R}_{\mathrm{f}}$ value 0.54 (hexane/EtOAc=100:20)


Chemical shifts in aceton $d_{6}$, the solvent peak: ${ }^{1} \mathrm{H}, 2.04 \mathrm{ppm},{ }^{13} \mathrm{C}, 29.80 \mathrm{ppm}$

| $\mathbf{N o}$ | ${ }^{\mathbf{1}} \mathbf{H}$ | ${ }^{\mathbf{1 3}} \mathbf{C}$ | $\mathbf{N o}$ | ${ }^{\mathbf{1}} \mathbf{H}$ | $\mathbf{1 3}^{\mathbf{1 3}} \mathbf{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $0.82(\mathrm{~m}) ; 1.68(\mathrm{~m})$ | 40.82 | $\mathbf{9}$ | $1.01(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz})$ | 53.58 |
| $\mathbf{2}$ | $1.35(\mathrm{~m}) ; 1.59(\mathrm{~m})$ | 19.31 a | $\mathbf{1 0}$ | - | 38.65 |
| $\mathbf{3}$ | $1.14(\mathrm{ddd}, J=13.6$, | 42.77 | $\mathbf{1 1}$ | $0.888(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz})$ | 7.88 |
| $\mathbf{4}$ | $13.6,4.4) ; 1.36(\mathrm{~m})$ | 33.88 | $\mathbf{1 2}$ | $1.08(3 \mathrm{H}, \mathrm{s})$ | 31.41 |
| $\mathbf{5}$ | $0.87(\mathrm{~m})$ | 56.89 a | $\mathbf{1 3}$ | $0.862(3 \mathrm{H}, \mathrm{s})$ | 34.00 |
| $\mathbf{6}$ | $1.42(\mathrm{~m}) ; 1.59(\mathrm{~m})$ | 19.25 | $\mathbf{1 4}$ | $0.846(3 \mathrm{H}, \mathrm{s})$ | 22.19 |
| $\mathbf{7}$ | $1.43(\mathrm{~m}) ; 1.76(\mathrm{~m})$ | 43.62 | $\mathbf{1 5}$ | $0.974(3 \mathrm{H}, \mathrm{s})$ | 14.88 |
| $\mathbf{8}$ | - | 71.84 | $\mathbf{O H}$ | $2.69(\mathrm{br} \mathrm{s}) \mathrm{b}$ |  |

$a$, The two carbon signals are exchangeable due to the close values.
$b$ This OH signal was observed in acetone d6, the chemical shift is expressed in relative to the solvent peak ( 2.04 ppm for 1H NMR)
(3) ${ }^{1} \mathrm{H}$-NMR spectrum of product $\mathbf{1 8}$ in aceteone- $d_{6}$


13 C -NMR spectrum of product 18 in aceteone- $d_{6}$


## 7. Spectroscopic data of product 19

(1) EIMS spectrum of product 19
(2) NMR data analyses and other data for 19


Product 19 (drim-8(9)-ene)



Obserd: 206.2038
Calc.: 206.2035
$[\alpha]_{D}{ }^{25}=+22.7\left(\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{c}=0.01\right)$
lit. value +62 (the solvent and
concentration, not desribed); RM
Carmans and W. Craig, Aust. J.
Chem., 1971, 24, 361-370.)
The solvent peaks: 7.28 ppm for ${ }^{1} \mathrm{H}-\mathrm{NMR} ; 128.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}-\mathrm{NMR}$

| No | ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ | No | ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & 1.85(\mathrm{~m}) ; 1.17(\mathrm{ddd}, \\ & 12.8,12.8,3.6 \mathrm{~Hz}) \end{aligned}$ | 37.26 | 9 | - | 136.2 |
| 2 | 1.73(m);1.52(m) ${ }^{b}$ | $19.50{ }^{a}$ | 10 |  | 38.50 |
| 3 | 1.51 (m); 1.24 (m) | 42.03 | 11 | 1.67 (3H, s) | 19.83 |
| 4 |  | 33.41 | 12 | 1.67 (3H, s) | 19.83 |
| 5 | 1.28 (m) | 51.85 | 13 | 1.02 (3H, s) | 33.43 |
| 6 | 1.73(m);1.52(m) b | $19.48{ }^{a}$ | 14 | 0.985 (3H, s) | 21.79 |
| 7 | 2.10 (m); 1.53 (m) | 34.05 | 15 | 1.12 (3H, s) | 19.50 |
| 8 |  | 124.3 |  |  |  |

The signals of $a$ and $b$ are indistinguishable due to the very close values.

## 8. Spectroscopic data of product 20

(1) EIMS spectrum of product 20

(2) NMR data analyses and other data for $\mathbf{2 0}$


HRMS M ${ }^{+}$
Observed:206.2040
Calculated:206.2035

$$
\begin{gathered}
{[\alpha]_{D^{25}}=-10.7\left(C_{6} \mathrm{H}_{6}\right)} \\
\mathrm{c}=0.014(\mathrm{~g} / \mathrm{dI}) \\
\longrightarrow \cdots+\cdots \text { NOESY } \\
\longrightarrow \text { HMBC }_{\text {COSY }}^{\longrightarrow}
\end{gathered}
$$




20:unnatural (20\%)
(rearranged drimane
skeleton)
like a clerodane
diterpene skeleton, which was named quasiclerodane

Chemical shifts in $\mathrm{C}_{6} \mathrm{D}_{6}(400 \mathrm{MHz})$, relative to the solvent peak of $\mathrm{C}_{6} \mathrm{D}_{6}:{ }^{1} \mathrm{H} 7.28 \mathrm{ppm},{ }^{13} \mathrm{C} 128.0 \mathrm{ppm}$

| $\mathbf{N o}$ | ${ }^{\mathbf{1}} \mathbf{H}$ | ${ }^{\mathbf{1 3}} \mathbf{C}$ | $\mathbf{N o}$ | ${ }^{\mathbf{1}} \mathbf{H}$ | ${ }^{\mathbf{1 3}} \mathbf{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $1.56(\mathrm{~m}) ; 1.75(\mathrm{~m})$ | 19.28 | $\mathbf{9}$ | - | 36.55 |
| $\mathbf{2}$ | $2.14(2 \mathrm{H}, \mathrm{m})$ | 27.59 | $\mathbf{1 0}$ | $1.27(\mathrm{dd}, 12.0,1.8 \mathrm{~Hz})$ | 52.91 |
| $\mathbf{3}$ | $5.36(\mathrm{br} \mathrm{s})$ | 120.99 | $\mathbf{1 1}$ | $1.011(3 \mathrm{H}, \mathrm{s})$ | 29.30 |
| $\mathbf{4}$ | - | 143.85 | $\mathbf{1 2}$ | $0.963(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz})$ | 16.64 |
| $\mathbf{5}$ | - | 38.48 | $\mathbf{1 3}$ | $1.72(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz})$ | 18.27 |
| $\mathbf{6}$ | $1.27(\mathrm{~m}) ; 1.72(\mathrm{~m})$ | 30.03 | $\mathbf{1 4}$ | $1.107(3 \mathrm{H}, \mathrm{s})$ | 19.62 |
| $\mathbf{7}$ | $1.28(\mathrm{~m}) ; 1.42(\mathrm{~m})$ | 28.04 | $\mathbf{1 5}$ | $0.809(3 \mathrm{H}, \mathrm{s})$ | 16.72 |
| $\mathbf{8}$ | $1.24(\mathrm{~m})$ | 42.69 |  |  |  |

The carbon signals of C12 and C15 may be interchangeable due to the close
(3) ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{2 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

(4) ${ }^{13} \mathrm{C}$-NMR spectrum of 20 in $\mathrm{C}_{6} \mathrm{D}_{6}$

(5) ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of product $\mathbf{2 0}$

(6) HOHAHA spectrum of $\mathbf{2 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

(7) NOESY spectrum of 20 in $\mathrm{C}_{6} \mathrm{D}_{6}$

(8) HMQC spectrum of $\mathbf{2 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

(9) HMBC spectrum of $\mathbf{2 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$


(10) HMBC spectrum (expanded region) of 20 in $\mathrm{C}_{6} \mathrm{D}_{6}$


## 9. Spectroscopic data of product 21

(1) EIMS spectrum of product 21

(2) NMR data analyses and other spectral data of 21
21 (oil)
$\longrightarrow \mathrm{HMBC}$


$\left[\alpha_{1 \mathrm{D}}{ }^{25}=+49.7\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)\right.$
HRMS M ${ }^{+}$
Observed:298.2286
Calculated:298.2297
600 MHz

(3) ${ }^{1} \mathrm{H}$-NMR spectrum of product 21

(4) ${ }^{13} \mathrm{C}$-NMR spectrum of product 21


## 10.Spectroscopic data of product 22

(1) EIMS sDectrum of Product 22

```
[ Mass Spectrum ]
Data : yyyone058 Date : 19-Dec-2006 11:16
Samole: compd.A-2 incubation 170
Note : 
Inlet : GC Ion Mode : EI+
Spectrum Type : Normal Ion [MF-Linear]
RT : 70.78 min Scan# : 4252
BP : m/z 191.0008 Int. : 7.51
Output m/z range : 50.0000 to 500.0000 Cut Level : 0.80 %
```


(2) NMR data analyses and other data of product 22


400 MHz NMR data, $\delta \mathrm{ppm}$ in $\mathrm{CDCl}_{3}$ relative to $\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H} ; 7.26 \mathrm{ppm},{ }^{13} \mathrm{C} ; 77.0 \mathrm{ppm}$

|  | O. ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ | NO. | ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ | NO. | ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \begin{gathered} 1.1 .17(\mathrm{bdd}, 11.6 \mathrm{~Hz}) ; \\ 1.6,13.2,13.2 \mathrm{~Hz}) \end{gathered} 39.72$ |  |  | 8 | - | 135.8 |  | 7.08 (t, 7.6 Hz ) | 127.7 |
| 2 | 1.60 )m): 1.30 (m) | 19.30 | 9 | 2.56 (bd, J=8.0 Hz) | 54.51 | 16 | $6.98(\mathrm{t}, 7.6 \mathrm{~Hz})$ | 120.7 |
| 3 | 1.53(m);1.31(m) | 42.58 | 10 |  | 37.17 | 17 | 7.32 (d, 7.6 Hz) | 130.2 |
| 4 | - | 33.16 | 11 | 2.93(m); <br> $2.76(\mathrm{~d}, 15.2 \mathrm{~Hz})$ | 26.49 | 18 | 1.01(3H,s) | 33.47 |
| 5 | 1.41(m) | 50.45 | 12 | - | 130.3 | 19 | 0.998(3H,s) | 22.13 |
| 6 | $2.08(2 \mathrm{H}, \mathrm{m})$ | 24.97 | 13 | - | 153.8 | 20 | 1.04(3H,s) | 14.09 |
| 7 | 5.57(bs) | 122.4 | 14 | 6.39 (m) | 115.3 | 21 | 1.77 (3H,s) | 22.69 |

(3) ${ }^{1} \mathrm{H}$-NMR spectrum of product 22

(4) ${ }^{13} \mathrm{C}$-NMR spectrum of product 22


## 11.Spectroscopic data of product 23

(1) EIMS spectrum of Product 23

```
[ Mass Spectrum ]
Data : yyyoneØ58 Date : 19-Dec-2006 11:16
Sample: compd.A-2 incubation 170
Note :
Inlet : GC Ion Mode : EI+
Spectrum Type : Normal Ion [MF-Linear]
RT : 61.59 min Scan# : 3700
BP : m/z 107.0000 Int. : 6.50
Output m/z range : 50.0000 to 580.0200 Cut Level : 0.00 %
    malom
```

(2) NMR data analyses and other data of product 23

23 (oil)


$[\alpha]_{D}{ }^{25}$; not determined due to very small amount HRMS M ${ }^{+}$
Observed:298.2292 Calculated:298.2297

600 MHz NMR data, $\delta \mathrm{ppm}$ in $\mathrm{CDCl}_{3}$ relative to $\mathrm{CDCl}_{3}: 1 \mathrm{H} ; 7.26 \mathrm{ppm}, 13 \mathrm{C} ; 77.0 \mathrm{ppm}$

| NO. ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ | NO. | ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ | NO. | ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $11.91(\mathrm{~d}, 12.0 \mathrm{~Hz}) ; 1.17(\mathrm{~m})$ | 39.20 | 8 | - | 149.0 | 15 | 7.03(t,7.51Hz) | 126.6 |
| 2 1.63(m);1.52(m) | 19.47 | 9 | 2.22(br m) | 56.08 | 16 | 6.83(t,7.5Hz) | 120.5 |
| 3 1.41(d,12.0Hz);1.19(m) | 42.21 a | 10 | - | 40.29 | 17 | 7.10 (d, 7.5Hz) | 129.9 |
| 4 | 33.67 | 11 | $2.75(2 \mathrm{H}, \mathrm{d}, 8.8 \mathrm{~Hz})$ | 23.71 | 18 | 0.885(3H,s) | $33.64{ }^{\text {a }}$ |
| $5 \quad 1.20$ (m) | 55.74 | 12 | - | 128.3 | 19 | 0.834(3H,s) | 21.76 |
| 6 1.76(m);1.37(m) | 24.48 | 13 | - | 153.6 |  | 0.820(3H,s) | 14.51 |
| $7 \underset{\text { 2.03(ddd, } 7.2,12.7,12.7)}{\substack{2.38(d, 12.7 \mathrm{~Hz}) ;}}$ | 38.29 | 14 | 6.72 (d, 7.5 Hz ) | 115.2 |  | 4.82(s); 4.71(s) | 107.5 |

(3) ${ }^{1} \mathrm{H}$-NMR spectrum of product 23

(4) ${ }^{13} \mathrm{C}$-NMR spectrum of product 23

13C praz from compd. A in COC13


## 12.Spectroscopic data of product 24-acetate (25)

(1) EIMS Spectrum of Prduct 24-Acetate (25)

(2) NMR data analyses and other data of product 24 acetate

24-acetate


$\left[\alpha_{1 \mathrm{D}}^{25=+25.5}\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right)\right.$
HRMS M ${ }^{+}$
Observed:356.2357
Calculated:356.2351 FOR C $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3}$
$400 \mathrm{MHz} \quad \mathrm{NMR}$ data, $\delta \mathrm{ppm}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ relative to $\mathrm{C}_{6} \mathrm{D}_{6}:{ }^{1} \mathrm{H} ; 7.28 \mathrm{ppm},{ }^{13} \mathrm{C} ; 128.0 \mathrm{ppm}$

|  | O. ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ | NO. | ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ | NO. | . ${ }^{1} \mathrm{H}$ | ${ }^{13} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.37 (m); 0.83 (m) | 36.80 | 8 | - | 76.43 | 15 | 7.18(m) | 117.5 |
| 2 | 1.82(m);1.64(m) | 23.84 | 9 | 1.47 (m) | 51.59 | 16 | 7.18(m) | 127.6 |
| 3 | 4.70 (dd, 12.0, 4.8 Hz ) | 80.06 | 10 | - | 36.30 | 177 | 7.15 (bd. $\mathrm{J}=8.0 \mathrm{~Hz}$ ) | 130.0 |
| 4 | - | 37.76 | 11 | 2.44 (2H, m) | 22.49 | 18 | $0.931(3 \mathrm{H}, \mathrm{s})$ | 28.02 |
| 5 | 0.86(m) | 54.80 | 12 | - | 122.4 | 19 | $0.931(3 \mathrm{H}, \mathrm{s})$ | 16.78 |
| 6 | 1.52 (2H, m) | 19.36 | 13 | - | 154.0 | 20 | 0.687(3H,s) | 14.88 |
| 7 | 2.13(m); 1.79 (m) | 41.22 | 14 | 6.99(m) | 120.0 | 21 | 1.167 (3H, s | $20.77^{\text {a }}$ |
|  |  |  |  |  |  | 22 | - | 169.8 |
|  |  |  |  |  |  | 23 | 1.87 (3H, s) | $20.81{ }^{\text {a }}$ |

The carbon signals marked with a may be exchangeable.
(3) ${ }^{1} \mathrm{H}$-NMR spectrum of product 24 acetate (25)

(4) ${ }^{13} \mathrm{C}$-NMR spectrum of pectrum of product 24 acetate (25)


## 13. Polycyclization reactions of 28,31 and 32 by SHC enzyme.

28: $\mathrm{R}=\mathrm{H}$, complete cyclized product ( $33 \%$ yield)
31: $\mathrm{R}=$ indole, $6 / 6 / 5$-fused tricyclic 33 and $6 / 6$-fused-bicyclic products34 (7.5\% yield)
32: $\mathrm{R}=$ pyrrole, $6 / 6 / 5$-fused tricyclic 35 and $6 / 6$-fused-bicyclic products 36 (1.1\% yield)



31



34: 6/6-fused-bicyclic product
Remark: The double bond at C13-C14 must be of E-geometry, but the following original paper was erroneously depicted in Z form (H. Tanaka et a., Org. Lett., 2005, 7, 5873-5876 (ref. 26).


Remark: The double bond at C13-C14
must be of $E$-geometry, but the following original paper was erroneously depicted in $Z$-form (H. Tanaka et a., Tetrahedron Lett., 2006, 47, 3085-3089 (ref. 27).



[^0]:    a) The carbon signals of C-12 and C-14 are exchangeable due to the close values.

