Supporting Information

Synthesis and Oligomerization of Fmoc/Boc-Protected PNA Monomers of 2,6-Diaminopurine, 2-Aminopurine and Thymine

André St. Amant and Robert H.E. Hudson* Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7

Table of Contents

S2.	Table of Contents
S3.	General Remarks & mass spec of PNA1 & PNA2
S4.	'H NMR of 1 & 'H NMR of 1
S5.	¹ H NMR of 2 & ¹³ C NMR of 2
S6.	¹ H NMR of 3 & ¹³ C NMR of 3
S7.	¹ H NMR of 4 & ¹³ C NMR of 4
S8.	¹ H NMR of 5 & ¹³ C NMR of 5
S9.	¹ H NMR of 6 & ¹³ C NMR of 6
S10.	¹ H NMR of 7 & ¹³ C NMR of 7
S11.	¹ H NMR of 8 & ¹³ C NMR of 8
S12.	¹ H NMR of 9 & ¹³ C NMR of 9
S13.	¹ H NMR of 10 & ¹³ C NMR of 10
S14.	¹ H NMR of 11a & ¹³ C NMR of 11a
S15.	¹ H NMR of 12 & ¹³ C NMR of 12
S16.	¹ H NMR of 13 & ¹³ C NMR of 13
S17.	¹ H NMR of 14 & ¹³ C NMR of 14
S18.	HPLC chromatogram trace PNA1
S19.	HPLC chromatogram trace PNA2

General Remarks. All chemicals were obtained from commercial sources and were of ACS reagent grade or higher and were used without further purification. Solvents for solution-phase chemistry were dried by passing through activated alumina columns. Flash column chromatography (FCC) was performed on Merck Kieselgel 60, 230-400 mesh. Thin layer chromatography (TLC) was performed on Merck Kieselgel 60 TLC plates. Chemical shifts are reported in parts per million (δ), were measured from Tetramethylsilane (0 ppm) and are referenced to the solvent CDCl₃ (7.26 ppm), DMSO-*d6* (2.49 ppm), D₂O (4.79 ppm) for ¹H NMR and CDCl₃ (77.0 ppm), DMSO-*d6* (39.5 ppm) for ¹³C NMR. Multiplicities are described as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br s (broad singlet). Coupling constants (*J*) are reported in Hertz (Hz). Resonances due to restricted rotation around the amide bond (rotamers) are reported as major (ma.) and minor (mi.). High resolution mass spectra (HRMS) were obtained using electron impact (EI) or electrospray ionization (ESI).

PNA1. HRMS (ESI) calculated for $C_{155}H_{204}N_{74}O_{47}$: $[M + 3H^+]$ 1285.5361, Found 1285.8582; $[M + 4H^+]$ 964.404, Found 964.6530.

PNA2. HRMS (ESI) calculated for $C_{125}H_{161}N_{67}O_{35}$: $[M + 3H^+]$ 1054.4371, Found 1054.7417; $[M + 4H^+]$ 791.0798, Found 791.3110.

¹³C NMR (101 MHz, CDCl₃) of **3**

 1 H NMR (400 MHz, CDCl₃) of **5**

0.1

0

220

200

180

160

140

S12

Chemical Shift (ppm)

120

100

67

80

36.74

60

47.44

40

20

-20

ידי 0

¹H NMR (400 MHz, acetone-d6) of **10**

¹³C NMR (101 MHz, acetone-d6) of **10**

¹H NMR (400 MHz, CDCl₃) of **11a**

¹H NMR (400 MHz, CDCl₃) of **13**

¹H NMR (400 MHz, CDCl₃) of **14**

HPLC trace of crude PNA1

UPLC trace of purified PNA1

HPLC trace of crude PNA2

UPLC trace of purified PNA2

