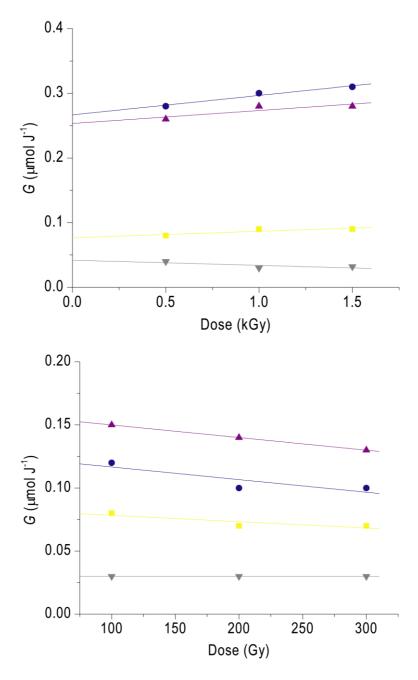

SUPPORTING INFORMATION


Revisiting the reaction of hydroxyl radicals with 1,2-diols in water

Dong Jiang, ^a Sebastián Barata-Vallejo, ^b Bernard T. Golding, ^a* Carla Ferreri ^b and Chryssostomos Chatgilialoglu ^b*

^a School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, UK. E-mail: b.t.golding@newcastle.ac.uk; Fax + 44 (0)191 222 6929; Tel: + 44 (0)191 222 6647 ^b ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, I-40129 Bologna, Italy. E-mail: chrys@isof.cnr.it; Fax: +39 051 639 8349; Tel: +39 051 639 8309

Figure S1 Radiation chemical yields (*G*) of HCHO (∇), CH₃CHO (\bullet), acetone (\triangle) and CH₃CH₂CHO (\blacksquare) vs dose from the experiments of 0.2 M (upper) and 2.0 M (lower) propane-1,2-diol (cf. Figure 3). The *G* values extrapolated to zero dose are reported in Table 2.

Figure S2 Radiation chemical yields (G) of 3-hydroxybutan-2-one (\blacksquare), CH₃CHO (\bullet), butan-2-one (\blacksquare) and unknown carbonyl product (\blacktriangledown) vs dose from the experiments of 0.2 M (upper) and 2.0 M (lower) butane-2,3-diol (cf. Figure 4). The G values extrapolated to zero dose are reported in Table 3.