## **Supporting information**

## Short-RNA selective binding of oligonucleotides modified using adenosine and guanosine derivatives that possess cyclohexyl phosphates as substituents

Kohji Seio,\* Sayako Kurohagi, Erika Kodama, Hirosuke Tsunoda, Akihiro Ohkubo,

Mitsuo Sekine\*

Department of Life Science, Tokyo Institute of Technology.

4259 Nagatsuta-cho, Yokohama, Japan 226-8501

kseio@bio.titech.ac.jp; msekine@bio.titech.ac.jp

| General Methods                                                             | S3  |
|-----------------------------------------------------------------------------|-----|
| Figure S1. Partial atomic charges of the base moiety of dG <sup>CmcmP</sup> | S3  |
| Scheme S1. Preparation of ON-7                                              | S4  |
| Scheme S2. Preparation of ON-9 and ODN-1                                    | S5  |
| <sup>1</sup> H-NMR chart of <b>2</b>                                        | S6  |
| <sup>13</sup> C-NMR chart of <b>2</b>                                       | S7  |
| <sup>1</sup> H-NMR chart of <b>4</b>                                        | S8  |
| <sup>13</sup> C-NMR chart of <b>4</b>                                       | S9  |
| <sup>1</sup> H-NMR chart of <b>5</b>                                        | S10 |
| <sup>13</sup> C-NMR chart of <b>5</b>                                       | S11 |
| <sup>31</sup> P-NMR chart of <b>5</b>                                       | S12 |
| <sup>1</sup> H-NMR chart of <b>6</b>                                        | S13 |
| <sup>13</sup> C-NMR chart of <b>6</b>                                       | S14 |
| <sup>1</sup> H-NMR chart of <b>8</b>                                        | S15 |
| <sup>13</sup> C-NMR chart of <b>8</b>                                       | S16 |
| <sup>1</sup> H-NMR chart of <b>9</b>                                        | S17 |
| <sup>13</sup> C-NMR chart of <b>9</b>                                       | S18 |
| <sup>31</sup> P-NMR chart of <b>9</b>                                       | S19 |
| <sup>1</sup> H-NMR chart of <b>10a</b>                                      | S20 |
| <sup>13</sup> C-NMR chart of <b>10a</b>                                     | S21 |
| <sup>1</sup> H-NMR chart of <b>11a</b>                                      | S22 |
| <sup>13</sup> C-NMR chart of <b>11a</b>                                     | S23 |
| <sup>1</sup> H-NMR chart of <b>12a</b>                                      | S24 |
|                                                                             |     |

| <sup>13</sup> C-NMR chart of <b>12a</b>  | S25          |
|------------------------------------------|--------------|
| <sup>1</sup> H-NMR chart of <b>13a</b>   | S26          |
| <sup>13</sup> C-NMR chart of <b>13a</b>  | S27          |
| <sup>31</sup> P-NMR chart of <b>13a</b>  | S28          |
| <sup>1</sup> H-NMR chart of <b>10b</b>   | S29          |
| <sup>13</sup> C-NMR chart of <b>10</b> h |              |
| <sup>1</sup> H-NMR chart of <b>11b</b>   | \$31         |
| <sup>13</sup> C-NMR chart of <b>11b</b>  |              |
| <sup>1</sup> H-NMR chart of <b>12b</b>   | \$33         |
| <sup>13</sup> C-NMR chart of <b>12b</b>  | S34          |
| <sup>1</sup> H-NMR chart of <b>13b</b>   | \$35         |
| <sup>13</sup> C NMP chart of <b>13b</b>  | \$36<br>\$36 |
| <sup>31</sup> D NMD short of <b>13</b> b | 330<br>827   |
| P-INVIK CHart OF 130                     | 33/          |

## General methods

The dry solvents were purchased and stored over molecular sieves 4A. <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR spectra were obtained at 500, 126, and 203 MHz, respectively. The chemical shifts were measured from CDCl<sub>3</sub> (7.26 ppm), DMSO-*d*<sub>6</sub> (2.50 ppm) for <sup>1</sup>H NMR, CDCl<sub>3</sub> (77.0 ppm), DMSO-*d*<sub>6</sub> (39.5 ppm) for <sup>13</sup>C NMR and 85% phosphoric acid (0.0 ppm) for <sup>31</sup>P NMR. Oligonucleotides were purified on anion-exchange high performance liquid chromatography (HPLC) at 50 °C with a linear gradient (10–67%) of solvent I (1 M NaCl in 25 mM phosphate buffer (pH 6.0)) in solvent II (25 mM phosphate buffer (pH 6.0)) was used at a flow rate of 1.0 mL/min for 40 min. MALDI-TOF mass was performed using 3-hydoroxypicolinic acid (100 mg/mL) in H<sub>2</sub>O-diammoniumhydrogen citrate (100 mg/mL) in H<sub>2</sub>O (10 : 1, v/v) as a matrix.



Figure S1. AMBER atom types and the partial charges of the base moiety of dG<sup>CmcmP</sup>.



**Reagents and conditions**: i) **13b**, Activator42, CH<sub>3</sub>CN, then 0.1 M DMAP, Ac<sub>2</sub>O-pyridine (1:9, v/v); ii) 0.5 M NH<sub>2</sub>NH<sub>2</sub>/pyridine-AcOH (3:2, v/v); iii) {(*i*-Pr)<sub>2</sub>N-P(OCE)(OCH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>ODMTr), *I*H-tetrazole, CH<sub>3</sub>CN, 1 min}x2, then 0.1 M I<sub>2</sub>/pyridine-H<sub>2</sub>O (9:1, v/v); iv) 28% aq. NH<sub>3</sub> 8h, then 2% aq. TFA on C18-cartridge column.

**SCHEME S1.** Preparation of **ON-7** incorporating  $A_m^{ChcmP}$ .



Reagentsandconditions:i)3%dichloroaceticacid/CH2Cl2;ii) ${(i-Pr)_2N-P(OCE)(OCH_2CH_2SO_2CH_2CH_2ODMTr), 1H-tetrazole, CH_3CN, 1 min}x2, then 0.1 M I_2/pyridine-H_2O(9:1, v/v); iv) 28% aq. NH_3, then 2% aq. TFA on C18-cartridge column.$ 

Scheme S2. Preparation of ON-9 and ODN-1.



. . . ...... . dazatırılar Т о ZΙ 夷 2 0=





mdd

0



uđđ 20 ----÷--... . 30 ٠--**4**0 ~ --... 50 ----\_ 60 . 70 80 . -. 6 •---•-100 ,.... -**I** 1\_1\_1 О --110 т •---•• .... Ö -120 2 +-130 F .---⊷ DMTro •---13C-NMR ---140 -. 150 ---160



Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011























Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011







uidd 0 20 -----40 60 80 100 OLev 120 £ o 140 11a ŻΪ ž O: 160 ÓTBDMS z o 180 13C-NMR TBDMS0-200







mqq ないないでしたいできょうないできたいできたいたいできたのできっていましたがあ 20 **4**0 60 80 100 oLev 120 f 140 C 13a 160 O= .p~N(i-Pr)<sub>2</sub> z о ОСШ 180 Ó ó

<sup>13</sup>C-NMR

DMTro-

200







Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011















