Electronic Supplementary Information

Copper-Catalyzed N-Alkylation of Amides and Amines with Alcohols Employing the Aerobic Relay Race Methodology

Qiang Li, Songjian Fan, Qing Sun, Haiwen Tian, Xiaochun Yu and Qing Xu*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou University Town, Wenzhou 325025, China

qing-xu@wzu.edu.cn

Table of Contents

Condition Screening Tables	
General	
Synthetic Procedures and Characterization of Products	
References	S14
Elementary Reactions and Mechanistic Studies	
¹ H and ¹³ C NMR Spectra of the Products	S18

PhCH	$_{2}OH + PhSO_{2}NH_{2}$		• Ph	NHSO₂Ph	
1a 4 equ		air, T, t		3aa	5aa
run	Cu (mol%)	K_2CO_3 (mol%)		T, t	3aa % ^[b]
1 ^[c]	$Cu(OAc)_2(1)$	20		150 °C, 12 h	>99
2 ^[c]	$Cu(OAc)_2 H_2O(1)$	20		150 °C, 12 h	>99
3 ^[d]	$Cu(OAc)_2(5)$	100		120 °C, 12 h	>99
4 ^[d]	$Cu(OAc)_2 H_2O(5)$	100		120 °C, 12 h	>99
5	$Cu(OAc)_2(5)$	10		150 °C, 12 h	>99
6	$C_{\mu}(OAc)_{2}H_{2}O(5)$	10		150 °C 12 h	>99

Table S1. Catalyst Screening:^[a] Catalytic Activities of $Cu(OAc)_2$ and $Cu(OAc)_2$ ^{·H2O}

[a] Commercial **1a** without any treatment was used. [b] GC yield based on **2a**. [c] Repeating the literature condition (*Angew. Chem. Int. Ed.* **2009**, *48*, 5912; *Adv. Synth. Catal.* **2009**, *351*, 2949). [d] Our original condition (*Chin. Chem. Lett.* **2011**, *22*, 1021; *J. Org. Chem.* **2011**, *76*, 5759).

Table S2. Condition Screening and Optimization.

	PhCH ₂ OH + PhSO ₂ NH ₂ 1a 2a	$\begin{array}{c} \text{cat. } Cu(OAc)_2 \cdot H_2O \\ K_2CO_3, \text{ air, T, t} \end{array} Ph \longrightarrow NHSO \\ \begin{array}{c} \text{AB} \\ \textbf{3aa} \end{array}$	₂ Ph (Ph NSO ₂ F 5aa	ph)
run	Cu (mol%)/1a (mol/mol)	K ₂ CO ₃ (mol%)/1a (mol/mol)	T, t	3aa % ^[a]
1 ^[b]	2, 0.0033	100, 0.167	120 °C, 12 h	70
2 ^[b]	2, 0.0033	50, 0.083	120 °C, 12 h	56
3 ^[c]	1, 0.0025	100, 0.25	120 °C, 12 h	97
4 ^[c]	1, 0.0025	50, 0.125	120 °C, 12 h	89
5 ^[c]	1, 0.0025	10, 0.025	120 °C, 12 h	31
6 ^[c]	1, 0.0025	50, 0.125	135 °C, 12 h	99
7 ^[c]	1, 0.0025	20, 0.05	135 °C, 12 h	77
8 ^[c]	1, 0.0025	10, 0.025	135 °C, 12 h	41
9 ^[c]	1, 0.0025	20, 0.05	150 °C, 12 h	99
10 ^[c]	1, 0.0025	20, 0.05	150 °C, 12 h	99 ^[e]
11 ^[c]	1, 0.0025	10, 0.025	150 °C, 12 h	31 ^[e]
12 ^[d]	1, 0.0078	10, 0.077	135 °C, 24 h	89

[a] Commercial **1a** was directly used without further treatment. GC yield based on **2a**. Usually high **3aa/5aa** ratios (>99/1) were obtained. [b] Reactions with 6 mmol **1a** and 1 mmol **2a**. [c] Reactions with 4 mmol **1a** and 1 mmol **2a**. [d] Reactions with 2.6 mmol **1a** and 2 mmol **2a**. [e] Anhydrous Cu(OAc)₂ was used.

		additive			
PhCH ₂ OH 4		[Cu] (1 mol%)			
1a	2a	K ₂ CO ₃ (20 mol%)	\rightarrow Ph NHSO ₂ Ph + PhCF		
4 eq	1mmol	air, 120 ^o C, 12 h	3a	a 4a	
Run	[Cu] (1 mol%)	additive (mol%)	3aa ^[b]	4a ^[b]	
1		-	57	6	
$2^{[c]}$		O_2	30	34 (5aa , 29)	
3	$Cu(OAc)_2 H_2O$	Bipy (1 mol%)	71	6	
4		Bipy (1 mol%) TEMPO (2 mol%)	99	12	
5		Bipy (1 mol%)	ND	-	
6	$Cu(OAc)_2H_2O$ (under N ₂)	Bipy (1 mol%) TEMPO (2 mol%)	ND	-	
7		-	Trace	-	
8	CuBr ₂	Bipy (1 mol%) TEMPO (2 mol%)	96	15	
9		-	66	6	
10	CuCl ₂ [·] 2H ₂ O	Bipy (1 mol%) TEMPO (2 mol%)	99	9	
11		-	59	6	
12	$Cu(NO_3)_2$ ⁻³ H_2O	Bipy (1 mol%) TEMPO (2 mol%)	99	12	
13		-	ND	-	
14	CuSO ₄	Bipy (1 mol%) TEMPO (2 mol%)	83	8	
15		-	44	5	
16	CuI	Bipy (1 mol%) TEMPO (2 mol%)	88	9	

Table S3. Additive Effects on Cu-Catalyzed Aerobic *N*-Alkylation of Sulfonamide in the Presence of Large Excess Alcohol.^[a]

[a] Absolute **1a** (100% GC purity) was used. [b] GC yield. [c] Reaction carried out under pure O_2 (1 atm.) in a 20 mL tube (ca. 90 mol% O_2).

Table S4. Imine-Promoted N-Alkylation Reaction of Sulfonamide.5aa (10 mol%)

	PhCH ₂ OH + F 1a x equiv.	PhSO ₂ NH ₂ _ 2a	Cu(OAc K ₂ C at	b) ₂ ·H ₂ O (1 mol%) O ₃ (z mol%) m., T, t	Ph NH 3aa	∃SO₂Ph I
Run	1a (equiv.)	K_2CO_3 (mo	l%)	atm., T, t		3aa % ^{<i>a</i>}
1	4	20		air, 120 °C, 12 h		72
2	4	20		N ₂ , 120 °C, 12 h		67
3	1.3	10		air, 135 °C, 24 h		91
4	1.3	10		N ₂ , 135 °C, 24 h		95

[a] Absolute 1a (100% GC purity) was used.

Table S5. Additive Effects under the Optimized Reaction Condition (in the Presence of Reduced Alcohol Loadings).

			cat. Cu (1 mol	%)	
	1a 1.3 eq	2a	K ₂ CO ₃ (10 mol%), air, 1 additives	135 °C, 24 h	NHSO ₂ РП Заа
				3aa% ^[a]	
run	Cu	Ad	ditives (mol%)	A (pure 1a) ^[b]	$C (2\% 4a)^{[c]}$
1	Cu(OAc) ₂ ⁻ I	H ₂ O -		79	93
2	$Cu(OAc)_2$	H ₂ O Bi	by (1)	56	65
3	$Cu(OAc)_2$	H ₂ O 1,1	0-phenanthroline (1)	35	[d]
4	$Cu(OAc)_2$	H ₂ O TE	CMPO (2)		36
5	$Cu(OAc)_2 I$	H ₂ O Bi	by (1), TEMPO (2)		70
6	CuCl ₂ ⁻ 2H ₂ C) -		63	
7	CuCl ₂ ⁻ 2H ₂ C) Bij	by (1)	33	
8	$CuCl_2 2H_2C$	D 1,1	0-phenanthroline (1)	42	
9	CuI	-		83 ^[e,f]	
10	CuI	Bi	ov (1), TEMPO (2)	64 ^[e]	

[a] GC yield based on **2a**. [b] Sample A of **1a**: Absolute **1a** (100% purity confirmed by GC) was used. [c] Sample C of **1a**: An older sample of **1a** (containing 2.28% PhCHO as detected by GC) was degassed and used. [d] The reactions were not conducted. [e] In 18 h. [f] No reaction occurred when the same reaction was run under nitrogen.

General. Substrates, bases and catalysts are all purchased. All reactions were carried out in sealed Schlenk tubes and monitored by TLC, GC-MS and/or ¹H NMR. Unless otherwise noted, substrates and catalysts were used as purchased without further purification and degassing in reactions carried out under air. As analyzed, samples of commercial benzyl alcohol are usually contaminated by trace amount of benzaldehyde. Thus, in control reactions and mechanistic studies where needed, absolute alcohols (freshly distilled from CaH₂, degassed and stored under N₂ in a Schlenk flask, 100% purity without any contaminants as confirmed by GC analysis) was used as noted. Products were purified by column chromatography on silica gel using petroleum ether and ethyl acetate as eluent. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance-III 500 instrument (500 MHz for ¹H and 125.4 MHz for ¹³C NMR spectroscopy). Unless otherwise noted, CDCl₃ was used as the solvent. Chemical shift values for ¹H and ¹³C NMR were referred to internal Me₄Si (0 ppm). Mass spectra were measured on a Shimadzu GCMS-QP2010 Plus spectrometer (EI). HRMS (EI) analysis was performed by the Analytical Center at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

Typical Procedure for Copper-Catalyzed Aerobic *N*-Alkylation of Amides and Amines with Alcohols. The mixture of benzenesulfonamide **2a** (0.471 g, 3.0 mmol), $Cu(OAC)_2 \cdot H_2O$ (0.006 g, 0.03 mmol, 1 mol%), and K_2CO_3 (0.042 g, 0.3 mmol, 10 mol%) in benzyl alcohol **1a** (0.39 mL, 3.9 mmol, 1.3 equiv.) was stirred at 135°C under air in a sealed 20 mL Schlenk tube and monitored by TLC and/or GC-MS. The reaction was then quenched with ethyl acetate and the crude product was purified by column chromatography with ethyl acetate and petroleum ether (60-90 °C) as eluent, giving *N*-benzylbenzenesulfonamide **3aa** in 78% isolated yield.

Characterization of Products:

N-Benzylbenzenesulfonamide (3aa). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.88-7.86 (m, 2H), 7.60-7.57 (m, 1H), 7.52-7.49 (m, 2H), 7.27-7.25 (m, 3H), 7.19-7.18 (m, 2H), 4.83 (b, 1H), 4.14 (d, J = 6.2 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 139.9, 136.3, 132.6, 129.1, 128.6, 127.84, 127.81, 127.1, 47.2. MS (EI): m/z (%) 246 (0.26), 143 (4.63), 141 (3.97), 125 (5.14), 106 (100), 104 (12), 91 (14), 79 (21), 78 (15), 77 (43), 65 (5), 51 (17). This compound was known. ¹

N-Benzyl-o-toluenesulfonamide (3ab). White oil. ¹H NMR (500 MHz, CDCl₃): δ 8.00 (d, J = 7.7 Hz, 1H), 7.48-7.45 (m, 1H), 7.34-7.27 (m, 5H), 7.17-7.15 (m, 2H), 4.67 (b, 1H), 4.12 (d, J = 6.1 Hz, 2H), 2.62 (s, 3H). ¹³C NMR (125.4 MHz, CDCl₃): δ 137.9, 137.1, 136.5, 132.7, 132.5, 129.4, 128.5, 127.8, 127.7, 126.1, 47.0, 20.2. MS (EI): m/z (%) 261 (0.13), 157 (2), 155 (1), 106 (100), 91 (50), 77 (12), 65 (18). This compound was known.⁶

N-Benzyl-*p*-toluenesulfonamide (3ac). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.76 (d, *J* = 8.1 Hz, 2H), 7.32-7.25 (m, 5H), 7.20-7.19 (m, 2H), 4.66 (b, 1H), 4.12 (d, *J* = 6.2 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (125.4 MHz, CDCl₃): δ 143.4, 136.9, 136.4, 129.7, 128.6, 127.8, 127.7, 127.2, 47.2, 21.5. MS (EI): *m/z* (%) 261 (0.1), 260 (0.2), 157 (3), 107 (10), 106 (100), 92 (13), 91 (39), 79 (17), 77 (11). This compound was known.⁵

N-Benzyl-4-methoxybenzenesulfonamide (3ad). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, J = 8.9 Hz, 2H), 7.30-7.27 (m, 3H), 7.20-7.19 (m, 2H), 6.98 (d, J = 8.9 Hz, 2H), 4.57 (bt, J = 5.7 Hz, 1H), 4.12 (d, J = 6.2 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (125.4 MHz, CDCl₃): δ 163.0, 136.3, 131.5, 129.3, 128.7, 127.92, 127.89, 114.3, 55.6, 47.3. MS (EI): m/z (%) 277 (3), 212 (1), 171 (4), 155 (14), 127 (2), 123 (20), 108 (26), 106 (100), 91 (15), 79 (13), 77 (28), 64 (8). This compound was known.⁵

N-Benzyl-2-chlorobenzenesulfonamide (3ae). White solid. ¹H NMR (500 MHz, CDCl₃): δ 8.07 (d, J = 8.1 Hz, 1H), 7.50-7.45 (m, 2H), 7.40-7.37 (m, 1H), 7.25-7.17 (m, 5H), 5.32 (b, 1H), 4.12 (d, J = 6.2 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 137.3, 135.7, 133.7, 131.5, 131.4, 131.2, 128.7, 128.0, 127.9, 127.2, 47.5. MS (EI): m/z (%) 281 (0.1), 280 (0.2), 176 (5), 159 (5), 111 (13), 106 (100), 104

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

(15), 91 (17), 79 (18), 77 (18), 75 (10). This compound was known.¹

N-Benzyl-4-chlorobenzenesulfonamide (3af). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.78 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.6 Hz, 2H), 7.37 (d, J = 4.3 Hz, 1H), 7.28-7.26 (m, 2H), 7.19-7.17 (m, 2H), 4.87 (bt, J = 5.8 Hz, 1H), 4.15 (d, J = 6.1 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 139.1, 138.6, 136.0, 129.3, 128.7, 128.5, 127.90, 127.86, 47.2. MS (EI): m/z (%) 281 (0.1), 280 (0.2), 112 (6), 111 (16), 107 (8), 106 (100), 104 (15), 91 (15), 79 (19), 77 (15), 75 (10). This compound was known.⁵

N-Benzyl-2-naphthalenesulfonamide (3ag). White solid. ¹H NMR (500 MHz, CDCl₃): δ 8.45 (b, 1H), 7.98-7.92 (m, 3H), 7.85-7.83 (m, 1H), 7.66-7.62 (m, 2H), 7.25-7.18 (m, 5H), 4.71 (bt, J = 5.8 Hz, 1H), 4.18 (d, J = 6.1 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 136.7, 136.2, 134.8, 132.1, 129.5, 129.2, 128.8, 128.6, 128.5, 127.9, 127.8, 127.5, 122.3, 47.3. MS (EI): m/z (%) 298 (2), 297 (11), 192 (5), 175 (2), 144 (8), 128 (50), 127 (57), 115 (8), 106 (100), 91 (16), 79 (11), 77 (19). This compound was known.⁵

N-Benzyl-5-chlorothiophene-2-sulfonamide (3ah). Yellow solid. ¹H NMR (500MHz, CDCl₃): δ 7.35-7.22 (m, 6H), 6.89 (d, J = 3.9 Hz, 1H), 5.03 (b, 1H), 4.21 (d, J = 6.0 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 138.9, 137.4, 135.7, 131.7, 128.8, 128.1, 127.9, 126.7, 47.5. MS (EI): m/z (%) 287 (3), 252 (2), 222 (3), 181 (4), 165 (5), 133 (19), 118 (22), 106 (100), 91 (38), 79 (19), 51 (8). This compound was known.¹

N-Benzylmethanesulfonamide (3ai). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.36-7.27 (m, 5H), 5.20 (b, 1H), 4.27 (d, J = 6.2 Hz, 2H), 2.80 (s, 3H). ¹³C NMR (125.4 MHz, CDCl₃): δ 136.8, 128.8, 128.0, 127.9, 47.1, 40.9. MS (EI): m/z (%) 185 (1.2), 107 (8), 106 (100), 105 (18), 104 (44),

91 (29), 79 (31), 78 (12), 77 (20), 65(8), 51 (11). This compound was known.¹

N-(4-Methylbenzyl)benzenesulfonamide (3ba). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.89-7.87 (m, 2H), 7.61-7.58 (m, 1H), 7.54-7.51 (m, 2H), 7.10-7.06 (m, 4H), 4.58 (b, 1H), 4.11 (d, *J* = 6.1 Hz, 2H), 2.31 (s, 3H). ¹³C NMR (125.4 MHz, CDCl₃): δ 143.5, 137.0, 136.3, 129.7, 128.7, 127.94, 127.89, 127.2, 47.3, 21.5. MS (EI): *m/z* (%) 261 (0.4), 246 (0.1), 195 (0.3), 165 (0.3), 143 (3), 125 (3), 120 (100), 118 (30), 105 (13), 91 (18), 77 (33), 65 (9), 63 (2), 51 (10). This compound was known.¹⁰

N-(2-Chlorobenzyl)benzenesulfonamide (3ca). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.81-7.79 (m, 2H), 7.51-7.48 (m, 1H), 7.42-7.39 (m, 2H), 7.28-7.26 (m, 1H), 7.22-7.20 (m, 1H), 7.15-7.09(m, 2H), 5.48 (b, 1H), 4.24 (d, J = 6.5 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 140.0, 133.8, 133.3, 132.6, 130.1, 129.4, 129.2, 129.0, 126.99, 126.94, 45.0. MS (EI): m/z (%) 281 (0.25), 246 (1.73), 142 (32), 141 (15), 140 (100), 125 (17), 113 (7), 89 (5), 77 (47), 51 (14). This compound was known.³

N-(4-Chlorobenzyl)benzenesulfonamide (3da). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.84-7.82 (m, 2H), 7.59-7.56 (m, 1H), 7.50-7.47 (m, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 5.17 (b, 1H), 4.10 (d, J = 6.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 139.9, 134.9, 133.7, 132.8, 129.21, 129.17, 128.8, 127.0, 46.6. MS (EI): m/z (%) 281 (0.09), 280 (0.11), 142 (32), 140 (100), 138 (13), 125 (18), 113 (8), 89 (6), 77 (46). This compound was known.²

N-(2-Methoxybenzyl)-benzenesulfonamide (3ea). White oil. ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, J = 7.2 Hz, 2H), 7.60-7.57 (m, 1H), 7.52-7.49 (m, 2H), 7.09 (d, J = 8.6 Hz, 2H), 6.79 (d, J = 8.7

Hz, 2H), 4.76 (bt, J = 5.7 Hz, 1H), 4.07 (d, J = 6.1 Hz, 1H), 3.77 (s, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 159.4, 140.1, 132.7, 129.3, 129.1, 128.7, 128.2, 127.1, 114.1, 114.0, 55.3, 46.9. MS (EI): m/z (%) 277 (5), 137 (9), 136 (100), 134 (20), 121 (15), 119 (13), 107 (11), 91 (25), 77 (37), 51 (13). This compound was known.⁹

N-(4-Methoxybenzyl)benzenesulfonamide (3fa). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.76 (d, J = 7.2 Hz, 2H), 7.48-7.47 (m, 1H), 7.41-7.38 (m, 2H), 7.20-7.16 (m, 1H), 7.06-7.04 (m, 1H), 6.81-6.78 (m, 1H), 6.72 (d, J = 8.2 Hz, 1H), 5.14 (bt, J = 6.0 Hz, 1H), 4.17 (d, J = 6.4 Hz, 2H), 3.73 (s, 3H). ¹³C NMR (125.4 MHz, CDCl₃): δ 159.2, 140.0, 132.6, 129.2, 129.1, 128.3, 127.1, 114.0, 55.3, 46.7. MS (EI): m/z (%) 277 (5), 141 (2), 135 (100), 121 (29), 77 (26). This compound was known.⁴

N-(3-Methoxybenzyl)benzenesulfonamide (3ga). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, J = 7.7 Hz, 2H), 7.54-7.51 (m, 1H), 7.45-7.42 (m, 2H), 7.12-7.09 (m, 1H), 6.63-6.69 (m, 3H), 5.41 (b, 1H), 4.07 (d, J = 6.4 Hz, 2H), 3.66 (s, 3H). ¹³C NMR (125.4 MHz, CDCl₃): δ 159.7, 140.0, 137.9, 132.6, 129.6, 129.1, 127.0, 120.0, 113.6, 113.1, 55.1, 47.1. MS (EI): m/z (%) 277 (14), 141 (4), 136 (100), 121 (8), 109 (16), 105 (19), 77 (26), 65 (7), 51 (10). This compound was known.¹¹

N-(**4-Fluorobenzyl)benzenesulfonamide** (**3ha**). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.82-7.80 (m, 2H), 7.56-7.53 (m, 1H), 7.46-7.43 (m, 2H), 7.14-7.11 (m, 2H), 6.90-6.86 (m, 2H), 5.50 (b, 1H), 4.07 (d, J = 6.3 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 162.8 (d, $J_{C-F} = 246$ Hz), 139.9, 132.7, 132.2 (d, $J_{C-F} = 2.5$ Hz), 129.6 (d, $J_{C-F} = 8.75$ Hz), 129.1, 127.0, 115.4 (d, $J_{C-F} = 21.3$ Hz), 46.5. MS (EI): m/z (%) 264 (0.2), 143 (6), 124 (100), 109 (16), 97 (13), 77 (27), 51 (10). HRMS Calcd for C₁₃H₁₃FNO₂S (M+H): 266.0646; found: 266.0637.

N-(2-Pyridylmethyl)benzenesulfonamide (3ia). Yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 8.45 (d, *J* = 4.7 Hz, 1H), 7.86 (d, *J* = 7.5 Hz, 2H), 7.61-7.58 (m, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.15 (t, *J* = 6.7 Hz, 2H), 6.00 (s, 1H), 4.27 (d, *J* = 5.3 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 154.8, 149.0, 139.7, 136.8, 132.6, 129.0, 127.2, 122.7, 122.0, 47.4. MS (EI): *m/z* (%) 247 (0.5), 185 (6), 184 (45), 183 (27), 168 (3), 156 (2), 141 (13), 125 (2), 107 (100), 106 (55), 92 (13), 80 (29), 79 (57), 78 (32), 77 (76), 65 (9), 51 (42). This compound was known.¹²

N-Benzyl-(2-pyrimidyl)amine (3aj). White solid. ¹H NMR (500 MHz, CDCl₃): δ 8.26 (d, J = 4.5 Hz, 2H), 7.37-7.32 (m, 4H), 7.28-7.27 (m, 1H), 6.54 (t, J = 4.8 Hz 1H), 5.63 (b, 1H), 4.64 (d, J = 5.9 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 162.3, 158.1, 139.1, 128.6, 127.5, 127.3, 110.9, 45.5. MS (EI): m/z (%) 186 (12), 185 (90), 184 (63), 157 (5), 144 (3), 129 (3), 108 (19), 106 (100), 91 (47), 79 (40), 77 (13), 65 (28). This compound was known.¹⁶

N-(4-Methylbenzyl)-(2-pyrimidyl)amine (3bj). White solid. ¹H NMR (500 MHz, CDCl₃): δ 8.24 (s, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 6.53-6.51 (m, 1H), 5.68 (b, 1H), 4.59 (d, J = 5.8 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (125.4 MHz, CDCl₃): δ 162.4, 158.1, 136.9, 136.0, 129.3, 127.5, 110.76, 45.3, 21.1. MS (EI): m/z (%) 199 (100), 198 (52), 184 (62), 120 (50), 105 (46), 106 (26), 79 (34), 80 (15), 65 (7), 53 (12). This compound was known.¹⁴

N-(4-Chlorobenzyl)-(2-pyrimidyl)amine (3dj). White solid. ¹H NMR (500 MHz, CDCl₃): δ 8.23 (d, J = 4.5 Hz, 2H), 7.30–7.27 (m, 4H), 6.54 (t, J = 4.8 Hz, 1H), 5.88 (b, 1H), 4.61 (d, J = 6.1 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 162.3, 158.1, 137.8, 132.9, 128.8, 128.7, 111.0, 44.7. MS (EI): *m/z* (%) 221 (34), 220 (29), 219 (100), 184 (41), 142 (26), 141 (7), 140 (84), 125 (43), 108 (18), 89 (31), 80 (35), 63 (11), 53 (20). This compound was known.¹²

N-Benzyl-(2-pyridyl)amine (3ak). White solid. ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, J = 4.5 Hz, 1H), 7.41-7.32 (m, 5H), 7.28-7.26 (m, 1H), 6.60-6.58 (m, 1H), 6.37 (d, J = 8.4 Hz, 1H), 4.87 (b, 1H), 4.51 (d, J = 5.8 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 158.7, 148.2, 139.2, 137.5, 128.6, 127.4, 127.2, 113.2, 106.8, 46.4. MS (EI): m/z (%) 184 (14), 183 (100), 153 (5), 127 (5), 116 (2), 106 (34), 79(11), 66 (4). This compound was known.¹⁶

N-Benzyl-[2-(3-methylpyridyl)]amine (3al). White solid. ¹H NMR (500 MHz, CDCl₃): δ 8.04 (d, *J* = 4.9 Hz, 1H), 7.39-7.32 (m, 4H), 7.28-7.22 (m, 2H), 6.55-6.53 (m, 1H), 4.68 (d, *J* = 5.3 Hz, 2H), 4.36 (b, 1H), 2.07 (s, 1H). ¹³C NMR (125.4 MHz, CDCl₃): δ 156.7, 145.5, 140.1, 136.9, 128.6, 127.9, 127.2, 116.5, 112.9, 45.8, 16.95. MS (EI): *m/z* (%) 198 (83), 197 (25), 181 (5), 121 (10), 106 (100), 91 (39), 79 (11), 65 (29). This compound was known.¹⁵

N-Benzyl-(3-pyridyl)amine (3am). Yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 8.07 (d, J = 2.8 Hz, 1H), 7.96 (d, J = 4.7 Hz, 1H), 7.354-7.345 (m, 4H), 7.30-7.27 (m, 1H), 7.07-7.04 (m, 1H), 6.87 -6.85 (m, 1H), 4.33 (d, J = 5.4 Hz, 2H), 4.18 (b, 1H). ¹³C NMR (125.4 MHz, CDCl₃): δ 144.0, 138.9, 138.5, 136.1, 128.8, 127.6, 127.4, 123.5, 118.7, 47.9. MS (EI): m/z (%) 184 (38), 183 (5), 92 (9), 91 (100), 78 (7), 77 (2), 65 (13), 51 (6). This compound was known.⁷

N-Benzyl-(4-pyridyl)amine (3an). White solid. ¹H NMR (500 MHz, CDCl₃): δ 8.19 (d, J = 6.1 Hz, 2H), 7.38-7.29 (m, 5H), 6.47 (d, J = 6.2 Hz, 2H), 4.73 (b, 1H), 4.37 (d, J = 5.3 Hz, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 153.2, 150.0, 136.5, 133.4, 129.0, 128.5, 107.8, 46.2. MS (EI): m/z (%) 185 (5), 184 (40), 154(0.7), 128 (1), 107 (7), 105 (6), 92 (8), 91 (100), 78 (11), 65 (16), 51 (12). This compound was known.¹⁷

N-Benzylbenzo[*d*]thiazol-2-amine (3ao). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.58 (d, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 8.1 Hz, 1H), 7.40-7.35 (m, 4H), 7.32-7.28 (m, 2H), 7.11-7.07 (m, 1H), 5.72 (b, 1H), 4.65 (s, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 167.2, 152.4, 137.5, 130.6, 128.9, 127.9, 127.7, 126.0, 121.8, 120.8, 119.2, 49.4. MS (EI): *m/z* (%) 242 (3) 241 (8), 240 (46), 239 (25), 212 (4), 163 (3), 136 (15), 106 (27), 92 (8), 91 (100), 65 (25), 51 (4). This compound was known.⁸

N-Benzylaniline (3ap). Colorless oil. ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.32 (m, 4H), 7.28-7.26 (m, 1H), 7.19-7.16 (m, 2H), 6.73-6.70 (m, 1H), 6.65-6.63 (m, 2H), 4.33 (s, 2H), 4.04 (b, 1H). ¹³C NMR (125.4 MHz, CDCl₃): δ 148.1, 139.4, 129.3, 128.6, 127.5, 127.2, 117.6, 112.9, 48.4. MS (EI): *m/z* (%) 183 (56), 182 (21), 106 (22), 104 (11), 92 (9), 91 (100), 77 (18), 65 (15), 51 (7). This compound was known.¹⁷

N-Benzyl-4-methylaniline (3aq). Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 7.47-7.37 (m, 5H), 7.10-7.08 (m, 2H), 6.67-6.65 (m, 2H), 4.39 (s, 2H), 3.97 (b, 1H), 2.35 (s, 3H). ¹³C NMR (125.4 MHz, CDCl₃): δ 146.1, 139.8, 129.9, 128.7, 127.6, 127.3, 126.8, 113.1, 48.7, 20.5. MS (EI): *m/z* (%) 197 (66), 196 (26), 120 (26), 106 (5), 92 (9), 91 (100), 89 (3), 79 (4), 78 (3), 65 (14), 51 (3). This compound was known.¹⁷

N-Benzyl-4-chloroaniline (3ar). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.40-7.30 (m, 5H), 7.14 (d, J = 8.4 Hz, 2H), 6.58-6.55 (m, 2H), 4.32 (s, 2H), 4.08 (b, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 146.6, 138.9, 129.0, 128.7, 127.4, 127.1, 113.9, 48.3. MS (EI): m/z (%) 218 (8), 217 (39), 216 (7), 111 (5), 92 (8), 91 (100), 75 (4), 65 (11), 51 (3). This compound was known.¹⁷

N-Benzylnaphthalen-1-amine (3as). White solid. ¹H NMR (500 MHz, CDCl₃): δ 7.84-7.80 (m, 2H), 7.47-7.30 (m, 9H), 6.64 (d, *J* = 7.5 Hz, 1H), 4.71 (b, 1H), 4.51 (s, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 143.2, 139.1, 134.3, 128.73, 128.71, 127.7, 127.4, 126.6, 125.7, 124.8, 123.4, 119.9, 117.6, 104.8, 48.6. MS (EI): *m/z* (%) 234 (20), 233(98), 232 (23), 154 (5), 142 (24), 127 (11), 115 (41), 101 (2), 91 (100), 77 (5), 65 (11), 51 (2). This compound was known.¹⁸

References

- Shi, F.; Tse, M. K.; Zhou, S. L.; Pohl, M. M.; Radnik, J.; Hunber, S.; Jahnisch, K.; Brukner, A.; Beller, M. J. Am. Chem. Soc. 2009, 131, 1775.
- Takahashi, M.; Morimoto, T.; Isogai, K.; Tsuchiya, S.; Mizumoto, K. *Heterocycles*, 2001, 55, 1759.
- Hamid, M. H. S. A.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.; Maytum, H. C.; Watson, A. J. A.; Williams, J. M. J. J. Am. Chem. Soc. 2009, 131, 1766.
- 4. Wilden, J. D.; Geldeard, L.; Lee C. C.; Juddb, D. B.; Caddick, S. Chem. Commun. 2007, 1074.
- Kremlev, M. M.; Boiko, S. A.; Rovinskii, M. S.; Kandabarova, S. S. Russ. J. Org. Chem. 1971, 7, 1700.
- Sreedhar, B.; Reddy, P. S.; Reddy, M. A.; Neelima, B.; Arundhathi, R. *Tetrahedron Lett.* 2007, 48, 8174.
- 7. Liu, C.; Liao S.; Li, Q.; Feng, S.; Sun, Q.; Yu, X.; Xu, Q. J. Org. Chem. 2011, 76, 5759.
- 8. Choi, J. H.; Lee, B. C.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 1277.
- 9. Hallet, Peter. (Glaxo Group Ltd., UK). Eur. Pat. Appl. 1987.
- 10. Kilpin, K. J.; Henderson, W.; Nicholson, B. K. Dalton Trans. 2008, 3899.
- 11. Martinez-Asencio, A.; Ramon, D. J.; Yus, M. Tetrahedron. 2011, 67, 3140.
- 12. Paio, A.; Zaramella, A.; Ferritto, R.; Conti, N.; Marchioro, C.; Seneci. P. J. Comb. Chem. 1999, 1, 317.
- 13. Kaye, I. A.; Kogon, I. C. J. Am. Chem. Soc. 1951, 73, 5891.
- 14. Park, Y. J.; Jo, E.-A.; Jun, C.-H. Chem. Commun. 2005, 1185.
- 15. Blank, B.; Madalska, M.; Kempe, R. Adv. Synth. Catal. 2008, 350, 749.
- 16. Cui, X. J.; Zhang, Y.; Shi, F.; Deng, Y. Chem. Eur. J. 2010, 17, 1021.
- 17. Li, F.; Shan, H. X.; Kang, Q. K.; Chen, L. Chem. Commun. 2011, 47, 5058.
- 18. Kim, J. W.; Yamaguchi, K.; Mizuno, N. J. Catal. 2009, 263, 205.

Elementary Reactions and Mechanistic Studies

Table S6. Cu-Mediated Alcohol Oxidation.

	PhCH ₂ OH – 1a 4mmol	cat. Cu K ₂ CO ₃ , N ₂ /air,T,	t PhCHO + t 4a	PhCH ₂ OAc 6a	
Run	Cu (mol%)	K_2CO_3 (mol%)	condition	4a % ^[a]	6a % ^[a]
1	$Cu(OAC)_2$ H ₂ O (5)	-	N ₂ , 120 °C, 6 h	NR	
2	$Cu(OAC)_2 H_2O(5)$	50	N ₂ , 120 °C, 12 h	NR	
3	$Cu(OAC)_2 H_2O(5)$	-	air, 120 °C, 6 h	2.8	
4	$Cu(OAC)_2 H_2O(5)$	50	air, 120 °C, 6 h 12 h	4.4 5.8	
5	$Cu(OAC)_2$ ·H ₂ O (5)	-	N ₂ , 150 °C, 6 h 12 h	2.3 2.4	13
6	$Cu(OAC)_2$ ·H ₂ O (5)	-	N ₂ , 180 °C, 6 h 12 h	2.8 2.7	10
7	$Cu(OAC)_2$ ·H ₂ O (10)	-	N ₂ , 150 °C, 6 h 12 h	5 4 (4)	17 18 (13)
8	$Cu(OAC)_2$ ·H ₂ O (20)	-	N ₂ , 150 °C, 6 h 12 h	5.4 5.5 (8)	33 39 (33)
9	CuI (10)	-	N ₂ , 150 °C, 6 h	NR	
10	CuI (20)	-	N ₂ , 150 °C, 6 h	NR	
11	CuI (50)	-	N ₂ , 150 °C, 6 h	NR	

[a] Absolute 1a was used. GC yield (NMR yield in parenthesis).

	PhSO ₂ NH ₂ +	PhCHO cat. C	u(OAc) ₂ ·H ₂ O ➤ PhS	
	2a 1 mmol	4a K ₂ C 6 equiv.	CO ₃ , atm., T, t	5aa
run	[Cu] (mol%)	$K_2CO_3 $	condition	5aa yield (%) ^[b]
1	-	-	N ₂ , 120 °C, 8 h	65
2	5	-	N ₂ , 120 °C, 4 h	95
3	5	-	air, 120 °C, 4 h 8 h	87 96
4	-	100	N ₂ , 120 °C, 8 h	78
5	-	100	air, 120 °C, 4 h 8 h	84 93

Table S7. Cu-Promoted Condensation of Sulfonamides with Aldehydes.^[a]

[a] Newly distilled 4a was used. [b] GC yield based on 2a.

		Cu(OAc) ₂ ·	H ₂ O (y mol%)		
PhCH ₂ Of 1a x equiv.	4 + PhSO ₂ N= 5aa	CHPh K ₂ CO ₃ (z m	nol%), atm., T, t	⁻ PhSO ₂ NHCH ₂ 3aa	2Ph + PhCHO 4a
Run	x, y, z	condition	3aa yield (%)	4a yield (%)	4a/3aa ^[c]
1 ^[a]	6, 0, 0	N ₂ , 120 °C, 8 h	-	-	-
2 ^[a]	6, 5, 0	N ₂ , 120 °C, 2 h	26	49	-
3 ^[a]	6, 5, 100	N ₂ , 120 °C, 2 h	95	32	-
4 ^[a]	6, 5, 100	air, 120 °C, 2 h	58	87	-
5 ^[a]	1.3, 1, 20	N ₂ , 100 °C, 8 h	93	52	-
6 ^[b]	1.3, 1, 20	N ₂ , 100 °C, 4 h	69	69	1.00/1.00
		6 h	83	70	0.84/1.00

Table S8. Cu-Catalyzed Transfer Hydrogenation.

[a] Detected by GC. [b] Detected by NMR. [c] mol/mol by NMR.

(1) Table S7, Run 6, 100 °C, 4 h:

3aa% = (1.98/2)/(1.98/2+0.45)% = 69% **4a%** = 1.00 /(1.98/2+0.45)% = 69% **4a/3aa** (mol/mol) = 69/69 = 1.00/1.00 (2) Table S7, Run 6, 100°C, 6 h:

4a/3aa (mol/mol) = 70/83 = 0.84/1.00

^{145 135 125 115 105 95 85 75 65 55 45 35 25 15 5 0} f1 (ppm)

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

