Electronic Supplementary Information

Self-Association Free Bifunctional Thiourea Organocatalysts: Synthesis of Chiral α-Amino Acids via Dynamic Kinetic Resolution of Racemic Azlactones

Joong Suk Oh,^a Ji Woong Lee,^a Tae Hee Ryu,^a Jae Heon Lee,^a Choong Eui Song^{a,b*}

 ^a Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon, Gyeonggi, 440-746 (Korea);
 ^b Department of Energy Science, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon, Gyeonggi, 440-746 (Korea)
 Fax: (+82) 31-290-7075; E-mail: <u>s1673@skku.edu</u>

Contents

1. General remarks and materials	S2
2. ¹ H and ¹³ C NMR spectra of cinchona-based catalysts	S3
3. IR spectra of cinchona-based catalysts	S7
4. Analytical data of products	S9
5. NMR spectra for <i>N</i> -acylated- α -amino acid esters	S13
6. HPLC spectra for <i>N</i> -acylated-α-amino acid esters	S23
7. Multigram-scale synthesis of L- <i>m</i> -tyrosine by hydrolysis of 2i	S40
8. Crystal data for the compound Bis-CD-TU(1b) ·C ₇ H ₈	S43
9. References	S44

1. General remarks and materials

All chemicals used in this study were obtained from commercial sources and used without further purification. The chromatographic purification of the products was carried out by flash chromatography using Merck silica gel 60 (230–400 mesh). Thin-layer chromatography was carried out on Merck silica gel 60F plates. HPLC analyses were performed on a Varian Pro Star Series instrument equipped with an isostatic pump using a CHIRALCEL OD-H Column ($250 \times 4.6 \text{ mm}$). The ¹H and ¹³C NMR spectra were recorded on Varian 300, Varian 400 and Varian 500 spectrometers. The IR spectra were obtained using a Bruker Vertex 70 spectrometer with MIRacle Micro ATR accessory. The HRMS spectra were recorded on a Jeol JMS-700 M station. The melting points (Mps) were determined on a Buchi B-540 melting point apparatus and were uncorrected. The optical rotation was measured on a Perkin Elmer Polarimeter 343 plus.

2. ¹H and ¹³C NMR of Cinchona-based catalysts (Ia-d)

¹H and ¹³C NMR spectra of **Bis-HCD-TU** (Ia)

¹H and ¹³C NMR spectra of **Bis-CD-TU** (**Ib**)

¹H, ¹³C NMR spectra of **Bis-HQn-TU (Id)**

3. IR spectra of Cinchona-based catalysts (Ia-d)

IR spectrum of Bis-HCD-TU (Ia)

IR spectrum of Bis-CD-TU (Ib)

IR spectrum of Bis-HQN-TU (Ic)

IR spectrum of Bis-QN-TU (Id)

4. Analytical data of products

¹H NMR (400 MHz, CDCl₃) δ 0.99 (d, *J* = 6.8 , 3H), 1.01 (d, *J* = 6.8 , 3H), 2.26–2.34 (m, 1H), 4.60–4.71 (m, 2H), 4.81 (dd, *J* = 4.8 and 8.4 Hz, 1H), 5.26 (dd, *J* = 10.4 and 1.2 Hz, 1H), 5.35 (dq, *J* = 16.8 and 1.2 Hz, 1H), 5.85–5.97 (sym.m, 1H), 6.86 (br d, *J* = 8.8 Hz, 1H), 7.38–7.43 (m, 2H), 7.46–7.51 (m, 1H), 7.78–7.83 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 17.84, 18.96, 21.35, 31.47, 57.19, 65.70, 118.77, 126.83, 128.92, 130.95, 131.27, 141.82, 166.94, 171.66.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: 1.0 mL/min; 220 nm; $t_R = 5.7$ min, $t_S = 9.1$ min.

¹H NMR (400 MHz, CDCl₃) δ 0.98 (d, *J* = 6.8 , 3H), 1.01 (d, *J* = 6.8 , 3H), 2.25–2.34 (m, 1H), 2.38 (s, 3H), 4.59-4.71 (m, 2H), 4.81 (dd, *J* = 4.8 and 8.8 Hz, 1H), 5.26 (dq, *J* = 10 and 1.2 Hz, 1H), 5.35 (dq, *J* = 16.8 and 1.2 Hz, 1H), 5.86-6.00 (sym.m, 1H), 6.78 (br d, *J* = 8.4 Hz, 1H), 7.21 (d, *J* = 8 Hz, 2H), 7.71 (d, *J* = 8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 17.84, 18.96, 21.35, 31.47, 57.19, 65.70, 118.77, 126.83, 128.92, 130.95, 131.27, 141.82, 166.94, 171.66.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: 1.0 mL/min; 220 nm; $t_R = 5.0$ min, $t_S = 12.8$ min.

¹H NMR (500 MHz, CDCl₃) δ 0.99 (d, *J*=7.2 Hz, 3H), 1.01 (d, *J*=7.2 Hz, 3H), 2.25–2.36(sym.m, 1H), 4.66–4.69 (m, 2H), 4.79 (dd, *J*=4.9 Hz and *J*=8.6 Hz, 1H), 5.26 (dq, *J* = 10 and 1.2 Hz, 1H), 5.35 (dq, *J* = 16.8 and 1.2 Hz, 1H), 5.87–6.97 (sym.m, 1H), 6.92(d, *J* = 8.8 Hz, 1H), 7.04–7.11 (m, 2H), 7.79–7.85(m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ ¹³C NMR

(500 MHz, CDCl₃) δ 17.86, 18.94, 31.51, 57.48, 65.89, 115.51 (d, ²*J* (C–C-F) = 21.6 Hz), 119.01, 129.36 (d, ³*J* (C–C-C-F) = 8.88 Hz), 130.26 (d, ⁴*J* (C-C-C-C-F) = 3.0 Hz), 131.42, 164.76 (d, ¹*J* (C-F) = 250.6 Hz), 166.20, 171.81.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: 1.0 mL/min; 220 nm; $t_R = 5.0$ min, $t_S = 12.8$ min.

¹H NMR (400 MHz, CDCl₃) δ 1.03 (d, *J* = 7.2 Hz, 3H), 1.05 (d, *J* = 7.2 Hz, 3H), 2.28–2.39 (sym.m, 1H), 4.64–4.73 (m, 2H), 4.89 (dd, *J* = 4.8 and 8.8 Hz, 1H), 5.27 (d, *J* = 10.4, 1H), 5.37 (d, *J* = 17.6 Hz, 1H), 5.88–5.99 (sym.m, 1H), 6.92 (br d, *J* = 8.4 Hz, 1H), 7.49-7.57 (m, 2H), 7.83-7.91 (m, 4H), 8.31 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 17.98, 19.01, 31.65, 57.42, 65.90, 118.97, 123.44, 126.60, 127.40, 127.55, 128.30, 128.76, 131.08, 131.30, 132.32, 134.60, 167.14, 171.78.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: 1.0 mL/min; 220 nm; $t_R = 10.1$ min, $t_S = 16.6$ min.

¹H NMR (300 MHz, CDCl₃) δ 1.53 (d, *J* = 7.2 Hz, 3H), 4.66 (d, *J* = 5.7 Hz, 2H), 4.83 (p, *J* = 7.2 Hz, 1H), 5.26 (dd, *J* = 1.2 and 10.5 Hz, 1H), 5.34 (dd, *J* = 17.1 and 1.2 Hz, 1H), 5.87-6.00 (sym m., 1H), 7.02 (br d, *J* = 6.7 Hz, 1H), 7.37–7.51 (m, 3H), 7.78–7.81 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 25.96, 26.10, 26.29, 32.57, 33.44, 34.19, 40.34, 50.52, 65.91, 118.78, 127.01, 128.52, 131.50, 131.66, 133.89, 167.03, 173.03.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: 1.0 mL/min; 220 nm; $t_R = 8.6 \text{ min}$, $t_S = 14.2 \text{ min}$.

¹H NMR (300 MHz, CDCl₃) δ 0.98 (t, *J* = 7.5 Hz, 3H), 1.85 (td, *J* = 7.1 Hz and 14.1 Hz, 1H), 1.96-2.10 (m, 1H), 4.62–4.74 (m, 2H), 4.77-4.84 (m, 1H), 5.28 (dd, *J* = 10.5 and 1.2 Hz, 1H), 5.36 (dq, *J* = 17.2 and 1.4 Hz, 1H), 5.85-5.98 (sym.m, 1H), 6.82 (br d, *J* = 7.4 Hz, 1H), 7.40–7.53 (m, 3H), 7.79–7.82 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 9.46, 25.73, 53.57, 65.98, 118.95, 126.98, 128.53, 131.42, 131.67, 133.92, 166.98, 172.26.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: 1.0 mL/min; 220 nm; $t_R = 7.1 \text{ min}$, $t_S = 14.4 \text{ min}$.

¹H NMR (500 MHz, CDCl₃) δ 1.30 (t, J = 7.0 Hz, 3H), 2.40 (s, 3H), 2.59–2.65 (m, 1H), 2.69-2.75 (m, 1H), 4.19-4.29 (m, 2H), 4.87 (td, J = 5.6 Hz and 7.6 Hz, 1H), 5.16-5.19 (m, 1H), 5.71–5.80 (sym.m, 1H), 6.67 (d, J = 6.8 Hz, 1H), 7.22–7.25 (m, 2H), 7.67–7.72 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) 14.16, 21.37, 36.61, 51.92, 61.49, 119.11, 126.97, 129.14, 131.14, 132.27, 142.06, 166.73, 171.82.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: 1.0 mL/min; 220 nm; $t_R = 5.8 \text{ min}$, $t_S = 9.3 \text{ min}$.

¹H NMR (500 MHz, CDCl₃) δ 1.32 (t, *J* = 7.1 Hz, 3H), 2.40 (t, *J* = 2.6 Hz, 1H), 2.40 (s, 3H), 2.86 (ddd, *J* = 17.0 Hz and *J* = 4.3 Hz and *J* = 2.7 Hz, 1H_A of AB-spin system), 2.91 (ddd, *J* = 17.0 Hz and *J* = 4.3 Hz and *J* = 2.7 Hz, 1H_B of AB-spin system), 4.23–4.28 (m, 1H), 4.29–4.33 (m, 1H), 4.92 (td, *J* = 4.6 Hz and *J* = 7.7 Hz, 1H), 6.98 (d, *J* = 7.3 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) 14.13, 21.42, 22.58, 50.94, 61.97, 71.53, 78.53, 127.09, 129.21, 130.93, 142.29, 166.83, 170.47. Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane:

Isopropyl alcohol=90:10; flow rate: 1.0 mL/min; 220 nm; $t_R = 7.8 \text{ min}$, $t_S = 10.5 \text{ min}$.

¹H NMR (300 MHz, CDCl₃) δ 1.29 (t, J = 7.2 Hz, 3H), 3.21 (dd, J = 13.6 Hz and 5.3 Hz, 1H_A of AB-spin system), 3.27 (dd, J = 13.6 Hz and 5.3 Hz, 1H_A of AB-spin system), 3.73 (s, 3H), 4.22 (dd, J = 14.1 and 7.3 Hz, 2H), 5.06 (td, J = 7.5 and 5.6 Hz, 1H), 6.61 (d, J = 7.3Hz, 1H), 6.76 (m, 3H), 7.20 (m, 1H), 7.42 (m, 2H), 7.51 (m, 1H), 7.74 (m, 2H) ¹³C NMR (75 MHz, CDCl₃) δ 14.13, 37.89, 53.51, 55.14, 61.65, 112.68, 114.90, 121.70, 126.97, 128.59, 129.52, 131.75, 133.95, 137.38, 159.67, 166.75, 171.53.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: 1.0 mL/min; 220 nm; $t_R = 10.5$ min, $t_S = 13.0$ min.

¹H NMR (500 MHz, CDCl₃) δ 1.18 (t, *J* = 7.1 Hz, 3H), 3.36 (dd, *J* = 13.9 Hz and 5.8 Hz, 1H_A of AB-spin system), 2.92 (dd, *J* = 13.9 Hz and 5.8 Hz, 1H_B of AB-spin system), 4.11-4.20 (m, 2H), 5.13(td, *J* = 5.9 and 7.4 Hz, 1H), 6.90 (br d, *J* = 7.3 Hz, 1H), 7.27–7.32(m, 3H), 7.38–7.42 (m, 3H), 7.59 (br s, 1H), 7.69–7.76 (m, 5H) ¹³C NMR (125 MHz, CDCl₃) 13.91, 37.80, 53.55, 61.39, 125.50, 125.94, 126.84, 127.26, 127.30, 127.44, 127.93, 127.96, 128.31, 131.46, 132.28, 133.21, 133.44, 133.71, 166.81, 171.44.

Enantiomeric excess was determined by using HPLC analysis: CHIRALPAK OD-H; Hexane: Isopropyl alcohol=90:10; flow rate: 1.0 mL/min; 220 nm; $t_R = 12.1 \text{ min}$, $t_S = 14.8 \text{ min}$.

5. HPLC spectra of *N*-acylated-α-amino acid esters

Table 1. Entry 1 (racemic sample)

Table 1. Entry 1 (before recrystallization)

Table 1. Entry 1 (after recrystallization)

Table 1. Entry 2

Table 1. Entry 3

Table 1. Entry 4

Table 1. Entry 5

Table 1. Entry 6

Table 2. Entry 1 (racemic sample)

Table 2. Entry 1

Table 2. Entry 2 (racemic sample)

Table 2. Entry 2 (before recrystallization)

Table 2. Entry 2 (after recrystallization)

Table 2. Entry 3

Table 2. Entry 4 (racemic sample)

Table 2. Entry 4 (before recrystallization)

Table 2. Entry 4 (after recrystallization)

Table 2. Entry 5 (racemic sample)

Table 2. Entry 5

 Table 2. Entry 6 (racemic sample)

Table 2. Entry 6

 Table 2. Entry 7 (racemic sample)

Table 2. Entry 7 (before recrystallization)

Table 2. Entry 7 (after recrystallization)

Table 2. Entry 8 (racemic sample)

Table 2. Entry 8 (after recrystallization)

Table 2. Entry 9 (racemic sample)

Table 2. Entry 9 (before recrystallization)

Table 2. Entry 9 (after recrystallization)

Table 2. Entry 10 (before recrystallization)

Table 2. Entry 10 (after recrystallization)

6. Multigram-scale synthesis of L-m-tyrosine by hydrolysis of 2i

A suspension of **2i** (4.34 g, 13.35 mmol) in mixture of HBr (8 mL) and AcOH (8 mL) was refluxed for 6 h, followed by complete evaporation of the liquid. The residue was redissolved in water (12 mL), and extracted with CH_2Cl_2 (12 mL X 2). The pH of the aqueous layer was then adjusted to 5.5-6 by adding 4 N NaOH solution. The precipitate formed was filtered and dried in vacuo to yield L-*m*-tyrosine (1.7 g, 70%) as colorless crystals.

¹H NMR (500 MHz, D₂O, DCl) δ 3.02 (dd, J = 14.5 Hz and 7.5 Hz, 1H_A of AB-spin system), 3.15 (dd, J = 14.5 Hz and 7.5 Hz, 1H_B of AB-spin system) 3.79 (dd, J = 5.5 and 7.5 Hz, 1H), 6.67-6.77 (m, 3H), 7.14-7.18 (m, 1H); ¹³C NMR (125 MHz, D₂O, DCl) δ 35.49, 54.02, 115.09, 116.35, 121.62, 130.74, 135.77, 156.05, 171.25.

Enantiomeric excess was determined by using HPLC analysis: ChiroSil RCA-51002546, 250*4.6mm (5um); : 80% MeOH & 20%, 10mM HClO₄ in H₂O; flow rate: 1.0 mL/min; 220 nm; t_s = 3.9 min, t_r =5.5 min.

HPLC Spectrum of racemic m-tyrosine

7. Crystal data for the compound Bis-Cd-TU(Ib)·C7H8.

Identification code	ma	
Empirical formula	$C_{46}H_{52}N_6S$	
Formula weight	721.00	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	<i>P</i> 2 ₁	
Unit cell dimensions	<i>a</i> = 11.6327(11) Å	$\alpha = 90^{\circ}$.
	<i>b</i> = 11.6667(10) Å	$\beta = 104.810(4)^{\circ}.$
	<i>c</i> = 15.0995(13) Å	$\gamma = 90^{\circ}$.
Volume	1981.2(3) Å ³	
Ζ	2	
Density (calculated)	1.209 Mg/m ³	
Absorption coefficient	0.122 mm^{-1}	
<i>F</i> (000)	772	
Crystal size	$0.46 \times 0.40 \times 0.36 \text{ mm}^3$	
Theta range for data collection	2.23 to 28.59°.	
Index ranges	$-11 \le h \le 15, -15 \le k \le 15, -15$	$20 \le l \le 19$
Reflections collected	28496	
Independent reflections	9417 [<i>R</i> (int) = 0.0227]	
Completeness to theta = 28.59°	95.3 %	
Absorption correction	Semi-empirical from equivalent	its
Max. and min. transmission	0.9573 and 0.9459	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	9417/1/444	
Goodness-of-fit on F^2	1.026	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0684, wR2 = 0.1819	
<i>R</i> indices (all data)	R1 = 0.1018, wR2 = 0.2095	
Absolute structure parameter	0.90(10)	
Largest diff. peak and hole	0.643 and $-0.401 \text{ e}\cdot\text{Å}^{-3}$	

8. References

- 1. J. Ye, D. J. Dixon, P. S. Hynes, Chem. Commun. 2005, 4481-4483.
- 2. J. Liang, J. C. Ruble and G. C. Fu, J. Org. Chem. 1998, 63, 3154-3155.