## Electronic Supplementary Information

## Self-Association Free Bifunctional Thiourea Organocatalysts: Synthesis of Chiral $\alpha$-Amino Acids via Dynamic Kinetic Resolution of Racemic Azlactones

Joong Suk Oh, ${ }^{a}$ Ji Woong Lee, ${ }^{a}$ Tae Hee Ryu, ${ }^{a}$ Jae Heon Lee, ${ }^{a}$ Choong Eui Song ${ }^{a, b^{*}}$<br>${ }^{a}$ Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon, Gyeonggi, 440-746 (Korea);<br>${ }^{b}$ Department of Energy Science, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon, Gyeonggi, 440-746 (Korea)

Fax: (+82) 31-290-7075; E-mail: s1673@skku.edu

## Contents

1. General remarks and materials ..... S2
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of cinchona-based catalysts ..... S3
3. IR spectra of cinchona-based catalysts ..... S7
4. Analytical data of products ..... S9
5. NMR spectra for $N$-acylated- $\alpha$-amino acid esters ..... S13
6. HPLC spectra for $N$-acylated- $\alpha$-amino acid esters ..... S23
7. Multigram-scale synthesis of L-m-tyrosine by hydrolysis of 2 i . ..... S40
8. Crystal data for the compound Bis-CD-TU(1b) $\cdot \mathrm{C}_{7} \mathrm{H}_{8}$ ..... S43
9. References ..... S44

## 1. General remarks and materials

All chemicals used in this study were obtained from commercial sources and used without further purification. The chromatographic purification of the products was carried out by flash chromatography using Merck silica gel 60 (230-400 mesh). Thin-layer chromatography was carried out on Merck silica gel 60F plates. HPLC analyses were performed on a Varian Pro Star Series instrument equipped with an isostatic pump using a CHIRALCEL OD-H Column ( $250 \times 4.6 \mathrm{~mm}$ ). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian 300, Varian 400 and Varian 500 spectrometers. The IR spectra were obtained using a Bruker Vertex 70 spectrometer with MIRacle Micro ATR accessory. The HRMS spectra were recorded on a Jeol JMS-700 M station. The melting points (Mps) were determined on a Buchi B-540 melting point apparatus and were uncorrected. The optical rotation was measured on a Perkin Elmer Polarimeter 343 plus.

## 2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Cinchona-based catalysts (Ia-d)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Bis-HCD-TU (Ia)


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Bis-CD-TU (Ib)


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Bis-HQn-TU (Ic)


${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of Bis-HQn-TU (Id)

|  <br> Bis-QN-TU (Id) |  |
| :---: | :---: |
|  |  |

(Id)

## 3. IR spectra of Cinchona-based catalysts (Ia-d)

IR spectrum of Bis-HCD-TU (Ia)


IR spectrum of Bis-CD-TU (Ib)


## IR spectrum of Bis-HQN-TU (Ic)



IR spectrum of Bis-QN-TU (Id)


## 4. Analytical data of products


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.99(\mathrm{~d}, J=6.8,3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8,3 \mathrm{H}), 2.26-2.34(\mathrm{~m}$, $1 \mathrm{H}), 4.60-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{dd}, J=4.8$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=10.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.35(\mathrm{dq}, J=16.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.97$ (sym.m, 1 H$), 6.86(\mathrm{br} \mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-$ $7.43(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.84$, 18.96, 21.35, 31.47, 57.19, 65.70, 118.77, 126.83, 128.92, 130.95, 131.27, 141.82, 166.94, 171.66.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=5.7 \mathrm{~min}, \mathrm{t}_{\mathrm{S}}=9.1 \mathrm{~min}$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{~d}, J=6.8,3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8,3 \mathrm{H}), 2.25-2.34(\mathrm{~m}$, $1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 4.59-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{dd}, J=4.8$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dq}, J=10$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dq}, J=16.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-6.00(\mathrm{sym} . \mathrm{m}, 1 \mathrm{H}), 6.78(\mathrm{br} \mathrm{d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 17.84$, 18.96, 21.35, 31.47, 57.19, 65.70, 118.77, 126.83, 128.92, 130.95, 131.27, 141.82, 166.94, 171.66.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=5.0 \mathrm{~min}, \mathrm{t}_{\mathrm{S}}=12.8 \mathrm{~min}$.

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$ ), 2.252.36(sym.m, 1H), 4.66-4.69 (m, 2H), 4.79 (dd, $J=4.9 \mathrm{~Hz}$ and $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dq}, J=10$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dq}, J=16.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-6.97($ sym.m, 1 H$), 6.92(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta{ }^{13} \mathrm{C}$ NMR
( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 17.86,18.94,31.51,57.48,65.89,115.51\left(\mathrm{~d},{ }^{2} J(\mathrm{C}-\mathrm{C}-\mathrm{F})=21.6 \mathrm{~Hz}\right)$, 119.01, $129.36\left(\mathrm{~d},{ }^{3} J(\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{F})=8.88 \mathrm{~Hz}\right), 130.26\left(\mathrm{~d},{ }^{4} J(\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{F})=3.0 \mathrm{~Hz}\right), 131.42$, $164.76\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{F})=250.6 \mathrm{~Hz}\right), 166.20,171.81$.
Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=5.0 \mathrm{~min}, \mathrm{t}_{\mathrm{S}}=12.8 \mathrm{~min}$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.28-2.39$ (sym.m, 1H), 4.64-4.73 (m, 2H), 4.89 (dd, $J=4.8$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.27 (d, $J=10.4,1 \mathrm{H}$ ), 5.37 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.99$ (sym.m, 1H), 6.92 (br d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.49-7.57 (m, 2H), 7.83-7.91 (m, 4H), $8.31(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 17.98,19.01,31.65$, $57.42,65.90,118.97,123.44,126.60,127.40,127.55,128.30,128.76,131.08,131.30,132.32$, 134.60, 167.14, 171.78.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=10.1 \mathrm{~min}, \mathrm{t}_{\mathrm{S}}=16.6 \mathrm{~min}$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.66(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{p}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=1.2$ and $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=17.1$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-$ 6.00 (sym m., 1H), 7.02 (br d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.78-7.81(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 25.96,26.10,26.29,32.57,33.44,34.19,40.34,50.52,65.91$, 118.78, 127.01, 128.52, 131.50, 131.66, 133.89, 167.03, 173.03.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=8.6 \mathrm{~min}, \mathrm{t}_{\mathrm{S}}=14.2 \mathrm{~min}$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{td}, J=7.1 \mathrm{~Hz}$ and 14.1 Hz , $1 \mathrm{H}), 1.96-2.10(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.77-4.84(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=10.5$ and 1.2 Hz , $1 \mathrm{H}), 5.36(\mathrm{dq}, J=17.2$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.98(\operatorname{sym} . \mathrm{m}, 1 \mathrm{H}), 6.82(\mathrm{br} \mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40-7.53 (m, 3H), 7.79-7.82 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.46,25.73,53.57$, $65.98,118.95,126.98,128.53,131.42,131.67,133.92,166.98,172.26$.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=7.1 \mathrm{~min}, \mathrm{t}_{\mathrm{S}}=14.4 \mathrm{~min}$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.65(\mathrm{~m}, 1 \mathrm{H})$, 2.69-2.75 (m, 1H), 4.19-4.29 (m, 2H), 4.87 (td, $J=5.6 \mathrm{~Hz}$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.16-5.19 (m, 1 H ), $5.71-5.80$ (sym.m, 1H), 6.67 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.22-7.25 (m, 2H), 7.67-7.72 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 14.16, 21.37, 36.61, 51.92, 61.49, 119.11, 126.97, 129.14, 131.14, 132.27, 142.06, 166.73, 171.82.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=5.8 \mathrm{~min}, \mathrm{t}_{\mathrm{S}}=9.3 \mathrm{~min}$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, 2.86 (ddd, $J=17.0 \mathrm{~Hz}$ and $J=4.3 \mathrm{~Hz}$ and $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{A}}$ of AB-spin system), 2.91 (ddd, $J=$ 17.0 Hz and $J=4.3 \mathrm{~Hz}$ and $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{B}}$ of AB-spin system), 4.23-4.28 (m, 1H), 4.29$4.33(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{td}, J=4.6 \mathrm{~Hz}$ and $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 14.13, 21.42, 22.58, 50.94, 61.97, 71.53, 78.53, 127.09, 129.21, 130.93, 142.29, 166.83, 170.47.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=7.8 \mathrm{~min}, \mathrm{t}_{\mathrm{S}}=10.5 \mathrm{~min}$.

${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.21(\mathrm{dd}, J=13.6 \mathrm{~Hz}$ and 5.3 Hz , $1 \mathrm{H}_{\mathrm{A}}$ of AB-spin system), $3.27\left(\mathrm{dd}, J=13.6 \mathrm{~Hz}\right.$ and $5.3 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{A}}$ of AB-spin system), 3.73 (s, $3 \mathrm{H}), \quad 4.22(\mathrm{dd}, J=14.1$ and $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{td}, J=7.5$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.13,37.89,53.51,55.14,61.65,112.68,114.90,121.70,126.97,128.59$, $129.52,131.75,133.95,137.38,159.67,166.75,171.53$.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=10.5 \mathrm{~min}, \mathrm{t}_{\mathrm{S}}=13.0 \mathrm{~min}$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.36(\mathrm{dd}, J=13.9 \mathrm{~Hz}$ and 5.8 Hz , $1 \mathrm{H}_{\mathrm{A}}$ of AB-spin system), 2.92 (dd, $J=13.9 \mathrm{~Hz}$ and $5.8 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{B}}$ of AB-spin system),, 4.11$4.20(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{td}, J=5.9$ and $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{br} \mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 3 \mathrm{H})$, 7.38-7.42 (m, 3H), $7.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.69-7.76(\mathrm{~m}, 5 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 13.91, 37.80, 53.55, 61.39, 125.50, 125.94, 126.84, 127.26, 127.30, 127.44, 127.93, 127.96, 128.31, 131.46, 132.28, 133.21, 133.44, 133.71, 166.81, 171.44.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=12.1 \mathrm{~min}, \mathrm{t}_{\mathrm{S}}=14.8 \mathrm{~min}$.
5. NMR Spectra for $N$-acylated- $\alpha$-amino acid esters


Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry



Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry



Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
(10)



(








## 5. HPLC spectra of $N$-acylated- $\alpha$-amino acid esters

Table 1. Entry 1 (racemic sample)


Table 1. Entry 1 (before recrystallization)


Table 1 . Entry 1 (after recrystallization)


Table 1. Entry 2

| AU $3.0-1$ | Peak <br> No | Result 0 | Ret. <br> Time (min) | Area (counts) | $\begin{gathered} \text { Width } \\ 1 / 2 \\ (\mathrm{sec}) \end{gathered}$ |  | O |  | 90\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1 \\ 2 \\ \hline \end{array}$ | $\begin{array}{r} 4.3641 \\ 95.6359 \\ \hline \end{array}$ | $\begin{array}{r} 5.978 \\ 10.152 \\ \hline \end{array}$ | $\begin{array}{r} 21854616 \\ 478927616 \\ \hline \end{array}$ | $\begin{array}{r} 10.8 \\ 22.2 \\ \hline \end{array}$ |  |  | + | - |
| $2.5-$ |  | 100.0000 |  | 500782240 |  |  | $\cdots$ |  |  |
| $2.0-$ |  |  |  |  |  |  |  |  | 70\% |
| 1.5- |  |  |  |  |  |  |  |  | 50\% |
| $1.0-$ |  |  |  |  |  |  |  |  | 30\% |
| $0.5-$ $0.0-1$ |  |  |  |  |  |  | $1$ |  | 10\% |
| -0.4- |  | 2.5 |  | 5.0 |  | 7.5 | 10.0 | $\left.\right\|_{12.5}$ |  |
|  |  |  |  |  |  |  |  |  | Minutes |

Table 1. Entry 3


Table 1. Entry 4


Table 1. Entry 5


Table 1 . Entry 6


Table 2. Entry 1 (racemic sample)


Table 2. Entry 1


Table 2. Entry 2 (racemic sample)


Table 2. Entry 2 (before recrystallization)


Table 2. Entry 2 (after recrystallization)


Table 2. Entry 3 (racemic sample)


Table 2. Entry 3


Table 2. Entry 4 (racemic sample)


Table 2. Entry 4 (before recrystallization)


Table 2. Entry 4 (after recrystallization)


Table 2. Entry 5 (racemic sample)


Table 2 . Entry 5


Table 2. Entry 6 (racemic sample)


Table 2. Entry 6


Table 2. Entry 7 (racemic sample)


Table 2. Entry 7 (before recrystallization)


Table 2. Entry 7 (after recrystallization)


Table 2. Entry 8 (racemic sample)


Table 2. Entry 8 (before recrystallization)


Table 2. Entry 8 (after recrystallization)


Table 2. Entry 9 (racemic sample)


Table 2. Entry 9 (before recrystallization)


Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Table 2. Entry 9 (after recrystallization)


Table 2. Entry 10 (racemic sample)


Table 2. Entry 10 (before recrystallization)


Table 2. Entry 10 (after recrystallization)


## 6. Multigram-scale synthesis of L-m-tyrosine by hydrolysis of $\mathbf{2 i}$



A suspension of $\mathbf{2 i}(4.34 \mathrm{~g}, 13.35 \mathrm{mmol})$ in mixture of $\mathrm{HBr}(8 \mathrm{~mL})$ and $\mathrm{AcOH}(8 \mathrm{~mL})$ was refluxed for 6 h , followed by complete evaporation of the liquid. The residue was redissolved in water ( 12 mL ), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL} \mathrm{X} \mathrm{2})$. The pH of the aqueous layer was then adjusted to $5.5-6$ by adding 4 N NaOH solution. The precipitate formed was filtered and dried in vacuo to yield L-m-tyrosine ( $1.7 \mathrm{~g}, 70 \%$ ) as colorless crystals.
${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{DCl}\right) \delta 3.02\left(\mathrm{dd}, J=14.5 \mathrm{~Hz}\right.$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{A}}$ of AB-spin system), $3.15\left(\mathrm{dd}, J=14.5 \mathrm{~Hz}\right.$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{B}}$ of AB-spin system) $3.79(\mathrm{dd}, J=5.5$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.67-6.77 (m, 3H), 7.14-7.18 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{DCl}\right) \delta 35.49$, 54.02, 115.09, 116.35, 121.62, 130.74, 135.77, 156.05, 171.25.

Enantiomeric excess was determined by using HPLC analysis: ChiroSil RCA-51002546, $250 * 4.6 \mathrm{~mm}(5 \mathrm{um})$; : $80 \% \mathrm{MeOH} \& 20 \%, 10 \mathrm{mM} \mathrm{HClO}_{4}$ in $\mathrm{H}_{2} \mathrm{O}$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min} ; 220$ $\mathrm{nm} ; \mathrm{t}_{\mathrm{s}}=3.9 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}=5.5 \mathrm{~min}$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (S)-m-tyrosine
(1)


Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

HPLC Spectrum of racemic m-tyrosine


HPLC Spectrum of (S)-m-tyrosine (Scheme 1)


## 7. Crystal data for the compound Bis-Cd-TU(Ib) $\cdot \mathrm{C}_{7} \mathbf{H}_{8}$.

| Identification code | ma |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{~S}$ |
| Formula weight | 721.00 |
| Temperature | 296(2) K |
| Wavelength | 0.71073 A |
| Crystal system | monoclinic |
| Space group | $P 2_{1}$ |
| Unit cell dimensions | $a=11.6327(11) \AA \quad \alpha=90^{\circ}$. |
|  | $b=11.6667(10) \AA \quad \beta=104.810(4)^{\circ}$. |
|  | $c=15.0995(13) \AA \begin{aligned} & \text { A }\end{aligned} \quad \gamma=90^{\circ}$. |
| Volume | 1981.2(3) $\AA^{3}$ |
| Z | 2 |
| Density (calculated) | $1.209 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.122 \mathrm{~mm}^{-1}$ |
| $F(000)$ | 772 |
| Crystal size | $0.46 \times 0.40 \times 0.36 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 2.23 to $28.59^{\circ}$. |
| Index ranges | $-11 \leq h \leq 15,-15 \leq k \leq 15,-20 \leq l \leq 19$ |
| Reflections collected | 28496 |
| Independent reflections | $9417[R(\mathrm{int})=0.0227]$ |
| Completeness to theta $=28.59^{\circ}$ | 95.3 \% |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | 0.9573 and 0.9459 |
| Refinement method | Full-matrix least-squares on $F^{2}$ |
| Data / restraints / parameters | 9417/1/444 |
| Goodness-of-fit on $F^{2}$ | 1.026 |
| Final $R$ indices [ $I>2 \sigma(I)$ ] | $R 1=0.0684, w R 2=0.1819$ |
| $R$ indices (all data) | $R 1=0.1018, w R 2=0.2095$ |
| Absolute structure parameter | 0.90(10) |
| Largest diff. peak and hole | 0.643 and $-0.401 \mathrm{e} \cdot \AA^{-3}$ |

## 8. References

1. J. Ye, D. J. Dixon, P. S. Hynes, Chem. Commun. 2005, 4481-4483.
2. J. Liang, J. C. Ruble and G. C. Fu, J. Org. Chem. 1998, 63, 3154-3155.
