Electronic Supporting Information (ESI)

Chemo-enzymatic syntheses of drimane-type sesquiterpenes and of a cyclic core of the meroterpene by recombinant squalene-hopene cyclase

Yukie Yonemura, Takuro Ohyama, and Tsutomu Hoshino*

Department of Applied Biological Chemistry, Faculty of Agriculture, and Graduate School of Science and Technology, Niigata University, Nishi-ku, Ikarashi 2-8050, Niigata 950-2181, Japan

*hoshitsu@agr.niigata-u.ac.jp

	Contents	Page
1.	Syntheses of substrates 9, 13 and 14.	S3-S5
2.	GC trace of reaction mixture of 14 with SHC	S5
3.	Spectroscopic data of product 15	S6-S7
	(1) EIMS spectrum, (2) NMR data analyses and other data,	
	(3) ¹ H-NMR spectrum, (4) ¹³ C-NMR spectrum	
4.	Spectroscopic data of product 16	S 8
	(1) EIMS spectrum, (2) NMR data analyses and other data	
5.	Spectroscopic data of product 17	S9-S10
	(1) EIMS spectrum, (2) NMR data analyses and other data,	
	(3) ¹ H-NMR spectrum, (4) ¹³ C-NMR spectrum	
6.	Spectroscopic data of product 18	S11-S12
	(1) EIMS spectrum, (2) NMR data analyses and other data,	
	(3) ¹ H-NMR spectrum, (4) ¹³ C-NMR spectrum	
7.	Spectroscopic data of product 19	S13
		S 1

8.	(1) EIMS spectrum, (2) NMR data analyses and other data,Spectroscopic data of product 20	S14-S21
	(1) EIMS spectrum, (2) NMR data analyses and other data,	
	(3) ¹ H-NMR spectrum, (4) ¹³ C-NMR spectrum	
	(5) ¹ H- ¹ H COSY spectrum, (6) HOHAHA spectrum (7) NOESY spectrum,	
	(8) HMQC spectrum, (9) HMBC spectrum	
9.	Spectroscopic data of product 21	S22-S23
	(1) EIMS spectrum, (2) NMR data analyses and other data,	
	(3) ¹ H-NMR spectrum, (4) ¹³ C-NMR spectrum	
10.	Spectroscopic data of product 22	S24-S25
	(1) EIMS spectrum, (2) NMR data analyses and other data,	
	(3) ¹ H-NMR spectrum, (4) ¹³ C-NMR spectrum	
11.	Spectroscopic data of product 23	S26-S27
	(1) EIMS spectrum, (2) NMR data analyses and other data,	
	(3) ¹ H-NMR spectrum, (4) ¹³ C-NMR spectrum	
12.	Spectroscopic data of product 24-acetate (25)	S28-S29
	(1) EIMS spectrum, (2) NMR data analyses and other data,	
	(3) ¹ H-NMR spectrum, (4) ¹³ C-NMR spectrum	
13.	Polycyclization reactions of 28, 31 and 32 by SHC enzyme	S 30

1. Syntheses of substrates 9, 13 and 14.

Preparation of substrate 9

Farnesol **4** was subjected to the mesylation reaction with MsCl/ Et₃N in dry CH₂Cl₂, followed by LiAlH₄ reduction in dry Et₂O, yielding the desired **9**. The synthetic method was essentially the same as our previous report (T. Hoshino, S. Nakano, T. Kondo, T. Sato and A. Miyoshi, *Org. Biomol. Chem.*, 2004, **2**, 1456-1470. ¹H NMR (400 MHz, CDCl₃) δ 5.22 (q, *J*=7.0 Hz), 5.11 (2H, m), 2.15-2.04 (4H, m), 2.10-1.95 (4H, m), 1.68 (3H, s), 1.61 (9H, s), 1.57 (3H, d, *J*=7.0 Hz); ¹³C NMR (100.6 MHz, CDCl₆) δ 135.7 (s), 134.9 (s), 131.2 (s), 124.4 (d), 124.3 (d), 118.2 (d), 39.71 (2xC, t), 26.73 (t), 26.61 (t), 25.68 (q), 17.66 (q), 15.95 (q), 15.64 (q), 13.33 (q). EIMS *m/z* (%): 69 (100), 81 (34), 95 (23), 136 (12), 137 (13), 163 (5), 191 (12), 206 (M⁺, 2).

Preparation of substrates 13 and 14

All the reactions were conducted under nitrogen atmosphere.

Synthesis of **34**. 2-Bromophenol **33** (300 mg, 1.7 mmol) and $(i-Pr)_2NEt$ (0.945 ml, 3.2 equiv.) were dissolved in 6 ml of CH₂Cl₂ and cooled on ice. To the solution, SEMCl (0.660 ml, 2.2 equiv.) was added in a drop-wise and stirred for 2 h. The reaction mixture was poured into ice-water and extracted with hexane (10 ml x 3), which was washed with sat. brine and dried over Na₂SO₄. The product was purified with a SiO₂ column chromatography (hexane: EtOAc=100:20) to yield 545 mg

(100 % yeold). ¹H NMR (400 MHz, CDCl₃) δ7.53 (dd, *J*=7.8, 1.6 Hz), 7.18 (dd, *J*=7.8, 1.6 Hz), 7.03 (ddd, (dd, *J*=7.8, 7.8, 1.6 Hz), 6.62 (ddd, (dd, *J*=7.8, 7.8, 1.6 Hz), 5.06 (2H, s), 3.76 (2H, t, *J*=8.0 Hz), 0.946 (2H, t, *J*=8.0 Hz), 0.017 (9H, s).

Synthesis of **35**. A solution of **34** (475 mg, 1.5 mmol) dissolved in dry THF (7 ml) was cooled to -78° C. To the solution, *n*-BuLi (1.60M in *n*-hexane, 1.05 ml, 1 equiv.) was added in a small portion and then stirred for 30 min to afford a pale yellow suspension. CuCN (270 mg, 2 equiv.) was added to the suspension, which was warmed up to -10° C, yielding a red brown colored solution (whole portion of CuCN added was dissolved). The solution was cooled again to -78° C and the THF solution of farnesyl bromide 426 mg, 1.5 mmol), prepared with PBr₃, was added in a drop-wise manner into the reaction flask and stirred for 3 h. The reaction mixture was poured into ice-water and the products were extracted with hexane (100 ml x 3) and dried over Na₂SO₄. Two major products (557 mg as mixture) including **35** were visible on SiO₂ TLC were used in a next reaction without purification.

Synthesis of **13**. The mixture (145 mg), prepared by the above reaction, was dissolved in 2 ml of a mixture of EtOH and THF (1:1). To the solution, was added 0.3 ml of a mixed solution (EtOH/H₂SO₄=30:1 v/v) and allowed to stand overnight. NaHCO₃ (5%) was added and the pH was adjusted to 7~8. The products were extracted with hexane (10 ml x 3) and washed with sat. brine, and then purified with SiO₂ column chromatography (100:0~0.2) to afford the desired **13** (37 mg, 35%). ¹H NMR (400 MHz, C₆D₆) δ 7.21 (d, *J*=7.8 Hz), 7.11 (t, *J*=7.8 Hz), 6.95 (*J*=7.8 Hz), 6.67 (d, *J*=7.8 Hz), 5.49 (1H, t, *J*=7.2 Hz), 5.34 (2H, m), 4.681 (1H, s, OH), 3.44 (d, *J*=7.2 Hz), 2.29-2.08 (8H, m), 1.79 (3H, s), 1.70 (3H, s), 1.69 (3H, s), 1.67 (3H, s); ¹³C NMR (100.6 MHz, C₆D₆) δ 154.8 (s), 137.5 (s), 135.3 (s), 131.1 (s), 130.2 (d), 127.6 (d), 127.4 (s), 124.9 (d), 124.4 (d), 122.6 (d), 120.9 (d), 115.7 (d), 40.13 (t), 39.95 (t), 29.52 (t), 27.15 (t), 26.75 (t), 25.83 (q), 17.74 (q), 16.09 (q), 16.04 (q).

Synthesis of **14**. The synthetic method was essentially the same as our previous report (T. Hoshino, S. Nakano, T. Kondo, T. Sato and A. Miyoshi, *Org. Biomol. Chem.*, 2004, **2**, 1456-1470. ¹H NMR (400 MHz, C₆D₆) δ 7.26 (dd, *J*=7.6, 1.6 Hz), 7.15 (ddd, *J*=7.6, 7.6, 1.6 Hz), 6.96 ((ddd, *J*=7.6, 7.6, 1.6 Hz), 6.94 (dd, *J*=7.6, 1.6 Hz), 5.59 (t, *J*=7.2 Hz), 5.29 (t, *J*=7.2 Hz), 3.57 (d, *J*=7.2 Hz), 2.72 (t, *J*=6.2 Hz), 2.22-2.07 (6H, m), 1.75 (3H, s), 1.67 (2H, m), 1.59 (3H, s), 1.24 (3H, s), 1.19 (3H, s); ¹³C

NMR (C₆D₆, 100.6 MHz) δ 15.96 (q), 16.01 (q), 18.76 (q), 26.32 (t), 29.25 (t), 29.84 (t), 36.67 (t), 39.76 (t), 58.32 (s), 63.99 (d), 115.7 (d), 120.6 (d), 123.5 (d), 124.6 (d), 127.5 (d), 130.3 (d), 134.2 (s), 136.2 (s), 155.1 (s).

2. GC trace of the reaction mixture of 14 with SHC (an excess of Triton X-100 was removed).

Triton X-100 was removed by a short SiO2 column. GC conditions: column temp., 190°C; injection temp., 280°C; carrier gas (N₂), 0.5 kg/cm². Only one product **24** was produced.

(1) EIMS spectrum of product 15

(2) NMR data analyses and other data for $\mathbf{15}$

Product 15 (drim-7(8)-ene)

400 MHz, C₆D₆

HMBC

HRMS M⁺ Observed:206.2067 Calculated:206.2035 $\begin{array}{l} [a]_{D}^{25} -12.5 \\ (c{=}0.012, \, \mathrm{C_6D_6}) \end{array}$

No	$^{1}\mathrm{H}$	¹³ C	No	¹ H	¹³ C
1	0.98(m); 1.86(m)	39.81	9	1.94 (m)	49.03
2	1.63 (m); 1.50 (m)	19.29	10		36.02
3	1.25 (ddd, 13.0, 12.8, 3.6Hz)	42.55	11	0.958(d, 7.2 Hz)	11.58
4	; 1.54 (m)	33.03	12	1.75 (3H, br s)	21.98 ^a
5	1.29 (dd, <i>J</i> =11.8, 5.2 Hz)	50.35	13	0.977(3H, s)	33.47
6	1.95 (m); 2.05(m)	24.10	14	1.008 (3H, s)	22 12 a
7	5.58 (brs)	121.93	15	0.917 (3H s)	13.47
8		135.25	15	0.917 (311, 3)	15.17

a) The carbon signals of C-12 and C-14 are exchangeable due to the close values.

(4) ¹³C-NMR spectrum of product **15** in $C_6D_{6.}$

(1) EIMS spectrum of product 16

(2) NMR data analyses and other data for $\mathbf{16}$

260 280

320 340 360 360 400 420 440

460 480 500

300

The solvent peaks: 7.28 ppm for ¹H-NMR; 128.0 ppm for ¹³C-NMR

No	¹ H	¹³ C	No	$^{1}\mathrm{H}$	¹³ C
1	0.98(m); 1.65 (m)	39.54	9	1.85 (bq, <i>J</i> =6.8 Hz)	50.49
2	1.46 (m); 1.54 (m)	19.64	10		39.02
3	1.22(m); 1.47(m)	42.44	11	1.04 (3H, d, J=6.8 Hz)	10.64
4		33.51	12	4.79 (s, Ha); 4.98 (s, Hb)	151.5 (t)
5	1.11 (m)	55.41	13	0.964 (3H, s)	33.71
6	1.43 (m);1.72 (m)	24.17	14	0.927 (3H, s)	21.97
7	2.51(ddd, J=12.8,4.4, 2.0 Hz);2.15 (ddd, J=12.8, 12.8, 4.4 Hz)	37.72	15	0.833 (3H, s)	13.48
8		151.5			

(1) EIMS spectrum of product 17

(2) NMR data analyses and other data for 17

13

′юн i, i 17:driman-8α-ol HREIMS M⁺ $\delta_{\rm H}$ 2.90 (brs)

NOE

Obserd: 206.2038 (-H₂O) Calc.: 206.2035 $[\alpha]_{D}^{25}$ = -6.79 (EtOH c=0.01)

R_f vakue 0.37 (Hexane/EtOAC=100:20)

No	¹ H	¹³ C	No	$^{1}\mathrm{H}$	¹³ C
1	0.85 (m); 1.63 (m)	39.99	9	1.22 (m)	55.7
2	1.45 (m); 1.60 (m)	18.97	10		37.8
3	1.19 (m); 1.45 (m)	42.17	11	1.015 (3H, d, <i>J</i> =7.0 Hz)	7.4
4		33.26	12	1.13(3H, s)	23.2
5	0.87 (m)	56.14	13	0.959 (3H, s)	33.5
6	1.18 (m); 1.57 (m)	20.73	14	0.887 (3H, s)	21.7
7	1.39(ddd, 3.9, 12.7, 12.7); 1.89(ddd, 3.2,3.2, 12.7)	44.88	15	0.800 (3H, s)	14.4
8		72.25	OH	2.90 (br s) <i>a</i>	

a This OH signal was observed in acetone d_{6} , the chemical shift is expressed in relative to the solvent peak (2.04 ppm for ¹H NMR)

(3) ¹H-NMR spectrum of product **17** in acetone- d_6

(4) ¹³C-NMR spectrum of product **17** in acetone- d_6

S10

.

(1) EIMS spectrum of product 18

(2) NMR data analyses and other data for 18

Product 18

 $[\alpha]_D^{25}$ = -32.1(C₆H₆) c=0.037 HRMS M⁺ Observed:206.2022 (-H₂O) Calculated:206.2035

No NOE

COSY & HOHAHA

Chemical shifts in aceton d₆, the solvent peak:¹H,2.04ppm, ¹³C,29.80ppm

No	$^{1}\mathrm{H}$	¹³ C	No	$^{1}\mathrm{H}$	¹³ C
1	0.82 (m); 1.68 (m)	40.82	9	1.01(1H, q, <i>J</i> =7.2 Hz)	53.58
2	1.35 (m); 1.59 (m)	19.31 ^a	10		38.65
3	1.14 (ddd, <i>J</i> =13.6,	42.77	11	0.888 (3H, d, <i>J</i> =6.8 Hz)	7.88
4	13.6,4.4); 1.36 (m)	33.88	12	1.08(3H, s)	31.41
5	0.87 (m)	56.89	13	0.862 (3H, s)	34.00
6	1.42 (m); 1.59 (m)	19.25	14	0.846 (3H, s)	22.19
7	1.43(m);1.76(m)	43.62	15	0.974(3H, s)	14.88
8		71.84	ОН	2.69 (br s) b	

a, The two carbon signals are exchangeable due to the close values.

b This OH signal was observed in acetone d6, the chemical shift is expressed in relative to the solvent peak (2.04 ppm for 1H NMR)

(3) ¹H-NMR spectrum of product **18** in aceteone- d_6

13C -NMR spectrum of product 18 in aceteone- d_6

(1) EIMS spectrum of product **19**

HREIMS M⁺ Obserd: 206.2038 Calc.: 206.2035

$$\begin{split} & [\alpha]_D{}^{25} = +22.7 \ (C_6H_6, c{=}0.01) \\ & \text{lit. value } +62 \ (\text{the solvent and} \\ & \text{concentration, not desribed}); \text{RM} \\ & \text{Carmans and W. Craig, Aust. J.} \\ & \text{Chem., 1971, } \textbf{24, 361{-}370.}) \end{split}$$

The solvent peaks: 7.28 ppm for ¹H-NMR; 128.0 ppm for ¹³C-NMR

No	$^{1}\mathrm{H}$	¹³ C	No	$^{1}\mathrm{H}$	¹³ C
1 2	1.85 (m); 1.17(ddd, 12.8, 12.8, 3.6Hz) 1.73(m);1.52(m) ^b	37.26 19.50 ^a	9 10 11		136.2 38.50 19.83
3 4 5	1.51 (m); 1.24 (m) 1.28 (m)	42.03 33.41 51.85	11 12 13	1.67 (3H, s) 1.02 (3H, s)	19.83 33.43
6 7 8	1.73(m);1.52(m) b 2.10 (m); 1.53 (m)	19.48 <i>a</i> 34.05 124.3	14 15	0.985 (3H, s) 1.12 (3H, s)	21.79 19.50

The signals of a and b are indistinguishable due to the very close values.

(1) EIMS spectrum of product 20

(2) NMR data analyses and other data for 20

HRMS M⁺ Observed:206.2040 Calculated:206.2035

 $[\alpha]_{D}^{25} = -10.7(C_{6}H_{6})$ c=0.014(g/dI) $\longrightarrow NOESY$ HMBC COSY

13 ¹⁴ **20**:unnatural (20%) (rearranged drimane skeleton) like a clerodane diterpene skeleton, which was named quasiclerodane

Chemical shifts in C₆D₆ (400 MHz), relative to the solvent peak of C₆D₆.¹H 7.28ppm, ¹³C 128.0ppm

No	$^{1}\mathrm{H}$	¹³ C	No	¹ H	¹³ C
1	1.56 (m); 1.75 (m)	19.28	9		36.55
2	2.14 (2H, m)	27.59	10	1.27 (dd, 12.0,1.8Hz)	52.91
3	5.36 (br s)	120.99	11	1.011 (3H, s)	29.30
4		143.85	12	0.963 (3H, d, <i>J</i> =6.8Hz)	16.64
5		38.48	13	1.72 (d, <i>J</i> =1.2Hz)	18.27
6	1.27 (m); 1.72(m)	30.03	14	1.107 (3H, s)	19.62
7	1.28 (m); 1.42(m)	28.04	15		16.72
8	1.24(m)	42.69	15	0.809 (3H, s)	10.72

S14

The carbon signals of C12 and C15 may be interchangeable due to the close

(3) ¹H-NMR spectrum of **20** in C_6D_6

(4) ¹³C-NMR spectrum of **20** in C_6D_6

(5) 1 H- 1 H COSY of product **20** P. W.Spel-1 ##\$\$1984 #¥#\$\$98 BB\$\$\$\$\$\$ Ë C. 6 124.3 % . Ø . ø

S16

8

(6) HOHAHA spectrum of 20 in C_6D_6

(7) NOESY spectrum of 20 in C_6D_6

(8) HMQC spectrum of 20 in C_6D_6

(9) HMBC spectrum of 20 in C_6D_6

(10) HMBC spectrum (expanded region) of 20 in C_6D_6

(1) EIMS spectrum of product 21

(2) NMR data analyses and other spectral data of 21

NMR data, ∂ ppm in C₆D₆ relative to C₆D₆ : ¹H ; 7.28 ppm , ¹³C ; 128.0 ppm

N	О. ¹ н	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	1.52(bd,12.2Hz);0.74(m)	39.07	8		76.77	15	7.18(m)	117.5
2	1.63(m);1.44(m)	19.87	9	1.59(m)	52.12	16	7.18(m)	127.6
3	1.41(m);1.14(m)	41.99	10	—	36.77	17 7	.16(bd. <i>J</i> =7.6Hz) 130.1
4	—	33.15	11	2.54(2H,d,9.0Hz)	22.55	18	0.914(3H,s)	33.45
5	0.89(m)	55.97	12	—	122.4	19	0.863(3H,s)	21.66
6	1.60(m);1.23(m)	18.73	13	_	154.0	20	0.757(3H,s)	14.89
7	1.86 (ddd, <i>J</i> =13.0, 13.0, 4.0 Hz) 2.16 (ddd. <i>J</i> =12.5, 3.2, 3.2 Hz)	41.48	14	6.99(m)	119.9	21	1.216(3H,s)	20.95

(3) ¹H-NMR spectrum of product **21**

(1) EIMS spectrum of Product 22

(2) NMR data analyses and other data of product 22

NC	D. ¹ Н	¹³ C	NO.	1H	¹³ C	NO.	¹ H	¹³ C
1 1.	94(bd,11.6Hz); 17(ddd, 3,6,13,2,13,2F	39.72	8	—	135.8	15 7	.08 (t, 7.6 Hz)	127.7
2	1.60)m): 1.30 (m)	19.30	92	2.56(bd, <i>J</i> =8.0 Hz	54.51	16	6.98(t,7.6Hz	:) 120.7
3	1.53(m);1.31(m)	42.58	10		37.17	17 7	7.32 (d, 7.6 Hz	130.2
4	—	33.16	11	2.93(m); 2.76(d,15.2Hz)	26.49	18	1.01(3H,s)	33.47
5	1.41(m)	50.45	12		130.3	19	0.998(3H,s)	22.13
6	2.08(2H, m)	24.97	13		153.8	20	1.04(3H,s)	14.09
7	5.57(bs)	122.4	14	6.39 (m)	115.3	21	1.77(3H,s)	22.69

(3) ¹H-NMR spectrum of product **22**

(4) ¹³C-NMR spectrum of product **22**

(1) EIMS spectrum of Product 23

(2) NMR data analyses and other data of product 23

NC	D. ¹ Н	¹³ C	NO.	¹ H	¹³ C	NO	. ¹ H	¹³ C
1 1	.91(d,12.0Hz);1.17(m)	39.20	8		149.0	15	7.03(t,7.51Hz)	126.6
2	1.63(m);1.52(m)	19.47	9	2.22(br m)	56.08	16	6.83(t,7.5Hz)	120.5
31.	.41(d,12.0Hz);1.19(m)	42.21 a	10	_	40.29	17	7.10 (d,7.5Hz)	129.9
4	—	33.67	11	2.75(2H, d,8.8 Hz)	23.71	18	0.885(3H,s)	33.64 ^a
5	1.20(m)	55.74	12		128.3	19	0.834(3H,s)	21.76
6	1.76(m);1.37(m)	24.48	13		153.6	20	0.820(3H,s)	14.51
7 ²	2.38(d,12.7Hz); 2.03(ddd,4.2,12.7,12.7)	38.29	14	6.72 (d,7.5Hz)	115.2	21	4.82(s); 4.71(s)	107.5

(3) ¹H-NMR spectrum of product **23**

12.Spectroscopic data of product 24-acetate (25)

(1) EIMS Spectrum of Prduct 24-Acetate (25)

(2) NMR data analyses and other data of product 24 acetate

N	О. ¹ Н	¹³ C	NO.	¹ H	¹³ C	NO	. ¹ H	¹³ C
1	1.37 (m); 0.83 (m)	36.80	8	_	76.43	15	7.18(m)	117.5
2	1.82(m);1.64(m)	23.84	9	1.47(m)	51.59	16	7.18(m)	127.6
3	4.70 (dd, 12.0, 4.8 Hz)	80.06	10		36.30	17	7.15(bd. <i>J</i> =8.0Hz)	130.0
4	—	37.76	11	2.44 (2H, m)	22.49	18	0.931(3H,s)	28.02
5	0.86(m)	54.80	12		122.4	19	0.931(3H,s)	16.78
6	1.52 (2H, m)	19.36	13	—	154.0	20	0.687(3H,s)	14.88
7	2.13(m); 1.79 (m)	41.22	14	6.99(m)	120.0	21	1.167 (3H, s	20 .77 ^{<i>a</i>}
						22		169.8
						23	1.87 (3H, s)	20.81 ^a

The carbon signals marked with *a* may be exchangeable.

(4) 13 C-NMR spectrum of product **24** acetate (**25**)

13. Polycyclization reactions of 28, 31 and 32 by SHC enzyme.

- 28: R=H, complete cyclized product (33% yield)
- **31:** R=indole, 6/6/5-fused tricyclic **33** and 6/6-fused-bicyclic products**34** (7.5% yield)
- 32: R=pyrrole, 6/6/5-fused tricyclic 35 and 6/6-fused-bicyclic products 36 (1.1% yield)

33: 6/6/5-fused tricyclic product

Remark: The double bond at C13-C14 Remark: The double bond a C15-C14 must be of *E*-geometry, but the following original paper was erroneously depicted in Z-form (H. Tanaka et a., *Org. Lett.*, 2005, 7, 5873-5876 (ref. 26).

Н ĒĤ

36: 6/6-fused-bicyclic product

Remark: The double bond at C13-C14 must be of *E*-geometry, but the following original paper was erroneously depicted in *Z*-form (H. Tanaka et a., *Tetrahedron Lett.*, 2006, **47**, 3085-3089 (ref. 27).

