Kv1.2 Potassium Channel Inhibitors from Chukrasia tabularis

Hong-Bing Liu, Hua Zhang, Ping Li, Yan Wu, Zhao-Bing Gao, and Jian-Min Yue*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China

- Figure S1. ¹H NMR spectrum of **1** in CDCl₃
- Figure S2. 13 C NMR spectrum of **1** in CDCl₃
- Figure S3. HSQC spectrum of 1 in CDCl₃
- Figure S4. HMBC spectrum of **1** in CDCl₃
- Figure S5. ROESY spectrum of **1** in CDCl₃
- Figure S6. IR spectrum of 1
- Figure S7. HR-ESI(+)MS spectrum of 1
- Figure S8. ¹H NMR spectrum of **2** in CDCl₃
- Figure S9. 13 C NMR spectrum of **2** in CDCl₃
- Figure S10. HSQC spectrum of 2 in CDCl₃
- Figure S11. HMBC spectrum of 2 in CDCl₃
- Figure S12. ROESY spectrum of **2** in CDCl₃
- Figure S13. IR spectrum of **2**
- Figure S14. HR-ESI(+)MS spectrum of **2**
- Figure S15. ¹H NMR spectrum of $\mathbf{3}$ in CDCl₃
- Figure S16. 13 C NMR spectrum of **3** in CDCl₃
- Figure S17. HSQC spectrum of **3** in CDCl₃
- Figure S18. HMBC spectrum of **3** in CDCl₃
- Figure S19. ROESY spectrum of **3** in CDCl₃
- Figure S20. IR spectrum of **3**
- Figure S21. HR-ESI(+)MS spectrum of **3**
- Figure S22. ¹H NMR spectrum of 4 in CDCl₃
- Figure S23. ¹³C NMR spectrum of **4** in CDCl₃
- Figure S24. HSQC spectrum of **4** in CDCl₃
- Figure S25. HMBC spectrum of 4 in CDCl₃
- Figure S26. ROESY spectrum of 4 in CDCl₃
- Figure S27. IR spectrum of 4
- Figure S28. HR-ESI(+)MS spectrum of 4
- Figure S29. ¹H NMR spectrum of **5** in CDCl₃
- Figure S30. ¹³C NMR spectrum of **5** in CDCl₃

^{*} Corresponding author. Tel: +86-21-50806718. Fax: +86-21-50806718. E-mail: jmyue@mail.shcnc.ac.cn

- Figure S31. HSQC spectrum of **5** in CDCl₃
- Figure S32. HMBC spectrum of **5** in CDCl₃
- Figure S33. ROESY spectrum of **5** in CDCl₃
- Figure S34. IR spectrum of 5
- Figure S35. HR-ESI(+)MS spectrum of 5
- Figure S36. ¹H NMR spectrum of **6** in CDCl₃
- Figure S37. 13 C NMR spectrum of **6** in CDCl₃
- Figure S38. HSQC spectrum of 6 in CDCl₃
- Figure S39. HMBC spectrum of **6** in CDCl₃
- Figure S40. ROESY spectrum of **6** in CDCl₃
- Figure S41. IR spectrum of 6
- Figure S42. HR-ESI(+)MS spectrum of 6
- Figure S43. ¹H NMR spectrum of **7** in CDCl₃
- Figure S44. ¹³C NMR spectrum of **7** in CDCl₃
- Figure S45. HSQC spectrum of **7** in CDCl₃
- Figure S46. HMBC spectrum of 7 in CDCl₃
- Figure S47. ROESY spectrum of **7** in CDCl₃
- Figure S48. IR spectrum of 7
- Figure S49. HR-ESI(+)MS spectrum of 7
- Figure S50. ¹H NMR spectrum of **8** in CDCl₃
- Figure S51. ¹³C NMR spectrum of **8** in CDCl₃
- Figure S52. HSQC spectrum of $\mathbf{8}$ in CDCl₃
- Figure S53. HMBC spectrum of 8 in CDCl₃
- Figure S54. ROESY spectrum of $\mathbf{8}$ in CDCl₃
- Figure S55. IR spectrum of **8**
- Figure S56. HR-ESI(+)MS spectrum of 8
- Figure S57. ¹H NMR spectrum of **9** in CDCl₃
- Figure S58. 13 C NMR spectrum of **9** in CDCl₃
- Figure S59. HSQC spectrum of **9** in CDCl₃
- Figure S60. HMBC spectrum of **9** in CDCl₃
- Figure S61. ROESY spectrum of 9 in CDCl₃
- Figure S62. IR spectrum of **9**
- Figure S63. HR-ESI(+)MS spectrum of **9**
- Figure S64. ¹H NMR spectrum of **10** in CDCl₃
- Figure S65. 13 C NMR spectrum of **10** in CDCl₃
- Figure S66. HSQC spectrum of 10 in CDCl₃
- Figure S67. HMBC spectrum of **10** in CDCl₃
- Figure S68. ROESY spectrum of **10** in CDCl₃
- Figure S69. IR spectrum of 10
- Figure S70. HR-ESI(+)MS spectrum of **10**
- Figure S71. ¹H NMR spectrum of **11** in CDCl₃
- Figure S72. ¹³C NMR spectrum of **11** in CDCl₃
- Figure S73. HSQC spectrum of **11** in CDCl₃
- Figure S74. HMBC spectrum of **11** in CDCl₃

Figure S75.	IR spectrum of 11
Figure S76.	HR-ESI(+)MS spectrum of 11
Figure S77.	¹ H NMR spectrum of 12 in CDCl ₃
Figure S78.	¹³ C NMR spectrum of 12 in CDCl ₃
Figure S79.	HSQC spectrum of 12 in CDCl ₃
Figure S80.	HMBC spectrum of 12 in CDCl ₃
Figure S81.	ROESY spectrum of 12 in CDCl ₃
Figure S82.	IR spectrum of 12
Figure S83.	HR-ESI(+)MS spectrum of 12
Figure S84.	¹ H NMR spectrum of 13 in CDCl ₃
Figure S85.	¹³ C NMR spectrum of 13 in CDCl ₃
Figure S86.	HSQC spectrum of 13 in CDCl ₃
Figure S87.	HMBC spectrum of 13 in CDCl ₃
Figure S88.	ROESY spectrum of 13 in CDCl ₃
Figure S89.	IR spectrum of 13
Figure S90.	HR-ESI(+)MS spectrum of 13
Figure S91.	¹ H NMR spectrum of 14 in CDCl ₃
Figure S92.	¹³ C NMR spectrum of 14 in CDCl ₃
Figure S93.	HSQC spectrum of 14 in CDCl ₃
Figure S94.	HMBC spectrum of 14 in CDCl ₃
Figure S95.	ROESY spectrum of 14 in CDCl ₃
Figure S96.	IR spectrum of 14
Figure S97.	HR-ESI(+)MS spectrum of 14
Figure S98.	¹ H NMR spectrum of 15 in CDCl ₃
Figure S99.	¹³ C NMR spectrum of 15 in CDCl ₃
Figure S100.	HSQC spectrum of 15 in CDCl ₃
Figure S101.	HMBC spectrum of 15 in CDCl ₃
Figure S102.	ROESY spectrum of 15 in CDCl ₃
Figure S103.	IR spectrum of 15
Figure S104.	HR-ESI(+)MS spectrum of 15
Figure S105.	¹ H NMR spectrum of 16 in CDCl ₃
Figure S106.	¹³ C NMR spectrum of 16 in CDCl ₃
Figure S107.	HSQC spectrum of 16 in CDCl ₃
Figure S108.	HMBC spectrum of 16 in CDCl ₃
Figure S109.	ROESY spectrum of 16 in CDCl ₃
Figure S110.	IR spectrum of 16
Figure S111.	HR-ESI(+)MS spectrum of 16
Figure S112.	¹ H NMR spectrum of 17 in CDCl ₃
Figure S113.	¹³ C NMR spectrum of 17 in CDCl ₃
Figure S114.	HSQC spectrum of 17 in CDCl ₃
Figure S115.	HMBC spectrum of 17 in CDCl ₃
Figure S116.	ROESY spectrum of 17 in CDCl ₃
Figure S117.	IR spectrum of 17
Figure S118.	HR-ESI(+)MS spectrum of 17

- Figure S119. ¹H NMR spectrum of **18** in CDCl₃
- Figure S120. ¹³C NMR spectrum of **18** in CDCl₃
- Figure S121. HSQC spectrum of **18** in CDCl₃
- Figure S122. HMBC spectrum of 18 in CDCl₃
- Figure S123. ROESY spectrum of 18 in CDCl₃
- Figure S124. IR spectrum of 18
- Figure S125. HR-ESI(+)MS spectrum of 18

Figure S1. ¹H NMR spectrum of **1** in CDCl₃

BB+DEPT-135 Aug 27 2010

CTM0825 CDCL3

E mudd 174,172 15,610 154,070 154,070 154,070 154,070 174,172 174,174,172 174,174,172 174,174,174,175 174,175 174,175 174,175 174,175 174,175 20 85.236 028.55 40 41.413 41.605 44.028 45.243 29.042 60 260°99-529°12-200°22-105°52-189°92-000°22-920°22-662°28-895°18-895°18-895°18-895°18-895°18-895°18-895°18-895°18-895°18-895°18-80 100 110.082 615.911 217.711 818.911 120 140 964.241 917.141 160 927.931 921.531 £17.031 175.270 180

Figure S2. ¹³C NMR spectrum of **1** in CDCl₃

Figure S3. HSQC spectrum of $\mathbf{1}$ in CDCl₃

Figure S4. HMBC spectrum of **1** in CDCl₃

Figure S6. IR spectrum of 1

Figure S7. HR-ESI(+)MS spectrum of 1

Elemental Composition Report

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 28 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101029-4 92 (1 100- %-	1.737) AM (0	Cen,2, 80.00, Ht,	9000.0,702.86	5,0.70); Sm (S	i G, 2x0.00); Cr 725.	n (84:92) 2426			TOF MS ES+ 605
703.8139						726.2668			741.3 <u>937</u>
705.0	7	10.0	715.0	720.0	725	.0 730.0	735.0	0	740.0
Minimum: Maximum:	20.00 100.00		200	0.0 50.	-1.9 0 50.0	5			
Mass	RA	Calc. Mas	s mDa	PPM	DBE	Score	Formula		
725.2426	100.00	725.2421	0.5	0.6	14.5	5 I	C35 H42	015 Na	

Page 1

Figure S8. ¹H NMR spectrum of **2** in CDCl₃

Figure S9. 13 C NMR spectrum of **2** in CDCl₃

CTM0929 CDCL3 BB+DEPT-135 Sep 20 2010

Figure S10. HSQC spectrum of 2 in CDCl₃

Figure S11. HMBC spectrum of **2** in CDCl₃

Figure S13. IR spectrum of **2**

HR-ESI(+)MS spectrum of 2 Figure S14.

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 30 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) 101108-5 138 (2.605) AM (Cen,2, 80.00, Ht,9000.0,702.86,0.70); Sm (SG, 2x0.00); Cm (138:143) 100-725.2415 TOF MS ES+ 128 % 703.8853 725.1577 726.2379 741.2908 753.2636 m/z TT. 705.0 710.0 715.0 720.0 725.0 730.0 735.0 750.0 740.0 745.0 Minimum: Maximum: 20.00 100.00 -1.5 50.0 200.0 50.0 Mass RA Calc. Mass mDa PPM DBE Score Formula 725.2415 100.00 725.2421 -0.6 14.5 -0.9 1 C35 H42 O15 Na

Figure S15. ¹H NMR spectrum of **3** in CDCl₃

¹³C NMR spectrum of **3** in CDCl₃ Figure S16.

Figure S18. HMBC spectrum of **3** in CDCl₃

Figure S20. IR spectrum of **3**

Figure S21. HR-ESI(+)MS spectrum of **3**

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 33 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101109	-2 10	2 (1.930) A	M (Cen,2,	80.00, Ht,90	00.0,770.85,0.	70); Sm (SG 797.26	3, 2x0.00); C 609	:m (100:114)					Ţ	FOF MS ES+ 462
 	70.76	54 		33.5781			798.2703	804.8278			81	9.2612		827.2765
		775.0	780.0	785.0	790.0	795.0	800.0	805.0	810.0	815.	0	820.0	1	825.0
Minim Maxim	um: um:	20.00 100.0	0		200.0	50.0	-1. 50.	5 0						
Mass		RA	Cal	c. Mass	mDa	PPM	DBE	Sco	re	Form	ula			
797.20	609	100.0	0 797	.2633	-2.4	-3.0	15.	5 1		C38	H46	017	Na	

РРМ 0 300.6 443.6 02 461.0 1.884 1.05 1.18 935.6 935.6 941.1 949.3 316 4.486 9.66.9 0.97 0′93 -0′94 1085.9 S 1136.4 ŝ 1162.2 8.7911 4.0711 7.4711 0 98 1408.3 66 9.5641 4 0.99 7.2831 0.7881 0.93 \$°£261 5 030.99 3.1702 8.4702 2138.6 9 1.02 1⁽01 2569.3 2610.4 2612.0 £.02 1.9872 0.8872 7.1062 f.00⁽⁰² 1.9862 9.6106 ω

CTM0731 CDCL3 BB+DEPT-135 Aug 17 2010

Figure S23. ¹³C NMR spectrum of **4** in CDCl₃.

Figure S24. HSQC spectrum of 4 in CDCl₃

Figure S25. HMBC spectrum of **4** in CDCl₃

Figure S27. IR spectrum of **4**

Figure S28. HR-ESI(+)MS spectrum of **4**

Figure S29. ¹H NMR spectrum of **5** in CDCl₃

CTM0807 CDCL3 BB+DEPT-135 Aug 20 2010

mdd F 14,382 15,260 14,382 15,082 15 20 40 722.357 60 296,56 26,56 26,56 27,56 27,56 27,56 26,575 26, ł 80 100 £28.801 898.9TI 120 122.501 140 143.233 160 \$25'\$91' \$25'891' \$26'621' \$86'621' \$92'\$21' 180 E

Figure S30. ¹³C NMR spectrum of **5** in CDCl₃

Figure S31. HSQC spectrum of 5 in CDCl₃

Figure S32. HMBC spectrum of **5** in CDCl₃

Figure S34. IR spectrum of **5**

Figure S35. HR-ESI(+)MS spectrum of **5**

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 34 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101029-5 135 () 100 %	2.545) AM (C	en,2, 80.00, Ht,904	00.0,838.84,0.70); 853.2	Sm (SG, 2x0 888	.00); Cm (13	5:143)			T	OF MS ES+ 1.17e3
841.2491 0 842.5	845.0	847.5 8	853.1437 8 50.0 852.5	854.2757 855	5.1939 857.5	860.0	862.5	865.0	867.5	869.8548 m/z
Minimum: Maximum:	20.00 100.00		200.0	50.0	-1.5 50.0					
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Form	ula		
853.2888	100.00	853.2895	-0.7	-0.8	16.5	1	C41	H50 C	018 Na	

Figure S36. ¹H NMR spectrum of **6** in CDCl₃

Figure S38. HSQC spectrum of **6** in CDCl₃

Figure S39. HMBC spectrum of **6** in CDCl₃

44

Figure S41. IR spectrum of **6**

Figure S42. HR-ESI(+)MS spectrum of 6

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 36 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101108-2 207 100 %-	' (3.901) AM ((Cen,2, 80.0	00, Ht,9000.	0,702.86,0.1	70); Sm (SG, 2 79	2x0.00); Cm 9.2434	(182:207)				TOF MS ES+ 194
784.2232	2		793.19	910	797.2506	800.2446	.801.1935 8	04.8571	8	09 2595	813 2089
785.0	787.5	790.0	792.5	795.0	797.5	800.0	802.5	805.0	807.5	810.0	812.5
Minimum: Maximum:	20.00 100.00			200.0	50.0	-1.5 50.0					
Mass	RA	Calc.	Mass	mDa	PPM	DBE	Score	Fo	ormula		
799.2434	100.00	799.24	25	0.9	1.1	15.5	1	C	87 H44	018 Na	

Figure S43. ¹H NMR spectrum of 7 in CDCl₃

Figure S44. 13 C NMR spectrum of **7** in CDCl₃

CTM1012 CDC13 88+DEPT-135 Oct 25 2010

Figure S46. HMBC spectrum of **7** in CDCl₃

Figure S48. IR spectrum of **7**

Figure S49. HR-ESI(+)MS spectrum of 7

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 39 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101108-4 10 100 	01 (1.909) AN	1 (Cen,2, 8	30.00, Ht,90	00.0,974.81,0	.70); Sm (SC 883.264	3, 2x0.00); Cr 1	m (101:108)			TOF MS ES+ 172
870.22 0	96 872.75	79			884	.2691 _{885.23}	55			898.8528
	872.5	875.0	877.5	880.0	882.5	885.0	887.5 890.0	892.5	895.0	897.5
Minimum: Maximum:	20.00 100.00			200.0	50.0	-1.5 50.0				
Mass	RA	Calc	. Mass	mDa	PPM	DBE	Score	Formul	la	
883.2641	100.00	883.	2637	0.4	0.5	17.5	1	C41 B	148 020	Na

Figure S50. ¹H NMR spectrum of **8** in CDCl₃

54

mdd -12.053 -12.522 -12.522 -12.522 -12.522 -12.522 -13.222 -13.222 -13.225 -13.225 -13.225 -23.53 -23.5 20 40 \$25.52 60 80 100 109.626 120 119.419 179.419 140 162.241 193.141 160 173.343 169.062 169.062 169.852

Figure S51. ¹³C NMR spectrum of **8** in CDCl₃

CTM0905 CDCL3 68+DEPT-135 Sep 3 2010

858.771

180

HSQC spectrum of 8 in CDCl₃

Figure S55. IR spectrum of **8**

Figure S56. HR-ESI(+)MS spectrum of 8

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 38 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101029-5 128 (2.413) AM (Cen,2, 80.00, Ht,9000.0,906.83,0.70); Sm (SG, 2x0.00); Cm (127:136) 911.2960										
%_										
907.8275			909.9672		911.4	1565 912.3002		913.2	2697	914.2911 M/z
908.00		909.00	910.00	911.00		912.00	91	3.00		914.00
Minimum: Maximum:	20.00 100.00		200.0	50.0	-1.5 50.0					
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Form	ula		
911.2960	100.00	911.2950	1.0	1.1	17.5	1	C43	H52	020	Na

Figure S57. ¹H NMR spectrum of **9** in CDCl₃

CTM0903 CDCL3 BB+DEPT-135 Sep 6 2010

mdd E
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
20 40 ŀ 219.52 60 625.365 625.255 625 80 100 989.001 120 711.521 789.611 140 160 180

Figure S58. ¹³C NMR spectrum of **9** in CDCl₃

Figure S60. HMBC spectrum of **9** in CDCl₃

Figure S62. IR spectrum of **9**

Figure S63. HR-ESI(+)MS spectrum of 9

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 35 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101029-5 128 100 %- 838.9794	(2.413) AM (C	en,2, 80.00, Ht,9000. 8 39.1448	0.906.83,0.70) 39.2753	06.83,0.70); Sm (SG, 2x0.00); Cm (127:136) 2753					TOF MS E 1.06			
839.000	839.100	839.200	839.300	839.400	839.50	0 839.0	500	839.7	00	839.800	⊢ m/z	
Minimum: Maximum:	20.00 100.00		200.0	50.0	-1.5 50.0							
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Form	ula				
839.2753	100.00	839.2738	1.5	1.7	16.5	1	C40	H48	018	Na		

Figure S64. ¹H NMR spectrum of **10** in CDCl₃

Figure S65. ¹³C NMR spectrum of **10** in CDCl₃

Figure S67. HMBC spectrum of **10** in CDCl₃

Figure S69. IR spectrum of **10**

Figure S70. HR-ESI(+)MS spectrum of 10

Elemental Composition Report

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 40 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

Page 1

Figure S71. ¹H NMR spectrum of **11** in CDCl₃

Figure S72. ¹³C NMR spectrum of **11** in CDCl₃

CTM0719 CDC13 BB+DEPT-135 Jul 20 2010

76

Figure S73. HSQC spectrum of **11** in CDCl₃

F1 (ppm)

.

N

.

Figure S75. IR spectrum of **11**

Figure S76. HR-ESI(+)MS spectrum of **11**

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 39 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101108-2 187 100 %	(3.526) AM (C	en,2, 80.00, Ht,9000.0	9,838.84,0.70 883.2640); Sm (SG,	2x0.00); Cm (1	84:200)				TOF MS ES+ 1.55e3
869.3187	872.8333		88	4.2681	889.2839					906.8350
870.0	875.	0 880.0	88	5.0	890.0	895.0		900.0		905.0
Minimum: Maximum:	20.00 100.00		200.0	50.0	-1.5 50.0					
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Form	ula		
883.2640	100.00	883.2637	0.3	0.4	17.5	1	C41	H48	020	Na

Figure S77. ¹H NMR spectrum of **12** in CDCl₃

Sep 15 2010

CTM0923 CDCL3 BB+DEPT-135

mdd 14,060 116,010 12,010 1 20 40 60 20,519 20,519 20,5152 20,5152 20,5152 20,5152 20,5152 20,515 20,5 -8 129.96 100 187.001 120 107.011 140 143.125 140.448 160 169.786 171.872 175.024 175.307 180 181.581

Figure S79. HSQC spectrum of **12** in CDCl₃

Figure S80. HMBC spectrum of **12** in CDCl₃

Figure S82. IR spectrum of **12**

Figure S83. HR-ESI(+)MS spectrum of **12**

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 34 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101109-3 297 (100- %-	(5.603) AM (C	Cen,2, 80.00,	Ht,9000.0	,906.83,0.7 921.	70); Sm (SC 3516	3, 2x0.00);	Cm (29)	2:304)					TOF MS ES+ 442
907.8742		3.8559			922.34	99 23.4105							940.8197
910	.0 912.5	915.0	917.5	920.0	922.5	925.0	927.5	930.0	932.5	935.0	937.5	5	940.0
Minimum: Maximum:	20.00 100.00			200.0	50.0	-1. 50.	5						
Mass	RA	Calc. Ma	SS	mDa	PPM	DBB	:	Score	Form	ula			
921.3516	100.00	921.3521		-0.5	-0.5	17.	5	1	C46	Н58	018	Na	

Figure S84. ¹H NMR spectrum of **13** in CDCl₃

CTM0921 CDCL3 BB+DEPT-135 Sep 11 2010

E mdd 20 40 60 ŀ 629,69,290 62,200 62 80 100 677.001 120 \$\$S.811 140 660,641. 160 1269.413 169.533 169.533 171.843 175.054 175.054 180 183.264 E

Figure S85. ¹³C NMR spectrum of **13** in CDCl₃.

Figure S86. HSQC spectrum of **13** in CDCl₃

Figure S87. HMBC spectrum of **13** in CDCl₃

Figure S89. IR spectrum of **13**

Figure S90. HR-ESI(+)MS spectrum of 13

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 36 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101029-10 1 100 	97 (3.706) Al	M (Cen,2,	80.00, Ht,9	000.0,906.83,	0.70); Sm	(SG, 2x0.	.00); Cm (18 9 6	14:197) 33.3641						TOF MS ES+ 1.27e4
947.806 0	57						963.176	964	3719 965.379	9 1				971.7791
948.0	950.0	952.0	954.0	956.0	958.0	960.0	962.0	964.	0 96	6.0	968.0	97	70.0	972.0
Minimum: Maximum:	20.00 100.00			200.0	50.	0	-1.5 50.0							
Mass	RA	Calc	. Mass	mDa	PPM	1	DBE	Scor	е	Form	ula			
963.3641	100.00	963.	3627	1.4	1.5		18.5	1		C48	H60	019	Na	

Figure S91. ¹H NMR spectrum of **14** in CDCl₃

E mdd 111.086 14.233 177.644 177.646 177.646 18.662 19.620 19.620 19.620 20.785 20.601 19.620 20.785 20.78 20 40 60 68, 586 68, 596 68, 596 52, 435 52, 435 52, 435 52, 435 52, 435 52, 500 50, 500 50, 80 100 627.001 120 122.089 179.511 140 802.0P1 والتعادية والمرادية 160 list in the second second 180

Figure S96. IR spectrum of 14

Figure S97. HR-ESI(+)MS spectrum of 14

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 36 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101108-6 213 (4.016) AM (Cen,2, 80.00, Ht,9000.0,974.81,0.70); Sm (SG, 2x0.00); Cm (209:226) 949.3466										TOF MS ES+ 1.43e3
9	40.7888 941.7	7654	949.2014	950.3488	951.3199	954.3092				964.3126
940	.0 942.0	944.0 94	46.0 948.0	950.0	952.0	954.0 956.0	958.0	960.0	962.0	964.0
Minimum: Maximum:	20.00 100.00		200.0	50.0	-1.5 50.0					
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Form	ula		
949.3466	100.00	949.3470	-0.4	-0.4	18.5	1	C47	Н58	019 Na	

PPM 0 365.2 360.1 365.2 420.0 5.633.3 4.028 6.118 7.85.3 7.853 7.853 42 89. 8.4.8 25 2 7.7£8 <u>7.1£8</u> 3/06 8.148 <u>2,30</u>37 920.4 913.9 1020.4 924.0 924.0 ŝ 1024.8 1027.4 1,06 11.06 1034.3 1336.3 1.06 8.7781 1.8881 19 9.**4**281 115 0.8002 2.7491 2.7491 0.97 ŝ 2140.8 2208.6 2263.3 1.05 10.1 1.7852 ശ 100 7.6542 £01 2564.6 5955.9 2956.3 2993.6 1.10.18

CTM0821 CDCL3 BB+DEPT-135 Aug 26 2010

mdd 14.963 18.698 19.136 20.452 20.452 20.453 20.453 20.963 20.963 50 F 40 22.286 60 200°20 201°00 201°20 80 100 805.911 805.911 120 155.366 140 271.041 143.259 160 128.251 259.685 259.685 270.779 270.779 270.779 272 272 272 272 285.251 285.251 180

Figure S100. HSQC spectrum of **15** in CDCl₃

Figure S101. HMBC spectrum of **15** in CDCl₃

Figure S103. IR spectrum of **15**

Figure S104. HR-ESI(+)MS spectrum of 15

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 33 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101029-7 234	(4.409) AM (0	Cen,2, 80.00, Ht,9000.0	0,770.85,0.7	0); Sm (SG, 2	2x0.00); Cm (2	227:239)			TOF MS ES+
100		811.2	2808						776
%- 804.857	8	811.1646	812.2568	8/13.3148					
806	5.0 808	810.0	812.0	814.0	816.0	818.0	820.0		
					010.0	010.0	020.0	022.0	024.0
Minimum:	20.00				-1.5				
Maximum:	100.00		200.0	50.0	50.0				
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Form	ula	
811.2808	100.00	811.2789	1.9	2.3	15.5	1	C39	H48 017	Na

Figure S105. ¹H NMR spectrum of **16** in CDCl₃

Figure S107. HSQC spectrum of **16** in CDCl₃

Figure S108. HMBC spectrum of **16** in CDCl₃

Figure S109. ROESY spectrum of **16** in CDCl₃

Figure S110. IR spectrum of **16**

Figure S111. HR-ESI(+)MS spectrum of 16

Elemental Composition Report

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 30 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101029-4 201 100 %-	(3.785) AM (0	Cen.2, 80.00, Ht,90	00.0,770.85,0.7	0); Sm (SG, 2	2x0.00); Cm (19 769.2699	94:205)					TOF MS ES+ 352
769.1440 0 769.150	769.175	769.200	769.225	769.250	769.275	769.300	769.3	25	769.3	350	769.3759
Minimum: Maximum:	20.00 100.00		200.0	50.0	-1.5 50.0						
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Form	ula			
769.2699	100.00	769.2684	1.5	2.0	14.5	1	C37	H46	016	Na	

Page 1

Figure S112. ¹H NMR spectrum of **17** in CDCl₃.

Aug 31 2010

BB+DEPT-135

CTM0811 CDCL3

E mdd 782.7 11:15 15:91 15:91 15:91 15:91 15:92 29 40 00S.SS 9 880,989 880,986 880,986 880,986 880,986 881,881 881,881 881,881 881,881 881,881 881,881 881,881 880,986 880 80 100 092.001 212.843 120 209.121 140 170.241 818.141 160 878.831 825.071 825.071 820.871 870.871 870.871 180 956.356

Figure S113. ¹³C NMR spectrum of **17** in CDCl₃.

Figure S114. HSQC spectrum of **17** in CDCl₃

Figure S117. IR spectrum of **17**

Figure S118. HR-ESI(+)MS spectrum of 17

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 31 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

Figure S119. ¹H NMR spectrum of **18** in CDCl₃

Figure S120. ¹³C NMR spectrum of **18** in CDCl₃

124

Figure S121. HSQC spectrum of **18** in CDCl₃

Figure S122. HMBC spectrum of **18** in CDCl₃

127

Figure S124. IR spectrum of **18**

Figure S125. HR-ESI(+)MS spectrum of 18

Elemental Composition Report

Page 1

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 31 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

101029-10 29	92 (5.490) AM	(Cen,2, 80.00, Ht	,9000.0,702.86,0 7	.70); Sm (S 69.2668	iG, 2x0.00); Ci	m (292:314)			т	OF MS ES 1.24e
768.195	9	, , , , , , , , , , , , , , , , , , , 		76	9.4396		770.0054	770.2728	770.4014	770.6957
768.25	768.50	768.75	769.00 7	69.25	769.50	769.75	770.00	770.25	770.50	m/2
Minimum: Maximum:	20.00 100.00		200.0	50.0	-1.5 50.0					
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Form	nula		
769.2668	100.00	769.2684	-1.6	-2.0	14.5	1	C37	H46 01	.6 Na	