Synthesis and Reactivity of a Bis-Sultone Cross-Linker for Peptide Conjugation and [¹⁸F]-Radiolabelling *via* Unusual "Double Click" Approach

Thomas Priem,^{*a,b*} Cédric Bouteiller,^{**a*} David Camporese,^{*a*} Anthony Romieu,^{*b,c*} and Pierre-Yves Renard^{*b,c,d*}

^aAdvanced Accelerator Applications, 20 Rue Diesel, 01630 Saint-Genis-Pouilly, France Fax: +33-4-50-99-30-71 Phone: +33-4-50-99-30-70 E-mail: <u>cedric.bouteiller@adacap.com</u> Web site: <u>http://www.adacap.com</u>

^bEquipe de Chimie Bio-Organique, COBRA-CNRS UMR 6014 & FR 3038, rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France Lab homepage: <u>http://ircof.crihan.fr</u>

^cUniversité de Rouen, Place Emile Blondel, 76821 Mont-Saint-Aignan, France

^dInstitut Universitaire de France, 103 Boulevard Saint-Michel, 75005, Paris, France

SUPPORTING INFORMATION

Abbreviations	S1
Experimental procedures	S1
RP-HPLC elution profile (system A) of 1-phenylacyl-1,3-propanesultone 1	S4
RP-HPLC elution profile (system A) of 1-benzyl-1,3-propanesultone 2	S4
¹ H NMR spectrum of bis-propanesultone 3 recorded in acetone- <i>d</i> ₆ at 300 MHz	S5
13 C NMR spectrum of bis-propanesultone 3 recorded in acetone- d_6 at 75.5 MHz	S5
ESI mass spectrum of bis-sultone 3 recorded in the negative mode. ^a	S6
RP-HPLC elution profile (system A) of bis-sultone 3. ^{<i>a</i>}	S6
RP-HPLC elution profile (system A) of mono-fluoro-propanesultone 4. ^{<i>a</i>}	S7
RP-HPLC elution profile (system A) of mono-fluoro-Boc-L-lysine-NH ₂ conjugate 5. ^a	S7
RP-HPLC elution profile (system A) of mono-fluoro-peptide conjugate 6. ^a	S8
RP-HPLC elution profile (system A) of mono-iodo-propanesultone. ^a	S8
RP-HPLC elution profile (system A) of 1-oxo-1-phenyl-4-(propylamino)butane-2-sulfonic acid	S9
RP-HPLC elution profile (system A) of 4-fluoro-1-oxo-1-phenylbutane-2-sulfonic acid	S9
RP-HPLC elution profile (system A) of 4-chloro-1-oxo-1-phenylbutane-2-sulfonic acid	. S10
RP-HPLC elution profile (system A) of 4-bromo-1-oxo-1-phenylbutane-2-sulfonic acid	. S10
RP-HPLC elution profile (system A) of 4-iodo-1-oxo-1-phenylbutane-2-sulfonic acid	. S11

Abbreviations

The following abbreviations are used throughout the text of the ESI file: ESI, electrospray ionisation; RP-HPLC, reversed-phase high performance liquid chromatography; rt, room temperature; TFA, trifluoroacetic acid.

Experimental procedures

Mono-iodo-propanesultone

Bis-propanesultone **3** (52.4 mg, 0.14 mmol, 1 equiv.) was dissolved in dry CH₃CN (5 mL). NaI (21 mg, 0.14 mmol, 1 equiv.) in solution in dry CH₃CN (8 mL) was then slowly added. The resulting reaction mixture was stirred at rt and the reaction was checked for completion by RP-HPLC (system A). After 6 h, the reaction was stopped to avoid significant formation of the non-desired bis-iodo derivative. The crude product was then dissolved with aq. TFA and purified by RP-HPLC (system B, 1 injection, $t_R = 35.0-41.5$ min). The product-containing fractions were lyophilised to give the mono-iodo-propanesultone as an orange solid (33.1 mg, yield 49%, mixture of two racemic diastereomers). δ_H (300 MHz, CD₃OD) 8.29 (d, *J* 8.7, 2H), 8.23 (d, *J* 8.3, 2H), 5.65 (ddd, *J* 1.9, 6.8, 8.5, 1H), 5.21-5.16 (m, 1H), 4.68-4.54 (m, 2H), 3.25-3.15 (m, 2H), 2.83-2.74 (m, 2H), 2.72-2.60 (m, 2H); δ_C (75.5 MHz, CD₃OD) 195.5, 189.5, 142.2, 139.9, 130.7, 129.9, 69.8, 68.1, 61.5, 34.1, 28.0, 3.4; MS (ESI-): *m/z* 500.93 [M - H]⁻, calcd for C₁₄H₁₅IO₈S₂ 501.93; HPLC (system A): $t_R = 22.8$ and 23.0 min (two racemic diastereomers, purity 90%); λ_{max} (recorded during the HPLC analysis)/nm 265.

Mono-fluoro-oxyamine-peptide conjugate. The same protocol (synthesis and purification) than described for peptide conjugate **6** was used. An aminooxy-dodecapeptide (its sequence is confidential and not disclosed within this article but it contains an aminooxyacetic acid residue) was used as starting material. MS (ESI+): m/z 885.33 [M + 2H]²⁺, 1769.53 [M + H]⁺, calcd for C₇₃FH₁₁₇N₂₂O₂₄S₂ 1768.80; HPLC

(system A): $t_{\rm R} = 20.9$ min (four diastereomers, purity 68%); $\lambda_{\rm max}$ (recorded during the HPLC analysis)/nm 269.

General procedure for the nucleophilic ring-opening of monosultones 1 and 2. In a round bottom flask were introduced one equivalent of the nucleophile (halide, amine, alcohol, thiol or amino-acid derivatives) dissolved in CH₃CN (with a small amount of deionised water or DMF if complete solubility in CH₃CN was not obtained). The mixture was stirred at room temperature and one equiv. of monosultone (1 or 2) in solution in CH₃CN was then added. The reaction was checked for completion by RP-HPLC (system A), quenched by dilution with aq. TFA and CH₃CN and purified by RP-HPLC (system B, 1 injection).

- For potassium halide salts, 1.1 equivalent of Kryptofix[K222] was added,

- For amino acid hydrochloride derivatives, 1.1 equivalent of K₂CO₃ (or Cs₂CO₃) was added.

1-Oxo-1-phenyl-4-(propylamino)butane-2-sulfonic acid

 $δ_{\rm H}$ (300 MHz, CD₃OD) 7.73-7.63 (m, 5H), 5.07 (t, *J* 8.6, 1H), 4.63-4.56 (m, 1H), 4.37-4.29 (m, 1H), 3.90-3.84 (m, 2H), 2.87-2.77 (m, 2H), 1.93-1.84 (m, 2H), 0.96 (t, *J* 7.3, 3H); $δ_{\rm C}$ (75.5 MHz, CD₃OD) 184.4, 134.6, 130.2, 130.1, 128.4, 73.3, 60.6, 54.6, 25.2, 21.8, 11.1; MS (ESI-): *m/z* 284.20 [M - H]⁻, calcd for C₁₃H₁₉NO₄S 285.10; HPLC (system A): $t_{\rm R}$ = 12.1 min (purity 94%); $λ_{\rm max}$ (recorded during the HPLC analysis)/nm 254.

4-Fluoro-1-oxo-1-phenylbutane-2-sulfonic acid

 $δ_{\rm H}$ (300 MHz, CD₃OD) 8.10 (d, J 7.3, 2H), 7.62 (t, J 7.5, 1H), 7.51 (t, J 7.2, 2H), 5.14 (dd, J 4.1, 9.4, 1H), 4.70-4.28 (m, 2H), 2.76-2.44 (m, 2H); $δ_{\rm C}$ (75.5 MHz, D₂O) 196.8, 139.1, 134.4, 129.6, 128.8, 72.0, 64.7, 55.1; MS (ESI-): *m/z* 245.20 [M - H]⁻, calcd for C₁₀H₁₁FO₄S 246.04; HPLC (system A): *t*_R = 14.1 min (purity 94%); $λ_{\rm max}$ (recorded during the HPLC analysis)/nm 254.

4-Chloro-1-oxo-1-phenylbutane-2-sulfonic acid

 $δ_{\rm H}$ (300 MHz, CD₃OD) 8.11 (d, *J* 7.5, 2H), 7.62 (t, *J* 7.3, 1H), 7.55 (t, *J* 7.4, 2H), 5.20 (dd, *J* 4.5, 8.9, 1H), 3.76-3.47 (m, 2H), 2.74-2.66 (m, 1H), 2.66-2.51 (m, 1H); $δ_{\rm C}$ (75.5 MHz, CD₃OD) 196.5, 139.0, 134.5, 130.3, 129.6, 64.2, 43.7, 33.4; MS (ESI-): *m/z* 261.07 [M -H]⁻, calcd for C₁₀H₁₁ClO₄S 262.01; HPLC (system A): $t_{\rm R} = 17.3$ min (purity 93%); $λ_{\rm max}$ (recorded during the HPLC analysis)/nm 254.

4-Bromo-1-oxo-1-phenylbutane-2-sulfonic acid

 $δ_{\rm H}$ (300 MHz, CD₃OD) 8.10 (d, *J* 7.5, 2H), 7.62 (t, *J* 7.3, 1H), 7.50 (t, *J* 7.9, 2H), 5.21 (dd, *J* 4.5, 8.9, 1H), 3.64-3.57 (m, 1H), 3.44-3.36 (m, 1H), 2.84-2.74 (m, 1H), 2.70-2.60 (m, 1H); $δ_{\rm C}$ (75.5 MHz, CD₃OD) 196.1, 139.0, 134.4, 130.3, 129.5, 65.3, 33.4, 31.9; MS (ESI-): *m/z* 304.93 [M - H]⁻, 418.80 [M + TFA - H]⁻, calcd for C₁₀H₁₁BrO₄S 305.96; HPLC (system A): *t*_R = 17.8 min (purity 84%); $λ_{\rm max}$ (recorded during the HPLC analysis)/nm 254.

4-Iodo-1-oxo-1-phenylbutane-2-sulfonic acid

 $δ_{\rm H}$ (300 MHz, CD₃OD) 8.02 (d, J 7.1, 2H), 7.63 (t, J 7.5, 1H), 7.50 (t, J 7.7, 2H), 5.16 (dd, J 4.5, 8.7, 1H), 3.40-3.14 (m, 2H), 2.82-2.63 (m, 2H); $δ_{\rm C}$ (75.5 MHz, CD₃OD) 196.6, 139.0, 134.5, 130.5, 129.6, 67.3, 34.4, 3.4; MS (ESI-): *m/z* 352.87 [M - H]⁻, calcd for C₁₀H₁₁IO₄S 353.94; HPLC (system A): $t_{\rm R}$ = 19.7 min (purity 98%); $λ_{\rm max}$ (recorded during the HPLC analysis)/nm 254.

RP-HPLC elution profile (system A) of 1-benzyl-1,3-propanesultone 2.

¹H NMR spectrum of bis-propanesultone 3 recorded in acetone-*d*₆ at 300 MHz.

¹³C NMR spectrum of bis-propanesultone 3 recorded in acetone-*d*₆ at 75.5 MHz.

ESI mass spectrum of bis-sultone 3 recorded in the negative mode.^a

^{*a*}hydration of sultone moieties was occurred during the ionisation process.

RP-HPLC elution profile (system A) of bis-sultone 3.^{*a*}

^{*a*}A doublet peak was observed because compound **3** is a mixture of two racemic diastereomers.

RP-HPLC elution profile (system A) of mono-fluoro-Boc-L-lysine-NH₂ conjugate 5.^{*a*}

RP-HPLC elution profile (system A) of mono-fluoro-peptide conjugate 6.^{*a*}

RP-HPLC elution profile (system A) of mono-iodo-propanesultone.^a

^aA doublet peak was observed because this compound is a mixture of two racemic diastereomers.

RP-HPLC elution profile (system A) of 1-oxo-1-phenyl-4-(propylamino)butane-2-sulfonic acid.

RP-HPLC elution profile (system A) of 4-fluoro-1-oxo-1-phenylbutane-2-sulfonic acid.

RP-HPLC elution profile (system A) of 4-chloro-1-oxo-1-phenylbutane-2-sulfonic acid.

RP-HPLC elution profile (system A) of 4-bromo-1-oxo-1-phenylbutane-2-sulfonic acid.

