Electronic Supplementary Information

Transannular Claisen rearrangement reactions for the synthesis of vinylcyclobutanes: formal synthesis of (\pm) -grandisol

Donald Craig, Kiyohiko Funai, Sophie J. Gore, Albert Kang and Alexander V. W. Mayweg

General experimental	2
Synthesis and Claisen rearrangement reactions of lactones 1, 2 and 3	3–19
¹ H spectrum of 1	20
¹³ C nmr spectrum of 1	21
¹ H nmr spectrum of 2	22
13 C nmr spectrum of 2	23
¹ H nmr spectrum of 3	24
13 C nmr spectrum of 3	25
¹ H nmr spectrum of 9	26
¹³ C nmr spectrum of 9	27
¹ H nmr spectrum of 10	28
¹³ C nmr spectrum of 10	29
¹ H nmr spectrum of 11	30
¹³ C nmr spectrum of 11	31
¹ H nmr spectrum of 12	32
¹³ C nmr spectrum of 12	33
¹ H nmr spectrum of 14	34
¹³ C nmr spectrum of 14	35

General experimental

All reactions were performed under nitrogen unless otherwise stated. Melting points were determined using Stuart Scientific SMP1 melting point apparatus and are uncorrected. Infrared spectra were recorded on Mattson 5000 FTIR and Perkin-Elmer Spectrum RX FT-IR System spectrometers. Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded in CDCl3 unless otherwise stated on a Jeol GX-270, Brüker DRX-300, Brüker AV-400 or Brüker AV-500 spectrometer. Chemical shifts are in parts per million (ppm) and are referenced relative to the residual protoncontaining solvent (¹H NMR: 7.26 ppm for CDCl3; ¹³C NMR: 77.0 ppm for CDCl3). Mass spectra (CI, EI and FAB) were recorded using Micromass AutoSpec-Q, Micromass Platform II or Micromass AutoSpec Premier instruments. Elemental analyses were performed at the microanalytical laboratories of the London Metropolitan University. Optical rotations were measured on an Optical Activity Ltd. instrument. Analytical thin layer chromatography (TLC) was performed on pre-coated Aluminium-backed Merck Kieselgel 60 F₂₅₄ plates. Visualisation was effected with ultraviolet light, potassium permanganate or vanillin as appropriate. Column chromatography was performed using BDH (40-63 µm) silica gel unless otherwise stated. Standard solvents were distilled under nitrogen prior to use; Et₂O and THF from sodium-benzophenone ketyl, CH₂Cl₂ from CaH₂ and toluene from sodium. All other solvents were reagent grade. Petrol refers to petroleum ether of the fraction bp 40-60 °C. All liquid reagents were distilled prior to use. BSA was purchased from Alfa Aesar Lancaster and distilled prior to use. Potassium acetate was oven-dried at 120 °C for several days prior to use. Microwave reactions were performed in a Biotage initiator.

Synthesis and Claisen rearrangement reactions of lactones 1, 2 and 3

5-(Tetrahydro-2H-pyran-2-yloxy)pent-2-yn-1-ol

To 4-(tetrahydro-2*H*-pyran-2-yloxy)-1-butyne (6.78 g, 44.0 mmol, 1.0 equiv.) in THF (70 mL) was added *n*BuLi (2.60 M; 16.9 mL, 44.0 mmol, 1.0 equiv.) dropwise at -78 °C. The mixture was stirred at -78 °C for 10 min, then paraformaldehyde (1.58 g, 52.8 mmol, 1.2 equiv.) was added portionwise. The mixture was warmed to rt and stirred for 3 h before being quenched with sat. $NH_4Cl_{(aq)}$. The reaction mixture was poured onto Et₂O and the aqueous layer further extracted with Et₂O (\times 2), dried (MgSO₄), concentrated under reduced pressure and purified by column chromatography (30% EtOAc-petrol) to give 5-(tetrahydro-2H-pyran-2-yloxy)pent-2yn-1-ol (7.87 g, 97%) as a colourless oil; $R_f 0.34$ (50% EtOAc-petrol); v_{max} (film) 3415, 2941, 2871, 2227, 1441, 1353, 1200, 1136, 1120, 1070, 1034, 970, 906, 868 cm⁻¹; δ_H (400 MHz) 4.66 (1H, dd, J 4.0, 3.0 Hz, OCHO), 4.26 (2H, m, CH₂OH), [3.87, 3.56] (4H, 2 × m, OCH₂CH₂C and OCH₂CH₂CH₂), 2.55 (2H, tt, J 7.0, 2.0 Hz, OCH₂CH₂C), 1.89–1.52 (6H, m, OCH₂CH₂CH₂CH₂); δ_C (100 MHz) 98.9 (OCHO), 83.3 (CCH₂OH), 79.4 (CCCH₂OH), 65.7 (OCH₂CH₂C), 62.4 (OCH₂CH₂CH₂), 51.4 (CH₂OH), 30.6 (OCHCH₂CH₂), 25.4 (OCH₂CH₂CH₂), 20.3 (OCH₂CH₂C), 19.5 $(OCH_2CH_2CH_2); m/z$ (CI) 202 $[M+NH_4]^+, 102, 85$ (Found $[M+NH_4]^+, 202.1443.$ $C_{10}H_{16}O_3$ requires $[M+NH_4]^+$, 202.1443).

Methyl 5-(tetrahydro-2H-pyran-2-yloxy)pent-2-ynyl carbonate

To a solution of 5-(tetrahydro-2*H*-pyran-2-yloxy)pent-2-yn-1-ol (7.86 g, 42.6 mmol, 1.0 equiv.) and pyridine (13.7 mL, 171 mmol, 4.0 equiv.) in CH₂Cl₂ (85 mL) at 0 °C was added methyl chloroformate (4.28 mL, 55.4 mmol, 1.3 equiv.) dropwise and the reaction stirred at 0 °C for 1 h. The reaction mixture was then diluted with H₂O, extracted with EtOAc and the organic layers washed with sat. NH₄Cl_(aq) and sat. NaCl_(aq). The combined organic layers were dried (MgSO₄), concentrated under reduced pressure and purified by column chromatography (30% EtOAc–petrol) to give methyl 5-(tetrahydro-2*H*-pyran-2-yloxy)pent-2-ynyl carbonate (9.93 g, 96%) as a colourless oil; R_f 0.63 (50% EtOAc–petrol); v_{max} (film) 2944, 1754, 1444, 1376, 1263, 1122, 1070, 1033, 951 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 4.74 (2H, t, *J* 2.0 Hz, OCH₂C), 4.65 (1H, t, *J* 3.5 Hz, OCHO), 3.92–3.80 (2H, m, 1 × OCH₂CH₂C and 1 × OCH₂CH₂CH₂), 2.55 (2H, tt, *J* 7.0, 2.0 Hz, OCH₂CH₂CH₂C), 1.88–1.53 (6H, m, OCH₂CH₂CH₂CH₂); $\delta_{\rm C}$ (100 MHz)

155.4 (C=O), 98.8 (OCHO), 85.3 (CCH₂O), 74.4 (CCH₂CH₂O), 65.3 (OCH₂CH₂C), 62.2 (OCH₂CH₂CH₂), 56.1 (OCH₂C), 55.0 (OCH₃), 30.5 (OCHCH₂CH₂), 25.4 (OCH₂CH₂CH₂), 20.3 (OCH₂CH₂C), 19.4 (OCH₂CH₂CH₂); m/z (CI) 260 [M+NH₄]⁺, 102, 85 (Found [M+NH₄]⁺, 260.1504. C₁₂H₁₈O₅ requires [M+NH₄]⁺, 260.1498) (Found: C, 59.53; H, 7.41. C₁₂H₁₈O₅ requires C, 59.49; H, 7.49%).

5-Hydroxypent-2-ynyl methyl carbonate

A solution of 5-(tetrahydro-2*H*-pyran-2-yloxy)pent-2-ynyl carbonate (1.77 g, 7.3 mmol, 1.0 equiv.) and pyridinium *p*-toluenesulfonate (184 mg, 0.73 mmol, 10 mol%) in EtOH (35 mL) was stirred at 55 °C for 2 h. The reaction mixture was allowed to cool, concentrated under reduced pressure and purified by column chromatography (40% EtOAc–petrol) to give 5-hydroxypent-2-ynyl methyl carbonate (9.72 g, 93%) as a colourless oil; R_f 0.35 (50% EtOAc–petrol); v_{max} (film) 3400, 2958, 2888, 2236, 1752, 1447, 1377, 1266, 1149, 1046, 956, 902, 791 cm⁻¹; δ_{H} (400 MHz) 4.76 (2H, t, *J* 2.0 Hz, OCH₂C), 3.83 (3H, s, CH₃), 3.75 (2H, q, *J* 6.0 Hz, CH₂OH), 2.53 (2H, tt, *J* 6.0, 2.0 Hz, CH₂CH₂OH), 1.96 (1H, t, *J* 6.0 Hz, OH); δ_{C} (100 MHz) 155.4 (C=O), 85.1 (CCH₂O), 75.6 (CCH₂CH₂), 60.9 (CH₂OH), 56.1 (CCH₂O), 55.2 (OCH₃), 23.2 (CCH₂CH₂); *m/z* (CI) 176 [M+NH₄]⁺, 102 (Found [M+NH₄]⁺, 176.0922. C₇H₁₀O₄ requires [M+NH₄]⁺, 176.0923) (Found: C, 53.22; H, 6.35. C₇H₁₀O₄ requires C, 53.16; H, 6.37%).

(Z)-5-Hydroxypent-2-enyl methyl carbonate

To 5-hydroxypent-2-ynyl methyl carbonate (3.12 g, 19.8 mmol, 1.0 equiv.) in THF (120 mL) was added Lindlar's catalyst (156 mg, 5% wt.). With vigorous stirring the reaction vessel was flushed with a balloon of H₂ then allowed to stir for 1 h under a slight positive pressure of H₂. The reaction mixture was then filtered through celite, concentrated under reduced pressure and purified by column chromatography (20–30% EtOAc–petrol) to give (*Z*)-5-hydroxypent-2-enyl methyl carbonate (2.81 g, 89%) as a colourless oil; R_f 0.31 (50% EtOAc–petrol); v_{max} (film) 3400, 2958, 1749, 1444, 1363, 1265, 1050, 948, 792 cm⁻¹; δ_H (400 MHz) 5.74 (2H, m, *CH=CH*), 4.73 (2H, d, *J* 5.5 Hz, OC*H*₂CH), 3.80 (3H, s, CH₃), 3.71 (2H, q, *J* 6.0 Hz, *CH*₂OH), 2.44 (2H, q, *J* 6.0 Hz, *CH*₂OH), 1.74 (1H, t, *J* 5.5 Hz, OH); δ_C (100 MHz) 155.9 (C=O), 132.0, 125.7 (CH=CH), 63.6 (CH₂OH), 61.7 (CHCH₂O), 54.9 (OCH₃), 31.1 (*C*H₂CH₂OH);

m/*z* (CI) 178 [M+NH₄]⁺ (Found [M+NH₄]⁺, 178.1082. C₇H₁₂O₄ requires [M+NH₄]⁺, 178.1079) (Found: C, 52.59; H, 7.57. C₇H₁₂O₄ requires C, 52.49; H, 7.55%).

(Z)-5-(Methoxycarbonyloxy)pent-3-enyl methanesulfonate

A solution of (*Z*)-5-hydroxypent-2-enyl methyl carbonate (1.00 g, 6.24 mmol, 1.0 equiv.) in CH₂Cl₂ (30 mL) was treated with NEt₃ (2.61 mL, 18.7 mmol, 3.0 equiv.) and MsCl (0.97 mL, 12.5 mmol, 2.0 equiv.) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min, washed with 2 M aq. HCl (× 2) and sat. aq. NaHCO₃ (× 2). The organic phase was dried (MgSO₄) and concentrated under reduced pressure to give (*Z*)-5-(methoxycarbonyloxy)pent-3-enyl methanesulfonate as an orange oil, which was used crude in the next step; R_f 0.51 (50% EtOAc–petrol); v_{max} (film) 3027, 2960, 1749, 1444, 1353, 1268, 1174, 956, 915, 794, 734 cm⁻¹; δ_{H} (400 Hz) 5.72 (2H, m, *CH=CH*), 4.69 (2H, d, *J* 6.5 Hz, OC*H*₂CH), 4.26 (2H, t, *J* 6.5 Hz, CH₂OS), 3.79 (3H, s, OCH₃), 3.02 (3H, s, SCH₃), 2.61 (2H, q, *J* 6.5 Hz, CH₂CH₂O); δ_{C} (100 MHz) 155.9 (C=O), 129.4, 127.0 (CH=CH), 68.6 (CH₂OS), 63.4 (CHCH₂O), 55.1 (OCH₃), 37.7 (SCH₃), 27.8 (*C*H₂CH₂OH); *m/z* (CI) 256 [M+NH₄]⁺, 178, 52 (Found [M+NH₄]⁺, 256.0858. C₈H₁₄O₆S requires [M+NH₄]⁺, 256.0855).

(Z)-5-Iodopent-2-enyl methyl carbonate 5

To (*Z*)-5-(methoxycarbonyloxy)pent-3-enyl methanesulfonate (1.41 g, 5.93 mmol, 1.0 equiv.) in MeCN (20 mL) was added sodium iodide (1.78 g, 11.9 mmol, 2.0 equiv.) and the mixture stirred at 70 °C for 16 h. The reaction was then cooled and divided between Et₂O and H₂O. The combined organic layers were washed with sat. aq. Na₂S₂O₃, dried (MgSO₄) and concentrated under reduced pressure to give (*Z*)-5-iodopent-2-enyl methyl carbonate **5** as a colourless oil, which was used crude in the next step; R_f 0.79 (50% EtOAc–petrol); v_{max} (film) 2956, 1748, 1443, 1362, 1263, 1175, 965, 903, 791 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 5.72 (1H, m, C*H*CH₂O), 5.63 (1H, m, C*H*CH₂CH₂I), 4.67 (2H, d, *J* 7.0 Hz, OCH₂), 3.78 (3H, s, CH₃), 3.17 (2H, t, *J* 7.0 Hz, CH₂I), 2.72 (2H, dt, *J* 7.0, 6.5 Hz, CH₂CH₂I); $\delta_{\rm C}$ (100 MHz) 155.7 (C=O), 133.6, 125.2 (3°), 63.4 (OCH₂), 54.8 (OCH₃), 31.4 (CH₂CH₂I), 4.2 (CH₂I); *m/z* (CI) 288 [M+NH₄]⁺, 288.0097).

(Z)-Methyl 7-(methoxycarbonyloxy)-2-tosylhept-5-enoate

Sodium hydride (300 mg, 7.49 mmol, 1.2 equiv.) suspended in THF (10 mL) at 0 °C was treated with methyl tosylacetate (1.42 g, 6.24 mmol, 1.0 equiv.) in THF (7.5 mL) followed by a solution of crude **5** (1.49 g, 6.24 mmol, 1.0 equiv.) in THF (7.5 mL). The reaction mixture was stirred at 0 °C for a further 30 min, then at rt for 16 h. The solution was concentrated under reduced pressure and the crude product suspended in EtOAc, washed with sat. aq. NH₄Cl, H₂O and sat. aq. NH₄Cl. The organic phase was dried (MgSO₄), concentrated under reduced pressure to give (*Z*)-methyl 7-(methoxycarbonyloxy)-2-tosylhept-5-enoate as a colourless oil, which was used crude in the next step; $R_f 0.55$ (50% EtOAc–petrol).

(Z)-Methyl 7-hydroxy-2-tosylhept-5-enoate

To a solution of (Z)-methyl 7-(methoxycarbonyloxy)-2-tosylhept-5-enoate (1.0 g, 2.79 mmol, 1.0 equiv.) in dry MeOH (14 mL) at 0 °C was added K₂CO₃ (1.93 g, 13.95 mmol, 5.0 equiv.) and the reaction mixture stirred at 0 °C for 2 h. The solvent was removed under reduced pressure and the residue partitioned between 2 M HCl and EtOAc. The aqueous layer was further washed with EtOAc and the combined organic layers dried (MgSO₄), concentrated under reduced pressure and purified by column chromatography (50–75% EtOAc-petrol) to give (Z)-methyl 7-hydroxy-2-tosylhept-5-enoate (382 mg, 43% over 4 steps) as a colourless oil; $R_f 0.20$ (50% EtOAc-petrol); v_{max} (film) 3539, 2952, 1740, 1597, 1436, 1321, 1198, 1147, 1084, 1036, 816, 729, 667, 570 cm⁻¹; δ_H (400 MHz) 7.73 (2H, d, J 8.0 Hz, o-SO₂Ar), 7.36 (2H, d, J 8.0 Hz, m-SO₂Ar), 5.68 (1H, dt, J 11.0 7.0 Hz, CHCH₂OH), 5.38 (1H, dt, J 11.0, 7.0 Hz, SCH₂CH₂CH), 4.01 (2H, d, J 6.5 Hz, CH₂OH), 3.94 (1H, dd, J 10.5, 3.5 Hz, SCH), 3.68 (3H, s, OCH₃), 2.46 (3H, s, ArCH₃), 2.24–1.99 (4H, m, SCHCH₂CH₂); δ_C (100 MHz) 166.6 (C=O), 145.6, 134.0 (4°), 131.1, 129.8, 129.5, 129.3 (3°), 70.1 (SCH), 58.2 (CH₂OH), 53.0 (OCH₃), 26.5 (SCHCH₂CH₂), 24.6 (SCHCH₂), 21.7 (ArCH₃); m/z (CI) 330 [M+NH₄]⁺, 174 (Found [M+NH₄]⁺, 330.1389. C₁₅H₂₀O₅S requires [M+NH₄]⁺, 330.1375) (Found: C, 57.72; H, 6.51. C₁₅H₂₀O₅S requires C, 57.67; H, 6.45%).

(Z)-7-Hydroxy-2-tosylhept-5-enoic acid 7

A solution of (Z)-methyl 7-hydroxy-2-tosylhept-5-enoate (1.45 g, 4.63 mmol, 1.0 equiv.) in THF (11.6 mL) was treated with 2 M LiOH (11.6 mL). The reaction mixture was stirred at rt for 1 h, then partitioned between Et₂O and H₂O and the aqueous layer acidified to pH 1 with 2 M HCl. The aqueous layer was extracted with $Et_2O (\times 3)$ and the organic layers combined, dried (MgSO₄) and concentrated under reduced pressure to give, without further purification (Z)-7-hydroxy-2-tosylhept-5enoic acid 7 (1.45 g, 90%) as a colourless solid, which was used without further purification; v_{max} (film) 3367, 974, 2894, 1725, 1451, 1381, 1319, 1148, 1086, 1049, 880 cm⁻¹; δ_H (400 MHz) 7.76 (2H, d, J 8.0 Hz, o-SO₂Ar), 7.35 (2H, d, J 8.0 Hz, m-SO₂Ar), 7.05 (1H, br s, OH), 5.67 (1H, dt, J 11.0, 7.0 Hz, CHCH₂OH), 5.41 (1H, dt, J 10.5, 7.5 Hz, SCHCH₂CH₂CH), 4.10 (2H, m, CH₂OH), 3.94 (1H, dd, J 9.5, 5.0 Hz, SCH), 2.44 (3H, s, ArCH₃), 2.18 (2H, m, SCHCH₂ and SCHCH₂CH₂), 2.04 (2H, m, SCHCH₂ and SCHCH₂CH₂); δ_{C} (100 MHz) 168.8 (C=O), 145.7, 133.8 (4°), 130.2, 129.8, 129.4 (3°), 70.0 (SCH), 57.9 (CH₂OH), 26.3 (SCHCH₂CH₂), 24.4 (SCHCH₂), 21.7 (ArCH₃); *m/z* (-ve CI) 297 [M-H]⁻, 253, 155 (Found [M-H]⁻, 297.0790. C₁₄H₁₈O₅S requires [M–H]⁻, 297.0797).

(Z)-3-Tosyl-3,4,5,6-tetrahydrooxocin-2-one 1

To a solution of HATU (637 mg, 1.68 mmol, 5.0 equiv.) and DIPEA (598 μ L, 3.35 mmol, 10.0 equiv.) in DMF (10 mL) was added 7 (100 mg, 0.34 mmol, 1.0 equiv.) in DMF (7 mL) *via* syringe pump over a period of 12 h. The reaction mixture was allowed to stir for a further 8 h then extracted with EtOAc (× 3). The combined organic phases were washed sequentially with 2 M aq. HCl_(aq), 2 M aq. NaOH, sat. aq. NaHCO₃ and sat. aq. NaCl, dried (MgSO₄) and concentrated under reduced pressure. Purification by column chromatography (30–80% EtOAc–petrol) gave (*Z*)-3-tosyl-3,4,5,6-tetrahydrooxocin-2-one 1 (63 mg, 66%) as a colourless solid; R_f 0.42 (50% EtOAc–petrol); mp 133–134 °C; ν_{max} (film) 3056, 2940, 1754, 1596, 1449, 1316, 1265, 1148, 1086, 1035, 813, 738, 663 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.89 (2H, d, *J* 8.0 Hz, *o*-SO₂Ar), 7.37 (2H, d, *J* 8.0 Hz, *m*-SO₂Ar), 5.60–5.50 (2H, m, CH=CH), 4.95 (1H, dd, *J* 15.5, 3.0 Hz, OCH₂), 4.60 (1H, d, *J* 15.5 Hz, OCH₂), 4.06 (1H, dd, *J* 10.0, 6.0 Hz, SCH), 2.46 (3H, s, ArCH₃), 2.55–2.35 (3H, m, SCHCH₂CH₂ and 1 × SCHCH₂), 1.91 (1H, m, SCHCH₂); $\delta_{\rm C}$ (100 MHz) 168.4 (C=O), 145.4, 134.2 (4°), 129.8, 129.7, 128.6,

128.2 (3°), 67.4 (SCH), 66.1 (OCH₂), 25.2 (SCHCH₂*C*H₂), 24.7 (SCH*C*H₂), 21.7 (ArCH₃); m/z (CI) 298 [M+NH₄]⁺ (Found [M+NH₄]⁺, 298.1114. C₁₄H₁₆O₄S requires [M+NH₄]⁺, 298.1113) (Found: C, 60.05; H, 5.74. C₁₄H₁₆O₄S requires C, 59.98; H, 5.75%).

1-Methyl-4-((1R*,2S*)-2-vinylcyclobutylsulfonyl)benzene 9

Lactone 1 (42 mg, 0.15 mmol, 1.0 equiv.) in DMF (0.75 mL) was treated with KOAc (1.5 mg, 0.015 mmol, 0.1 equiv.) and BSA (37 µL, 0.15 mmol, 1.0 equiv.) and the mixture subjected to microwave irradiation at 160 °C for 10 min. The reaction mixture was diluted with EtOAc, washed with sat. aq. NaCl (\times 3) and H₂O, dried (MgSO₄) and concentrated under reduced pressure. Purification by column chromatography (20%) EtOAc-petrol) $1-\text{methyl}-4-((1R^*,2S^*)-2$ gave vinylcyclobutylsulfonyl)benzene 9 (30 mg, 85%) as a colourless gum; Rf 0.67 (50% EtOAc-petrol); v_{max} (film) 2926, 1600, 1493, 1452, 1265, 1146, 740, 702 cm⁻¹; δ_{H} (400 MHz) 7.76 (2H, d, J 8.0 Hz, o-SO₂Ar), 7.34 (2H, d, J 8.0 Hz, m-SO₂Ar), 5.66 (1H, ddd, J 17.0, 10.0, 6.0 Hz, CH=CH₂), 4.90 (1H, dd, J 16.0, 1.5 Hz, CH=CH₂ cis), 4.90 (1H, dd, J 11.5, 1.5 Hz, CH=CH₂ trans), 3.57 (1H, q, J 9.0, Hz, SCH), 3.40 (1H, m, SCHCH), 2.43 (3H, s, ArCH₃), 2.43 (1H, m, SCHCH₂), 2.14 (1H, m, SCHCH₂CH₂), 2.03 (1H, m, SCHCH₂), 1.84 (1H, m, SCHCH₂CH₂); δ_C (100 MHz) 144.6, 135.5 (4°), 138.2 (CH=CH₂), 129.8, 128.4 (3°), 115.2 (CH=CH₂), 62.0 (SCH), 39.8 (SCHCH), 22.9 (SCHCH₂), 21.6 (ArCH₃), 19.6 (SCHCH₂CH₂); m/z (CI) 254 $[M+NH_4]^+$, 490 (Found $[M+NH_4]^+$, 254.1212. $C_{13}H_{16}O_2S$ requires $[M+NH_4]^+$, 254.1215) (Found: C, 66.09; H, 6.76. C₁₃H₁₆O₂S requires C, 66.07; H, 6.82%).

(IR*,2S*)-1-Tosyl-2-vinylcyclobutanecarboxylic acid 11

Lactone **1** (98 mg, 0.35 mmol, 1.0 equiv.) in CH₂Cl₂ (1.75 mL) was treated with KOAc (3.4 mg, 0.035 mmol, 0.1 equiv.) and BSA (87 µL, 0.35 mmol, 1.0 equiv.). The reaction mixture was stirred at rt for 16 h, then diluted with CH₂Cl₂, washed with 2 M aq. HCl and H₂O, dried (MgSO₄) and concentrated under reduced pressure to give to give (1*R**,2*S**)-1-tosyl-2-vinylcyclobutanecarboxylic acid **11** (97 mg, 99%) as a colourless solid; mp 135–136 °C; v_{max} (film) 2985, 1728, 1376, 1267, 1046, 737 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.76 (2H, d, *J* 8.0 Hz, *o*-SO₂Ar), 7.37 (2H, d, *J* 8.0 Hz, *m*-SO₂Ar), 5.79 (1H, ddd, *J* 17.5, 10.5, 7.5 Hz, CH=CH₂), 5.22 (1H, d, *J* 17.5 Hz, CH=CH₂ *cis*),

5.21 (1H, d, *J* 10.0 Hz, CH=C*H*₂ *trans*), 4.05 (1H, br q, *J* 9.0 Hz, SCCH), 2.68 (1H, dt, *J* 11.5, 9.5 Hz, SCCH₂), 2.52 (1H, m, SCCH₂), 2.47 (3H, s, ArCH₃), 2.25 (1H, m, SCCH₂C*H*₂), 2.14 (1H, m, SCCH₂C*H*₂); $\delta_{\rm C}$ (100 MHz) 166.9 (C=O), 145.9, 133.0 (4°), 135.0 (*C*H=CH₂), 130.1, 129.3 (3°), 119.0 (CH=CH₂), 74.1 (SC), 42.9 (SCCH), 23.3 (SCCH₂), 21.7 (ArCH₃), 21.2 (SCCH₂CH₂); *m/z* (CI) 298 [M+NH₄]⁺, 254 (Found [M+NH₄]⁺, 298.1107. C₁₄H₁₆O₄S requires [M+NH₄]⁺, 298.1113) (Found: C, 60.07; H, 5.80. C₁₄H₁₆O₄S requires C, 59.98; H, 5.75%).

(Z)-Ethyl 5-(tert-butyldiphenylsilyloxy)-2-methylpent-2-enoate

To a solution of ethyl 2-(diphenylphosphinyl)propionate (2.39 g, 7.42 mmol, 1.0 equiv.) in THF (74.2 mL) was added sodium iodide (1.33 g, 8.90 mmol, 1.2 equiv.) and DBU (1.22 mL, 8.16 mmol, 1.1 equiv.) at 0 °C and stirred for 10 min. The mixture was cooled to -78 °C and 3-(*tert*-butyldiphenylsilyloxy)propanal (2.32 g, 7.42 mmol, 1.0 equiv.) added. After 10 min the mixture was warmed to 0 °C over 2 h. The reaction was quenched with sat. aq. NH₄Cl, extracted with EtOAc and the organic layer washed with H₂O and sat. aq. NaCl, dried (MgSO₄) and concentrated under reduced pressure. Purification by column chromatography (10–50% CH₂Cl₂–petrol) gave a mixture of geometric isomers (87:13 *Z:E*) of ethyl 5-(tert-butyldiphenylsilyloxy)-2-methylpent-2-enoate (2.64 g, 90%) as a colourless oil.

Z-isomer: $R_f 0.27$ (50% CH₂Cl₂–petrol); v_{max} (film) 2958, 2936, 2857, 1714, 1428, 1211, 1143, 1111, 1053, 822, 701 cm⁻¹; δ_{H} (400 MHz) 7.68 (4H, m, *m*-Ph), 7.42 (6H, m, *o-/p*-Ph), 6.05 (1H, td, *J* 7.0, 1.5 Hz, CH), 4.20 (2H, q, *J* 7.0 Hz, CH₂CH₃), 3.76 (2H, t, *J* 6.5 Hz, OCH₂CH₂), 2.77 (2H, td, *J* 7.5, 1.5 Hz, CHCH₂), 1.93 (3H, d, *J* 1.5 Hz, CCH₃), 1.30 (3H, t, *J* 7.0 Hz, CH₂CH₃), 1.07 (9H, s, C(CH₃)₃); δ_{C} (100 MHz) 168.0 (C=O), 139.4 (CHCH₂), 133.9, 128.5 (4°), 135.6, 129.6, 127.6 (3°), 63.3 (OCH₂CH₂), 60.1 (OCH₂CH₃), 33.0 (OCH₂CH₂), 26.8 (C(CH₃)₃), 20.7 (CCH₃), 19.2 (*C*(CH₃), 14.3 (CH₂CH₃); *m/z* (CI) 397 [M+H]⁺, 414, 330, 170, 125 (Found [M+H]⁺, 397.2202. C₂₄H₃₂O₃Si requires [M+H]⁺, 397.2199) (Found: C, 72.63; H, 8.09. C₂₄H₃₂O₃Si requires C, 72.68; H, 8.13%).

E-isomer: R_f 0.20 (50% CH₂Cl₂–petrol); v_{max} (film) 3073, 2932, 2859, 1713, 1472, 1428, 1391, 1279, 1212, 1111, 823, 740, 702cm⁻¹; δ_H (400 MHz) 7.68 (4H, m, *m*-Ph), 7.42 (6H, m, *o*-/*p*-Ph), 6.83 (1H, td, *J* 7.5, 1.0 Hz, CH), 4.21 (2H, q, *J* 7.0 Hz, CH₂CH₃), 3.76 (2H, t, *J* 6.5 Hz, OCH₂CH₂), 2.45 (2H, q, *J* 7.0 Hz, CHCH₂), 1.82 (3H, s, CCH₃), 1.31 (3H, t, *J* 7.0 Hz, CH₂CH₃), 1.07 (9H, s, C(CH₃)₃); δ_C (100 MHz) 168.1

9

(C=O), 138.5 (CHCH₂), 133.7, 129.3 (4°), 135.6, 129.7, 127.7 (3°), 62.5 (OCH₂CH₂), 60.4 (OCH₂CH₃), 32.1 (OCH₂CH₂), 26.8 (C(CH₃)₃), 19.2 (C(CH₃)₃), 14.3 (CH₂CH₃), 12.5 (CCH₃); m/z (CI) 397 [M+H]⁺, 414, 330, 170, 125 (Found [M+H]⁺, 397.2202. C₂₄H₃₂O₃Si requires [M+H]⁺, 397.2199) (Found: C, 72.74; H, 8.15. C₂₄H₃₂O₃Si requires C, 72.68; H, 8.13%).

(Z)-5-(tert-Butyldiphenylsilyloxy)-2-methylpent-2-en-1-ol

To (Z)-ethyl 5-(tert-butyldiphenylsilyloxy)-2-methylpent-2-enoate (2.13 g, 5.36 mmol, 1.0 equiv.) in PhMe (17 mL) at -78 °C was added DIBAL-H (1.2 M in PhMe; 9.83 mL, 11.8 mmol, 2.2 equiv.) dropwise. The reaction mixture was allowed to warm to rt and stirred for 2 h. The reaction mixture was again cooled to 0 °C, carefully quenched with sat. Na/K tartrate soln. and the mixture stirred for a further 2 h. The aqueous layer was then extracted with EtOAc and the combined organic layers washed with sat. aq. NaCl (\times 2) and H₂O, dried (MgSO₄) and concentrated under reduced pressure. Purification by column chromatography (30% EtOAc-petrol) gave (Z)-5-(tert-butyldiphenylsilyloxy)-2-methylpent-2-en-1-ol (1.82 g, 96%) as a colourless oil; R_f 0.66 (50% EtOAc-petrol); v_{max} (film) 3347, 2930, 2857, 1472, 1427, 1389, 1111, 1007, 938, 823, 736, 701, 614 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.70 (4H, m, *m*-Ph), 7.44 (6H, m, o-/p-Ph), 5.33 (1H, t, J 7.5 Hz, CH), 4.09 (2H, s, CH₂OH), 3.66 (2H, t, J 6.5 Hz, OCH₂CH₂), 2.37 (2H, dt, J 6.5, 6.5 Hz, CHCH₂), 1.85 (3H, s, CCH₃), 1.79 (1H, br s, OH), 1.08 (9H, s, C(CH₃)₃); δ_C (100 MHz) 137.3 (CHCH₂), 133.6, 124.7 (4°), 135.6, 129.7, 127.7 (3°), 63.6 (OCH₂CH₂), 61.7 (CH₂OH), 31.0 (CHCH₂), 26.8 $(C(CH_3)_3)$, 21.8 (CCH_3) , 19.1 $(C(CH_3)_3)$; m/z (CI) 372 $[M+NH_4]^+$, 355, 337, 277; data were in accordance with those reported the literature.¹

(Z)-5-(tert-Butyldiphenylsilyloxy)-2-methylpent-2-enyl methyl carbonate

To (*Z*)-5-(*tert*-butyldiphenylsilyloxy)-2-methylpent-2-en-1-ol (1.82 g, 5.14 mmol, 1.0 equiv.) and pyridine (1.65 mL, 20.6 mmol, 4.0 equiv.) in CH₂Cl₂ (25 mL) at 0 °C was added methyl chloroformate (516 μ L, 6.68 mmol, 1.3 equiv.) dropwise and the reaction stirred at 0 °C for 1 h. The reaction mixture was then diluted with H₂O and extracted with EtOAc. The organic layer was washed with sat. aq. NH₄Cl and sat. aq. NaCl, dried (MgSO₄), concentrated under reduced pressure and purified by column chromatography (50–80% CH₂Cl₂–petrol) to give (*Z*)-5-(*tert*-butyldiphenylsilyloxy)-

2-methylpent-2-enyl methyl carbonate (1.73 g, 82%) as a colourless oil; $R_f 0.38$ (50% CH₂Cl₂–petrol); v_{max} (film) 2954, 2856, 1749, 1442, 1427, 1384, 1261, 1111, 947, 822, 792, 738, 702 cm⁻¹; δ_H (400 MHz) 7.66 (4H, m, *m*-Ph), 7.40 (6H, m, *o-/p*-Ph), 5.45 (1H, t, *J* 7.5 Hz, CH), 4.62 (2H, s, CCH₂O), 3.78 (3H, s, OCH₃), 3.65 (2H, t, *J* 6.5 Hz, OCH₂CH₂), 2.36 (2H, dt, *J* 7.0, 7.0 Hz, CHCH₂), 1.77 (3H, s, CCH₃), 1.05 (9H, s, C(CH₃)₃); δ_C (100 MHz) 155.9 (C=O), 135.6 (CHCH₂), 133.9, 131.1 (4°), 129.6, 127.7, 127.6 (3°), 66.7 (OCH₃), 63.4 (OCH₂CH₂), 54.7 (OCH₂CCH₃), 31.2 (CHCH₂), 26.8 (C(CH₃)₃), 21.3 (CCH₃), 19.2 (C(CH₃)₃); *m/z* (CI) 430 [M+NH₄]⁺, 337, 81 (Found [M+NH₄]⁺, 430.2408. C₂₄H₃₂O₄Si requires [M+H]⁺, 430.2414) (Found: C, 69.93; H, 7.81. C₂₄H₃₂O₄Si requires C, 69.86; H, 7.82%).

(Z)-5-Hydroxy-2-methylpent-2-enyl methyl carbonate

To a stirred solution of (*Z*)-5-(*tert*-butyldiphenylsilyloxy)-2-methylpent-2-en-1-ol (1.73 g, 4.19 mmol, 1.0 equiv.) in MeOH (14 mL) at rt was added conc. HCl (280 μ L). The mixture was stirred at rt for 16 h, then solid NaHCO₃ was added until effervescence ceased, and the solids removed by filtration. The reaction mixture was concentrated under reduced pressure and the residue purified by column chromatography (30–60% EtOAc–petrol) to give (*Z*)-5-hydroxy-2-methylpent-2-enyl methyl carbonate (673 mg, 92%) as a colourless oil; R_f 0.28 (50% EtOAc–petrol); v_{max} (film) 3394, 2958, 1748, 1444, 1385, 1351, 1264, 1049, 948 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 5.48 (1H, t, *J* 7.5 Hz, CH), 4.69 (2H, s, OCH₂C), 3.79 (3H, s, OCH₃), 3.67 (2H, t, *J* 6.5 Hz, CH₂OH), 2.40 (2H, dt, *J* 6.5, 6.5 Hz, CHCH₂), 1.89 (1H, s, OH), 1.82 (3H, d, *J* 0.5 Hz, CCH₃); $\delta_{\rm C}$ (100 MHz) 156.0 (C=O), 132.3 (CCH₃), 127.6 (CH), 66.6 (OCH₃), 62.0 (OCH₂CH₂), 54.9 (OCH₂CCH₃), 31.3 (CHCH₂), 21.4 (CCH₃); *m/z* (CI) 192 [M+NH₄]⁺ (Found [M+NH₄]⁺, 192.1228. C₈H₁₄O₄ requires [M+NH₄]⁺, 192.1236) (Found: C, 55.19; H, 8.20. C₈H₁₄O₄ requires C, 55.16; H, 8.10%).

(Z)-5-(Methoxycarbonyloxy)-4-methylpent-3-enyl methanesulfonate

(Z)-5-HSydroxy-2-methylpent-2-enyl methyl carbonate (650 mg, 3.73 mmol, 1.0 equiv.) in CH₂Cl₂ (20 mL) was treated with NEt₃ (1.56 mL, 11.2 mmol, 3.0 equiv.) and MsCl (577 μ L, 7.46 mmol, 2.0 equiv.) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min, washed with 2 M aq. HCl (× 2) and sat. aq. NaHCO₃ (× 2). The organic phase was dried (MgSO₄) and concentrated under reduced pressure to give

(*Z*)-5-(methoxycarbonyloxy)-4-methylpent-3-enyl methanesulfonate as a yellow oil, which was used crude in the next step; $R_f 0.38$ (50% EtOAc–petrol); v_{max} (film) 2960, 1747, 1445, 1351, 1265, 1173, 956, 792 cm⁻¹; δ_H (400 MHz) 5.38 (1H, t, *J* 8.0 Hz, CH), 4.60 (2H, s, OCH₂CCH₃), 4.17 (2H, t, *J* 6.5 Hz, CH₂OS), 3.73 (3H, s, OCH₃), 2.96 (3H, s, SCH₃), 2.53 (2H, dt, *J* 6.5, 6.5 Hz, CHCH₂), 1.76 (3H, dd, *J* 2.5, 1.0 Hz, CCH₃); δ_C (100 MHz) 155.6 (C=O), 133.4 (CCH₃), 124.4 (CH), 68.9 (SOCH₂), 66.0 (OCH₃), 54.7 (OCH₂CCH₃), 37.2 (SCH₃), 27.7 (CHCH₂), 21.2 (CCH₃); *m/z* (CI) 270 [M+NH₄]⁺ (Found [M+NH₄]⁺, 270.1012. C₉H₁₆O₆S requires [M+NH₄]⁺, 270.1011).

(Z)-5-Iodo-2-methylpent-2-enyl methyl carbonate 6

To (*Z*)-5-(methoxycarbonyloxy)-4-methylpent-3-enyl methanesulfonate (3.73 mmol, 1.0 equiv.) in MeCN (12.5 mL) was added sodium iodide (1.12 g, 7.46 mmol, 2.0 equiv.) and the mixture heated at 70 °C for 16 h. After cooling to rt, the mixture was partitioned between Et₂O and H₂O. The organic layer was washed with sat. aq. Na₂S₂O₃ (× 2), dried (MgSO₄) and concentrated under reduced pressure to give (*Z*)-5-iodo-2-methylpent-2-enyl methyl carbonate **6** as a colourless oil, which was used crude in the next step; R_f 0.76 (50% EtOAc–petrol); v_{max} (film) 2955, 1747, 1443, 1383, 1352, 1263, 1170, 954 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 5.37 (1H, t, *J* 7.0 Hz, CH), 4.61 (2H, s, OC*H*₂CCH₃), 3.77 (3H, s, OCH₃), 3.12 (2H, t, *J* 7.0 Hz, CH₂I), 2.67 (2H, dtd, *J* 7.0, 7.0, 1.0 Hz, CHC*H*₂), 1.77 (3H, dd, *J* 2.5, 1.0 Hz, CCH₃); $\delta_{\rm C}$ (100 MHz) 155.7 (C=O), 132.0 (CCH₃), 129.3 (CH), 66.3 (OCH₃), 54.8 (OCH₂CCH₃), 31.7 (CH₂I), 21.3 (CCH₃), 5.2 (*C*H₂CH₂I); *m/z* (CI) 302 [M+NH₄]⁺ (Found [M+NH₄]⁺, 302.0255. C₈H₁₃O₃I requires [M+NH₄]⁺, 302.0253).

(Z)-Methyl 7-(methoxycarbonyloxy)-6-methyl-2-tosylhept-5-enoate

Sodium hydride (179 mg, 4.48 mmol, 1.2 equiv.) suspended in DMF (7 mL) was treated with a solution of methyl tosylacetate (851 mg, 3.73 mmol, 1.0 equiv.) in DMF (7 mL) followed by a solution of iodide **6** (3.73 mmol, 1.0 equiv.) in DMF (6 mL). The reaction mixture was stirred at 0 °C for a further 30 min, then at rt for 16 h. The solution was concentrated under reduced pressure and the crude product suspended in EtOAc, washed with sat. aq. NH₄Cl, H₂O and sat. aq. NH₄Cl. The organic phase was dried (MgSO₄), concentrated under reduced pressure to give to give (*Z*)-methyl 7-(methoxycarbonyloxy)-6-methyl-2-tosylhept-5-enoate, which was used crude in the next step; R_f 0.60 (50% EtOAc–petrol).

(Z)-Methyl 7-hydroxy-6-methyl-2-tosylhept-5-enoate

To a solution of (Z)-methyl 7-(methoxycarbonyloxy)-6-methyl-2-tosylhept-5-enoate (905 mg, 2.35 mmol, 1.0 equiv.) in dry MeOH (11.75 mL) was added K₂CO₃ (1.63 g, 11.8 mmol, 5.0 equiv.) at 0 °C and the reaction stirred at 0 °C for 2 h. The reaction was concentrated under reduced pressure, the residue partitioned between 2 M aq. HCl and EtOAc and the aqueous layer further extracted with EtOAc (\times 2). The combined organic phase was dried (MgSO₄), concentrated under reduced pressure and purified by column chromatography (50-70% EtOAc-petrol) to give (Z)-methyl 7hydroxy-6-methyl-2-tosylhept-5-enoate (416 mg, 42% over 4 steps) as a colourless oil; Rf 0.16 (50% EtOAc-petrol); v_{max} (film) 3056, 2954, 1740, 1597, 1440, 1322, 1266, 1147, 1085, 1004, 815, 734 $cm^{-1};~\delta_{\rm H}$ (400 MHz) 7.75 (2H, d, J 8.0 Hz, $\mathit{o}\text{-}$ SO₂Ar), 7.39 (2H, d, J 8.0 Hz, m-SO₂Ar), 5.16 (1H, t, J 6.5 Hz, CH), 4.04 (2H, s, CH2OH), 3.96 (1H, dd, J 10.5, 3.5 Hz, SCH), 3.71 (3H, s, OCH3), 2.49 (3H, s, ArCH₃), 2.20–2.00 (4H, m, SCHCH₂ and SCHCH₂CH₂), 1.80 (3H, s, CCH₃); δ_C (100 MHz) 166.7 (C=O), 145.5, 137.5, 133.9 (4°), 129.7, 129.3, 125.0 (3°), 70.2 (SCH), 61.2 (CH₂OH), 53.1 (OCH₃), 26.9 (SCHCH₂CH₂), 24.8 (SCHCH₂), 21.7 (ArCH₃), 21.4 (CCH₃); m/z (CI) 344 [M+NH₄]⁺, 326, 188, 174 (Found [M+NH₄]⁺, 344.1530. $C_{16}H_{22}O_5S$ requires $[M+NH_4]^+$, 344.1532) (Found: C, 58.94; H, 6.83. $C_{16}H_{22}O_5S$ requires C, 58.87; H, 6.79%).

(Z)-7-Hydroxy-6-methyl-2-tosylhept-5-enoic acid 8

(*Z*)-Methyl 7-hydroxy-6-methyl-2-tosylhept-5-enoate (391 mg, 1.20 mmol, 1.0 equiv.) in THF (3.0 mL) was treated with 2 M aq. LiOH (3.0 mL, 2.00 mmol, 5.0 equiv.). The reaction mixture was stirred at rt for 1 h, then partitioned between Et₂O and H₂O and the aqueous layer acidified to pH 1 with 2 M aq. HCl. The aqueous layer was extracted with Et₂O (× 3) and the organic layers combined, dried (MgSO₄) and concentrated under reduced pressure to give,to give (*Z*)-7-hydroxy-6-methyl-2-tosylhept-5-enoic acid **8** (360 mg, 92%) as a colourless solid, which was used without further purification; v_{max} (film) 3487, 2939, 2587, 1726, 1597, 1447, 1317, 1193, 1147, 1084, 1001, 816, 712, 665 cm⁻¹; $\delta_{\rm H}$ (400 MHz; CD₃OD) 7.79 (2H, d, *J* 8.5 Hz, *o*-SO₂Ar), 7.46 (2H, d, *J* 8.0 Hz, *m*-SO₂Ar), 5.20 (1H, t, *J* 7.5 Hz, CH), 4.03 (2H, s, CH₂OH), 4.02 (1H, dd, *J* 9.0, 5.5 Hz, SCH), 2.48 (3H, s, ArCH₃), 2.16 (2H, m, SCHCH₂ and SCHCH₂CH₂), 1.99 (2H, m, SCHCH₂ and SCHCH₂CH₂), 1.78 (3H, d, *J* 0.5 Hz, CCH₃); $\delta_{\rm C}$ (100 MHz; CD₃OD) 167.4 (C=O), 145.6, 136.9, 134.4 (4°), 129.4,

129.1, 124.7 (3°), 70.0 (SCH), 59.8 (CH₂OH), 26.9 (SCHCH₂CH₂), 24.4 (SCHCH₂), 20.3 (ArCH₃), 20.1 (CCH₃); m/z (CI) 330 [M+NH₄]⁺, 286, 268, 251, 95 (Found [M+NH₄]⁺, 330.1387. C₁₅H₂₀O₅S requires [M+NH₄]⁺, 330.1375) (Found: C, 57.79; H, 6.38. C₁₅H₂₀O₅S requires C, 57.67; H, 6.45%).

(Z)-7-Methyl-3-tosyl-3,4,5,8-tetrahydro-2H-oxocin-2-one 2

To a solution of HATU (362 mg, 0.95 mmol, 3.0 equiv.) and DIPEA (283 µL, 1.58 mmol, 5.0 equiv.) in DMF (9.5 mL) was added acid 8 (99 mg, 0.32 mmol, 1.0 equiv.) in DMF (6.5 mL) via syringe pump over a period of 12 h. The reaction mixture was allowed to stir for a further 8 h then extracted with EtOAC (\times 3). The combined organic phases were washed sequentially with 2 M aq. HCl, 2 M aq. NaOH, sat. aq. NaHCO₃ and sat. aq. NaCl, dried (MgSO₄) and concentrated under reduced pressure. Purification by column chromatography (30–50% EtOAc–petrol) gave (Z)-7-methyl-3-tosyl-3,4,5,8-tetrahydro-2H-oxocin-2-one 2 (80 mg, 85%) as a colourless gum; R_f 0.55 (50% EtOAc-petrol); v_{max} (film) 3055, 2983, 2937, 1758, 1597, 1449, 1318, 1265, 1152, 1085, 737, 705 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.85 (2H, d, J 8.0 Hz, o-SO₂Ar), 7.34 (2H, d, J 8.0 Hz, m-SO₂Ar), 5.27 (1H, t, J 8.5 Hz, CH), [4.74, 4.47] (2H, 2 × d, J 15.0 Hz, OCH₂), 4.00 (1H, dd, J 10.0, 6.0 Hz, SCH), 2.44 (3H, s, ArCH₃), 2.44–2.28 (3H, m, SCHCH₂ and SCHCH₂CH₂), 1.90 (2H, m, SCHCH₂), 1.59 (3H, s, CCH₃); δ_C (100 MHz) 168.5 (C=O), 145.3, 136.0, 134.5 (4°), 129.7, 122.8 (3°), 68.6 (OCH₂), 67.4 (SCH), 25.4 (SCHCH₂CH₂), 24.6 (SCHCH₂), 21.7 (ArCH₃), 21.3 (CCH₃); *m/z* (CI) 312 $[M+NH_4]^+$ (Found $[M+NH_4]^+$, 312.1279. $C_{15}H_{18}O_4S$ requires $[M+NH_4]^+$, 312.1270) (Found: C, 61.19; H, 6.20. C₁₅H₁₈O₄S requires C, 61.20; H, 6.16%).

1-Methyl-4-((1R*,2S*)-2-(prop-1-en-2-yl)cyclobutylsulfonyl)benzene 10

Lactone **2** (34 mg, 0.12 mmol, 1.0 equiv.) in DMF (0.6 mL) was treated with KOAc (1.2 mg, 0.012 mmol, 0.1 equiv.) and BSA (29 μ L, 0.12 mmol, 1.0 equiv.), and the mixture subjected to microwave irradiation at 160 °C for 10 min. The reaction mixture was diluted with EtOAc, washed with sat. aq. NaCl (× 3) and H₂O, dried (MgSO₄) and concentrated under reduced pressure. Purification by column chromatography (20% EtOAc–petrol) gave 1-methyl-4-((1*R**,2*S**)-2-(prop-1-en-2-yl)cyclobutylsulfonyl) benzene **10** (26 mg, 90%) as a colourless gum; R_f 0.65 (50% EtOAc–petrol); v_{max} (film) 2950, 1649, 1597, 1450, 1402, 1312, 1268, 1145, 1087,

893, 816, 665, 591, 564 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.76 (2H, d, *J* 8.0 Hz, *o*-SO₂Ar), 7.34 (2H, d, *J* 8.0 Hz, *m*-SO₂Ar), 4.72 (1H, d, *J* 1.0 Hz, C=CH₂), 4.62 (1H, s, C=CH₂), 3.73 (1H, ddd, *J* 9.0, 9.0, 9.0 Hz, SCH), 3.41 (1H, ddd, *J* 9.0, 9.0, 9.0 Hz, SCHC*H*), 2.45 (3H, s, ArCH₃), 2.40 (1H, ddd, J 11.5, 9.5, 7.5 Hz, SCHC*H*₂), 2.17 (1H, ddd, *J* 11.5, 9.0, 2.5 Hz, SCHCH₂C*H*₂), 2.00 (1H, ddd, *J* 8.5, 8.5, 2.5 Hz, SCHC*H*₂), 1.85 (1H, ddd, *J* 20.0, 9.5, 9.5 Hz, SCHCH₂C*H*₂); $\delta_{\rm C}$ (100 MHz) 144.5, 144.3, 135.5 (4°), 129.8, 128.4 (3°), 110.4 (CH=CH₂), 60.9 (SCH), 42.6 (SCHCH), 22.7 (SCHCH₂), 21.6 (ArCH₃), 20.0 (CCH₃), 19.5 (SCHCH₂CH₂); *m*/z (CI) 268 [M+NH₄]⁺ (Found [M+NH₄]⁺, 268.1379. C₁₄H₁₈O₂S requires [M+NH₄]⁺, 268.1371) (Found: C, 67.09; H, 7.30. C₁₄H₁₈O₂S requires C, 67.16; H, 7.25%).

(1R*,2S*)-2-(Prop-1-en-2-yl)-1-tosylcyclobutanecarboxylic acid 12

Lactone **2** (140 mg, 0.48 mmol, 1.0 equiv.) in CH₂Cl₂ (2.4 mL) was treated with KOAc (4.7 mg, 0.048 mmol, 0.1 equiv.) and BSA (235 μ L, 0.95 mmol, 2.0 equiv.). The reaction mixture was stirred at rt for 16 h, then diluted with CH₂Cl₂, washed with 2 M aq. HCl and H₂O, dried (MgSO₄) and concentrated under reduced pressure to give (1*R**,2*S**)-2-(prop-1-en-2-yl)-1-tosylcyclobutanecarboxylic acid **12** (132 mg, 94%) as a colourless gum; v_{max} (film) 3195, 2962, 1702, 1596, 1402, 1301, 1154, 1086, 899, 812, 710, 661 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 10.20 (1H, br s, OH), 7.75 (2H, d, *J* 8.0 Hz, *o*-SO₂Ar), 7.32 (2H, d, *J* 8.0 Hz, *m*-SO₂Ar), [4.97, 4.84] (2H, 2 × s, C=CH₂), 3.92 (1H, dd, *J* 9.5, 9.5 Hz, SCCH), 2.69 (1H, ddd, J 11.5, 9.5, 9.5 Hz, SCCH₂), 2.43 (3H, s, ArCH₃), 2.37 (1H, m, SCCH₂), 2.25 (1H, m, SCCH₂CH₂), 2.08 (1H, m, SCCH₂CH₂), 1.78 (3H, s, CCH₃); $\delta_{\rm C}$ (100 MHz) 170.1 (C=O), 145.6, 142.1, 133.0 (4°), 129.8, 129.6 (3°), 114.2 (CH=CH₂), 75.3 (SC), 46.0 (SCCH), 23.6 (SCCH₂), 2.1 (SCCH₂CH₂), 21.7 (ArCH₃), 19.7 (CCH₃); *m/z* (CI) 312 [M+NH₄]⁺, 268 (Found [M+NH₄]⁺, 312.1277. C₁₅H₁₈O₄S requires [M+NH₄]⁺, 312.1270) (Found: C, 61.29; H, 6.12. C₁₅H₁₈O₄S requires C, 61.20; H, 6.16%).

(Z)-Methyl 2-carbomethoxy-7-methoxycarbonyloxy-2,6-dimethylhept-5-enoate

To a stirred suspension of NaH (60 % in mineral oils, 2.59 g, 64.7 mmol, 1.5 equiv.) in DMF (120 mL) at 0 °C was added a solution of dimethyl 2-methylmalonate (9.45 g, 64.7 mmol, 1.5 equiv.) in DMF (20 mL) dropwise. The reaction was warmed to rt and after 30 min re-cooled to 0 °C and a solution of iodide **6** (12.2 g, 43.1 mmol, 1.0

equiv.) in DMF (20 mL) added dropwise. After 2 h at rt, reaction was treated with sat. aq. NH₄Cl and extracted with EtOAc (× 3), and the combined organic phase dried (MgSO₄) and concentrated under reduced pressure. Column chromatography (10→40 % EtOAc–petrol) gave product (*Z*)-methyl 2-carbomethoxy-7-methoxycarbonyloxy-2,6-dimethylhept-5-enoate (8.21 g, 27.2 mmol, 63%) as colourless oil: R_f 0.22 (20 % EtOAc–petrol); v_{max} (neat) 2955, 1733, 1442, 1381, 1261, 1166, 1115, 945 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.41 (1H, t, *J* 7.2 Hz, CH), 4.65 (2H, s, OCH₂), 3.81 (3H, s, OCH₃), 3.76 (6H, s, (C(O)OCH₃)₂), 2.07 (2H, dt, *J* 7.4, 16.4 Hz, OCCHCH₂), 1.93 (2H, m, CHCH₂), 1.78 (3H, s, CCH₃), 1.46 (3H, s, CH₃C=O); $\delta_{\rm C}$ (400 MHz, CDCl₃) 172.6 (diester C=O), 155.9 (carbonate C=O), 130.3 (CCH₃), 129.8 (CH), 66.3 (carbonate OCH₃), 54.8 (OCH₂CCH₃), 53.4 (CCH₃C=O), 52.5 (diester OCH₃), 35.7 (CH₂CCH₃C=O), 22.9 (CHCH₂), 21.3 (CCH₃), 19.9 (CH₃CC=O); *m*/z (ESI) 325 [M+Na]⁺ (Found [M+Na]⁺ 325.1264, C₁₄H₂₂O₇ requires [M+Na]⁺, 325.1258).

(Z)-Methyl 2-carbomethoxy-7-hydroxy-2,6-dimethylhept-5-enoate

То solution 2-carbomethoxy-7-methoxycarbonyloxy-2,6а of (Z)-methyl dimethylhept-5-enoate (684 mg, 2.26 mmol, 1.0 equiv.) in MeOH (9 mL) at 0 °C was added K₂CO₃ (1.56 g, 11.3 mmol, 5.0 equiv.). After 2.5 h, the reaction mixture was neutralised with 2 M aq. HCl, and concentrated under reduced pressure. The resultant aqueous phase was extracted with EtOAc (\times 5) and the combined organic phase dried (MgSO₄) and concentrated under reduced pressure. Column chromatography $(40\rightarrow 60)$ % EtOAc-petrol) gave (Z)-methyl 2-carbomethoxy-7-hydroxy-2,6-dimethylhept-5enoate (517 mg, 2.25 mmol, 100%) as a colourless oil: Rf 0.21 (40 % EtOAc-petrol); v_{max} (neat) 3506 (broad), 2954, 1732, 1435, 1379, 1240, 1165, 1115, 1006, 879 cm⁻¹; δ_H (400 MHz, CDCl₃) 5.22 (1H, t, J 7.3 Hz, CH), 4.08 (2H, s, OCH₂), 3.81 (3H, s, OCH₃), 3.70 (6H, s, (C(O)OCH₃)₂), 2.06 (2H, m, OCCHCH₂), 1.93 (2H, m, CHCH₂), 1.77 (3H, s, CCH₃), 1.42 (3H, s, CH₃C=O), 1.24 (1H, s, OH); δ_C (400 MHz, CDCl₃) 173.6, 173.5 (diester C=O), 130.2 (CCH₃), 127.8 (CH), 61.6 (CH₂OH), 54.2 (CCH₃C=O), 53.4 (diester OCH₃), 36.2 (CH₂CCH₃C=O), 23.8 (CHCH₂), 21.8 (CCH_3) , 20.9 $(CH_3CC=O)$; m/z (ESI) 267 $[M+Na]^+$ (Found $[M+Na]^+$ 267.1215, $C_{12}H_{20}O_5$ requires $[M+Na]^+$, 267.1203).

(Z)-Methyl 7-hydroxy-2,6-dimethylhept-5-enoate

To a solution of (Z)-methyl 2-carbomethoxy-7-hydroxy-2,6-dimethylhept-5-enoate (697 mg, 3.03 mmol, 1.0 equiv.) in DMSO (6 mL) was added LiCl (257 mg, 6.06 mmol, 2.0 equiv.) and H₂O (360 μ L). The reaction was heated under microwave irradiation at 180 °C. After 15 min, the reaction mixture was treated with H₂O (10 mL), extracted with EtOAc (\times 3), and the combined organic phase dried (MgSO₄) and concentrated under reduced pressure. Column chromatography (30 % EtOAc-petrol) gave (Z)-methyl 7-hydroxy-2,6-dimethylhept-5-enoate (379 mg, 2.04 mmol, 67%) as a colourless oil: R_f 0.24 (40 % EtOAc-petrol); v_{max} (neat) 3416 (broad), 2970, 2940, 2878, 1736, 1458, 1436, 1378, 1199, 1163, 1107, 1066, 1008, 948, 847, 754 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.24 (1H, t, J 7.5 Hz, CH), 4.14 (1H, d, J 11.8 Hz, OCHH), 4.05 (1H, d, J 11.8 Hz, OCHH), 3.69 (3H, s, OCH₃), 2.52–2.43 (1H, m, CHC=O), 2.14– 2.03 (2H, m, OCCHCH₂), 1.81 (3H, d, J 1.1 Hz, CCH₃), 1.79–1.70 (1H, m, CHCHH), 1.70 (1H, broad, OH), 1.53-1.44 (1H, m, CHCHH), 1.17 (3H, d, J 7.0 Hz, CH₃CC=O); δ_C (400 MHz, CDCl₃) 177.3 (C=O), 135.5 (CCH₃), 127.2 (CH), 61.3 (CH₂OH), 51.5 (OCH₃), 39.0 (CH₃CC=O), 33.8 (CH₂CCH₃C=O), 25.3 (CHCH₂), 21.4 (CCH₃), 17.3 (CH₃CC=O); m/z (CI, NH₃) 204 [M+NH₄]⁺, 169 (Found $[M+NH_4]^+$, 204.1600. $C_{10}H_{18}O_3$ requires $[M+NH_4]^+$, 204.1600).

(Z)-7-Hydroxy-2,6-dimethylhept-5-enoic acid 13

To a solution of (*Z*)-methyl 7-hydroxy-2,6-dimethylhept-5-enoate (2.97 g, 16.0 mmol, 1.0 equiv.) in THF (150 mL) at rt was added 2 M aq. LiOH (aq) (5 mL). After 2 h, the reaction was acidified to pH <2 by the addition of 2 M aq. HCl. The mixture was extracted with EtOAc (× 3) and the combined organic phase dried (MgSO₄). Concentration under reduced pressure gave crude (*Z*)-7-hydroxy-2,6-dimethylhept-5-enoic acid **13** (2.63 mg, 15.3 mmol, 95%) as a colourless oil: v_{max} (neat) 3300 (broad), 2970, 2934, 1702, 1456, 1412, 1378, 1286, 1223, 1059, 996, 947 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.77 (2H, broad, OH, CO₂H), 5.28 (1H, t, *J* 7.4 Hz, C*H*), 4.17 (1H, d, *J* 11.8 Hz, OC*H*H), 4.08 (1H, d, *J* 11.9 Hz, OCH*H*), 2.53–2.44 (1H, m, C*H*C=O), 2.19–2.09 (2H, m, OCCHC*H*₂), 1.81 (3H, s, CC*H*₃), 1.80–1.72 (1H, m, CHCH*H*), 1.54–1.47 (1H, m, CHC*H*H), 1.21 (3H, d, *J* 7.0 Hz, C*H*₃CC=O); $\delta_{\rm C}$ (400 MHz, CDCl₃) 182.3 (*C*=O), 135.3 (CCH₃), 127.4 (CH), 61.2 (CH₂OH), 38.9 (CH₃CC=O), 33.6 (*C*H₂CCH₃C=O), 25.3 (CHCH₂), 21.3 (CCH₃), 17.2 (CH₃CC=O); *m/z* (CI, NH₃) 190 [M+NH₄]⁺, 172, 155 [M+H]⁺, 109 (Found [M+NH₄]⁺, 190.1451. C₉H₁₆O₃ requires

 $[M+NH_4]^+$, 190.1443) (Found C, 62.79; H, 9.28. C₉H₁₆O₃ requires C, 62.77; H, 9.36%).

(Z)-2,7-Dimethyl-3,4,5,8-tetrahydro-2H-oxocin-2-one 3

To a solution of 2,4,6-trichlorobenzoyl chloride (2.20 g, 8.36 mmol, 2.0 equiv.) and Et₃N (881 µL, 6.27 mmol, 1.5 equiv.) in CH₂Cl₂ (400 mL) at reflux was added a solution of (Z)-7-hydroxy-2,6-dimethylhept-5-enoic acid 13 (720 mg, 4.18 mmol, 1.0 equiv.) in CH₂Cl₂ (20 mL) via syringe pump over 40 h. After 168 h heating under reflux, the reaction mixture was cooled to rt, treated with H₂O (300 mL), extracted with EtOAc (\times 3), and the combined organic phase washed with brine (500 mL), dried (MgSO₄) and concentrated under reduced pressure. Column chromatography (5 % EtOAc-petrol) gave (Z)-2,7-dimethyl-3,4,5,8-tetrahydro-2H-oxocin-2-one 3 (510 mg, 3.31 mmol, 79%) as a colourless oil: $R_f 0.48$ (10 % EtOAc-petrol); v_{max} (neat) 3079, 2972, 2931, 2865, 1819, 1745, 1576, 1548, 1449, 1869, 1259, 1208, 1150, 1097, 1082, 979 cm⁻¹; δ_H (400 MHz, CDCl₃) 5.33 (1H, t, J 8.5 Hz, CH), 4.83 (1H, d, J 15.0 Hz, OCHH), 4.44 (1H, d, J 15.5 Hz, OCHH), 2.62–2.55 (1H, m, CHC=O), 2.53–2.47 (1H, m, OCCHCHH), 2.25–2.16 (1H, m, OCCHCHH), 1.98–1.90 (1H, m, CHCHH), 1.65 (3H, s, CCH₃), 1.31–1.22 (1H, m, CHCHH), 1.13 (3H, d, J 6.6 Hz, CH₃CC=O); δ_C (400 MHz, CDCl₃) 179.0 (C=O), 135.4 (CCH₃), 124.0 (CH), 67.6 (CH₂O), 39.0 (CH₃CC=O), 34.0 (CH₂CCH₃C=O), 25.7 (CHCH₂), 21.2 (CCH₃), 15.4 (CH₃CC=O); m/z (CI, NH₃) 172 [M+NH₄]⁺, 155 [M+H]⁺ (Found [M+H]⁺, 155.1072. C₉H₁₄O₂) requires [M+H]⁺, 155.1072).

(1R*,2R*)-1-Methyl-2-(prop-1-en-2-yl)cyclobutanecarboxylic acid 14

To a solution of (*Z*)-2,7-dimethyl-3,4,5,8-tetrahydro-2*H*-oxocin-2-one **3** (15 mg, 0.0992 mmol, 1.0 equiv.) and Et₃N (69 µL, 0.496 mmol, 5.0 equiv.) in CH₂Cl₂ (1 mL) at rt was added TMSOTf (36 µL, 0.198 mmol, 2.0 equiv.) dropwise. After 16 h, the reaction mixture was diluted with CH₂Cl₂ (3 mL), and the aqueous phase treated with 1 M aq. NaOH to pH >10, and partitioned. The aqueous phase was acidified to pH <2 with 2 M aq. HCl, extracted with CH₂Cl₂ (× 3), and the combined organic phase washed with brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Column chromatography (30 % EtOAc–petrol) gave (1*R**,2*R**)-1-methyl-2-(prop-1-en-2-yl)cyclobutanecarboxylic acid **14** (14 mg, 0.091 mmol, 92 %) as a colourless gum: R_f 0.49 (30 % EtOAc–petrol); v_{max} (neat) 3100 (broad), 3084, 2964, 1691, 1647,

1461, 1407, 1377, 1311, 1257, 1230, 1170, 1084, 1030, 935, 902, 887, 774 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.85 (1H, d, *J* 1.0 Hz, C=CH*H*), 4.73 (1H, s, C=C*H*H), 2.89 (1H, t, *J* 9.1 Hz, CH), 2.41–2.33 (1H, m, CH*H*CCH₃), 2.35–2.26 (1H, m, CH*H*CH), 1.96–1.89 (1H, m, C*H*HCH), 1.81–1.74 (1H, m, C*H*HCCH₃), 1.74 (3H, s, *C*H₃C=C), 1.50 (3H, s, *C*H₃CC=O); $\delta_{\rm C}$ (400 MHz, CDCl₃) 181.5 (C=O), 144.6 (CH₃C=C), 110.3 (H₂C=C), 52.7 (CH), 50.8 (CCH₃C=O), 28.1 (CH₂), 25.5 (CH₂), 22.0 (CH₃), 20.3 (CH₃); *m*/*z* (CI, NH₃) 172 [M+NH₄]⁺, 155 [M+H]⁺, 123, 106 (Found [M+NH₄]⁺, 172.1338. C₉H₁₄O₂ requires [M+NH₄]⁺, 172.1338.²

¹ Y. K. Chen and P. J. Walsh, J. Am. Chem. Soc., 2004, **126**, 3702.

² V. Wakchaure and B. List, *Angew. Chem. Int. Ed.*, 2010, **49**, 4136.

23

ultraction of the

30

