Supporting Information

Asymmetric synthesis of *ethano*-Tröger bases using CuTC-catalyzed diazo decomposition reactions

Ankit Sharma, Céline Besnard, Laure Guénée, and Jérôme Lacour*

General Remarks:

All Copper and Rh₂(OAc)₄ catalysts were purchased from commercial sources and used as received. *Methano*-Tröger base and its enantiomers were initially purchased from a commercial source and then prepared internally in the laboratory. 2,8-Dimethoxy Tröger base was prepared and resolved by a method previously reported.^{1,2,1}H-NMR spectroscopy (400 or 500 MHz): Chemical shifts are given in ppm relative to Me₄Si with solvent resonances used as internal standards (7.26 ppm for CDCl₃). Data were reported as follows: chemical shift (δ) in ppm on the δ scale, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublet, dt = doublet of triplet, and m = multiplet, td = two doublets, b = broad peak), coupling constant (Hz) and integration. ¹³C-NMR spectroscopy (100 or 125 MHz): Chemicals shifts were given in ppm relative to Me₄Si with solvent resonances used as internal standards (77.36 ppm for CDCl₃). FT-IR spectra were recorded with a spectrometer using an ATR accessory. Melting points (mp) were measured in open capillary tubes and are uncorrected. Electrospray mass spectra were obtained by the Sciences Mass Spectrometry (SMS) platform at the Faculty of Sciences (University of Geneva).

Table S1: Comparison of CuTC and CuI

rac**-2**

			-					
Entry	Diazo	\mathbf{R}^{1}	\mathbf{R}^2	Product	C	uTC	C	uI
					Yield ^b	dr^{c}	Yield ^b	dr^{c}
1	4 a	Me	Ph	5a	80	11:1	81	10:1
2	4b	Me	COMe	5b	70	-	40	-
3	4 c	Me	CO ₂ Me	5c	80	4.3:1	78	3.8:1
4	4d	Me	CO_2Et	5d	82	5.5:1	$70^{\ d}$	3.4:1
5	4e	Et	CO_2Et	5e	91	5.0:1	87	4.3:1
6	4f	nPr	CO ₂ Et	5f	80	5.0:1	83	3.7:1
7	4 g	iPr	CO_2Et	5g	78	6.0:1	46	4.8:1
8	4h	Ph	CO_2Et	5h	80	4.3:1	65	4.2:1
9	4 i	Me	CO ₂ <i>i</i> Pr	5i	85	3.9:1	78	3.3:1
10	4j	Me	$CO_2 tBu$	5j	87	4.0:1	81	2.6:1
11	4 k	OEt	CO_2Et	5k	40	-	13	-

100 °C, 16 h

5a to 5k

O'

^{*a*} Conditions: *rac*-2 0.4 mmol, diazo reagents 4 0.8 mmol, CuTC (5 mol%) or CuI (5 mol%), 1.0 mL of toluene, 100 °C, 16 h; reported results are the average of at least two experiments. The relative configuration displayed is that of the major diastereoisomers of compounds 5. ^{*b*} Isolated yield (%, both diastereoisomers). ^{*c*} *dr* ratios determined by ¹H-NMR analysis (400 MHz) of the crude reactions mixtures. ^{*d*} 25% *ee* obtained by using (+)-(*S*,*S*)-2 0.1 mmol, 4d 0.2 mmol, 5 mol% of CuI, 0.25 mL of toluene, 90 °C, 6 h while 50% *ee* was reached with CuTC as catalyst.

General procedure I: Synthesis of racemic *ethano*-bridged Tröger base (5)

In a 10 mL 2 neck round bottom flask equipped with a magnetic stirring bar, 100.0 mg of Tröger base 2 (0.399 mmol) were introduced along with 1 ml of dry toluene and 3.8 mg CuTC (0.02 mmol, 5 mol%) under dinitrogen atmosphere. To this solution, diazo compound 4 (0.4 mmol) was added in one portion. The reaction mixture was placed in an already heated oil bath (100 $^{\circ}$ C). The reaction was stirred for 30 min at that temperature. Then, 0.4 mmol of the same diazo compound 4 was added in one portion to the reaction mixture at 100 $^{\circ}$ C. The reaction was monitored by ESI-MS. The solution was then allowed to cool to 25 $^{\circ}$ C and the solvent was removed under reduced pressure. The desired product 5 was purified by column chromatography.

General procedure II: Enantiospecific transformation

Same as above using enantiopure (+)-(S,S)-2 (0.1 mmol) as substrate in place of *rac*-2. Reactions were kept at 90 °C as indicated in Table 3.

1,1'-(2,8-dimethyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5]diazocine-13,13-

diyl)diethanone (5b):

Following procedure **I**, 97.4 mg (70%) of **5b** was obtained from 100 mg of *rac*-**2**. **M.P.**: 170-173 °C. **IR**: (neat): v = 2961, 2920, 1707, 1701, 1492, 1432, 1349, 1219 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃) $\delta = 7.25$ (d, J = 8.1 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 6.86 (d, J = 8.1 Hz, 1H), 6.69 (s, J = 9.0 Hz,

1H), 6.57 (s, J = 12.4 Hz, 1H), 4.94 (d, J = 14.8 Hz, 1H), 4.58 (d, J = 17.9 Hz, 1H), 4.48 (d, J = 17.9 Hz, 1H), 4.36 (d, J = 17.5 Hz, 1H), 4.23 (d, J = 17.5 Hz, 1H), 3.55 (d, J = 14.8 Hz, 1H), 2.18 (s, 6H), 2.17 (s, 3H), 2.16 (s, 3H), 1.87 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) $\delta = 203.3$, 201.6, 146.6, 143.7, 136.1, 135.8, 135.0, 134.8, 130.2, 129.5, 128.9, 128.6, 128.3, 128.0, 93.4, 59.3, 57.5, 56.7, 26.8, 26.0, 20.9, 20.8. **HRMS** (**ESI**) calculated for C₂₂H₂₆N₂O₂ (M+1): 349.191. Found: 349.1907.

Following procedure **II**, using (+)-(*S*,*S*)-**2** as substrate at 100 °C, (**5***R*,**11***S*)-**5b** (70%, *ee* 64%), $[\alpha]_D^{20} = +80$ (c 0.02, CH₂Cl₂).

Ethyl 14-acetyl-2,8-dimethyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocine -14-carboxylate (5c):

Following procedure **I**, 116.4 mg (80%, both diastereoisomers) of **5c** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 3/97).

^{COMe} Major diastereoisomer {(5R,11S,14S) and (5S,11R,14R)}: 99 mg (68%). **IR**: (neat): v =2921, 1737, 1720, 1495, 1433, 1351, 1233, 1182 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.24 (d, J = 8.1 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.70 (s, 1H), 6.56 (s, 1H), 4.96 (d, J = 18.1 Hz, 1H), 4.78 (d, J = 15.2 Hz, 1H), 4.49 (d, J = 5.7 Hz, 1H), 4.44 (d, J = 5.0 Hz, 1H), 4.21 (d, J = 17.5 Hz, 1H), 3.72 (s, 3H), 3.55 (d, J = 15.2 Hz, 1H), 2.17 (s, 3H), 2.15 (s, 3H), 1.93 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ = 200.5, 169.7, 147.0, 143.3, 136.4, 136.3, 136.1, 135.0, 130.6, 129.5, 128.9, 128.8, 128.4, 128.3, 85.0, 59.6, 57.7, 56.6, 53.3, 26.3, 21.2, 21.1. **HRMS (ESI)** calculated for C₂₂H₂₅N₂O₃(M+1): 365.1859. Found: 365.1855.

Ethyl 14-acetyl-2,8-dimethyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocine-14-carboxylate (5d):

Following procedure **I**, 124 mg (82%, both diastereoisomers) of **5d** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 3/97).

Following procedure **II**, using (+)-(*S*,*S*)-**2** as substrate at 90 °C, (**5***S*,**11***R*,**14***R*)-**5d** (67%, *ee* 50%), $[\alpha]_D^{20} = +135$ (c 0.02, CH₂Cl₂).

Ethyl 2,8-dimethyl-14-propionyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocine-14-carboxylate (5e):

Following procedure **I**, 142.6 mg (91%, both diastereoisomers) of **5e** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 3/97).

¹COEt Major diastereoisomer {(5*R*,11*S*,14*S*) and (5*S*,11*R*,14*R*)}: 117.5 mg (75%). **M.P.**: 170-173°C. **IR**: (neat): v = 2976, 1719, 1496, 1434, 1336, 1256, 1216 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃) $\delta = 7.23$ (d, J = 8.1 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.90 (dd, J = 8.1, 1.6 Hz, 1H), 6.86 (dd, J = 8.0, 1.6 Hz, 1H), 6.70 (d, J = 0.8 Hz, 1H), 6.56 (d, J = 0.9 Hz, 1H), 5.00 (d, J = 18.1 Hz, 1H), 4.80 (d, J = 15.2 Hz, 1H), 4.48 (t, J = 16.9 Hz, 2H), 4.27 – 4.09 (m, 3H), 3.53 (dd, J = 15.2, 1.1 Hz, 1H), 2.53 – 2.27 (m, 2H), 2.17 (s, 3H), 2.14 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H), 0.57 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) $\delta = 204.2$, 169.3, 147.1, 143.4, 136.5, 136.4, 136.3, 134.9, 130.7, 129.5, 128.9, 128.8, 128.4, 128.3, 84.4, 62.1, 59.7, 57.7, 56.7, 31.7, 21.12, 21.09, 14.4, 8.8. **HRMS (ESI)** calculated for C₂₄H₂₉N₂O₃(M+1): 393.2172. Found: 393.2171.

Ethyl 14-butyryl-2,8-dimethyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocine-14-carboxylate (5f):

Following procedure **I**, 129.8 mg (80%, both diastereoisomers) of **5f** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 3/97).

^LOPr *Major diastereoisomer* {(5*R*,11*S*,14*S*) and (5*S*,11*R*,14*R*)}: 107.1 mg (66%). **M.P.**: 168-170 °C. **IR**: (neat): v = 2962, 1718, 1496, 1434, 1260, 1216 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.25$ (d, J = 8.1 Hz, 1H), 7.00 (d, J = 7.8 Hz, 1H), 6.89 (td, J = 8.1, 7.8 Hz, 2H), 6.72 (s, 1H), 6.56 (s, 1H), 4.99 (d, J = 18.2 Hz, 1H), 4.82 (d, J = 15.2 Hz, 1H), 4.49 (td, J = 18.2 Hz, 2H), 4.28 – 4.07 (m, 3H), 3.55 (d, J = 15.2 Hz, 1H), 2.46 – 2.24 (m, 2H), 2.18 (s, 3H), 2.15 (s, 3H), 1.37 – 1.18 (m, 4H), 1.10 – 0.81 (m, 1H), 0.59 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 203.2$, 169.3, 147.1, 143.4, 136.5, 136.3, 135.0, 134.3, 130.7, 129.5, 128.8, 128.7, 128.4, 128.3, 84.6, 62.2, 59.6, 57.8, 56.8, 40.2, 21.1, 21.0, 17.9, 14.4, 13.5. **HRMS (ESI)** calculated for C₂₅H₃₁N₂O₃(M+1): 407.2329. Found: 407.2334. -S5-

Ethyl 14-isobutyryl-2,8-dimethyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocine-14-carboxylate (5g):

Following procedure **I**, 126.6 mg (78%, both diastereoisomers) of **5g** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 4/96).

¹CO'Pr Major diastereoisomer {(5*R*,11*S*,14*S*) and (5*S*,11*R*,14*R*)}: 90.7 mg (56%). **IR**: (neat): v = 2962, 1718, 1607, 1495, 1434, 1260, 1216 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.27$ (d, J = 8.1 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.90 (d, J = 8.1 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.70 (s, 1H), 6.56 (s, 1H), 4.92 (d, J = 18.1 Hz, 1H), 4.84 (d, J = 15.2 Hz, 1H), 4.51 – 4.39 (m, 2H), 4.27 – 4.16 (m, Hz, 2H), 4.08 (dq, J = 10.8, 7.1 Hz, 2H), 3.49 (d, J = 16.1 Hz, 1H), 3.43 (dt, J = 13.4, 6.7 Hz, 2H), 2.17 (s, 3H), 2.14 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H), 0.03 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 208.8$, 169.3, 147.1, 143.6, 136.4, 136.3, 134.9, 131.0, 129.5, 129.0, 128.8, 128.4, 128.3, 84.2, 62.1, 59.5, 57.8, 57.1, 36.5, 23.1, 21.1, 21.1, 18.0, 14.5. HRMS (ESI) calculated for C₂₅H₃₁N₂O₃(M+1): 407.2329. Found: 407.2334.

Ethyl 14-benzoyl-2,8-dimethyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocine-14-carboxylate (5h):

Following procedure **I**, 140.8 mg (80%, both diastereoisomers) of **5h** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 3/97).

^cOPh *Major diastereoisomer* {(5*R*,11*S*,14*S*) and (5*S*,11*R*,14*R*)}: 112.6 mg (64%). **M.P.**: 143-145 °C. **IR**: (neat): v = 2922, 1737, 1686, 1495, 1446, 1242, 1211 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃) $\delta = 8.17$ -8.14 (m, 2H), 7.46 – 7.34 (m, 1H), 7.28 – 7.23 (m, 2H), 7.02 (d, J = 8.0 Hz, 1H), 6.87 (d, J = 8 Hz, 1H), 6.75 – 6.67 (m, 2H), 6.56 – 6.43 (m, 2H), 5.54 (t, J = 18.7 Hz, 1H), 5.03 (d, J = 15.1 Hz, 1H), 4.71 (d, J = 17.4 Hz, 1H), 4.47 (d, J = 18.3 Hz, 1H), 4.24 (d, J = 17.4 Hz, 1H), 4.18 – 4.02 (m, 2H), 3.61 (d, J = 15.1, 1H), 2.18 (s, 3H), 1.99 (s, 3H), 1.05 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) $\delta = 191.50$, 169.99, 147.24, 143.07, 137.07, 136.73, 136.10, 135.64, 134.95, 132.99, 131.30, 129.95, 169.99, 147.24, 143.07, 137.07, 136.73, 136.10, 135.64, 134.95, 132.99, 131.30, 129.95, 169.99, 147.24, 143.07, 137.07, 136.73, 136.10, 135.64, 134.95, 132.99, 131.30, 129.95, 169.99, 147.24, 143.07, 137.07, 136.73, 136.10, 135.64, 134.95, 132.99, 131.30, 129.95, 140.95, 140.95, 140.95, 140.95, 140.95, 140.95, 140.95, 140.95, 14

128.81, 128.64, 128.35, 128.21, 128.19, 128.05, 82.35, 62.02, 59.84, 58.91, 57.39, 21.09, 21.01, 14.26. **HRMS (ESI)** calculated for C₂₈H₂₉N₂O₃(M+1): 441.2172. Found: 441.2170.

Isopropyl 14-acetyl-2,8-dimethyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocine-14-carboxylate (5i):

Following procedure **I**, 133.2 mg (85%, both diastereoisomers) of **5i** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 3/97).

^cOMe *Major diastereoisomer* {(5*R*,11*S*,14*S*) and (5*S*,11*R*,14*R*)}: 106.6 mg (68%). **M.P.**: 172-175 °C. **IR**: (neat): v = 2980, 1720, 1496, 1434, 1370, 1234 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.24$ (d, J = 8.0 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.71 (s, 1H), 6.56 (s, 1H), 5.08 – 4.96 (m, 2H), 4.76 (d, J = 15.2 Hz, 1H), 4.54 – 4.42 (td, J = 17.4 Hz, 2H), 4.21 (d, J = 17.4 Hz, 1H), 3.52 (d, J = 15.2 Hz, 1H), 2.17 (s, 3H), 2.15 (s, 3H), 1.93 (s, 3H), 1.28 – 1.11 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.6$, 168.6, 147.1, 143.4, 136.5, 136.3, 136.3, 134.9, 130.6, 129.5, 128.9, 128.8, 128.5, 128.3, 84.8, 69.9, 59.6, 57.6, 56.6, 26.1, 21.9, 21.6, 21.1, 21.0. **HRMS (ESI)** calculated for C₂₄H₂₉N₂O₃(M+1): 393.2172. Found: 393.2171.

tert-Butyl 14-acetyl-2,8-dimethyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocine-14-carboxylate (5j):

Following procedure **I**, 141.2 mg (87%, both diastereoisomers) of **5j** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 3/97).

^cOMe *Major diastereoisomer* {(5*R*,11*S*,14*S*) and (5*S*,11*R*,14*R*)}: 112 mg (69%). **M.P.**: 179-181 °C. **IR**: (neat): v = 2980, 1718, 1495, 1456, 1368, 1245 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.22$ (d, J = 8 Hz, 1H), 6.99 (d, J = 7.6 Hz, 1H), 6.89 (td, J = 8, 7.6 Hz, 2H), 6.71 (s, 1H), 6.56 (s, 1H), 5.02 (d, J = 18.1 Hz, 1H), 4.73 (d, J = 15.2 Hz, 1H), 4.47 (td, J = 18.1, 17.5 Hz, 2H), 4.20 (d, J = 17.5 Hz, 1H), 3.52 (d, J = 15.2 Hz, 1H), 2.18 (s, 3H), 2.13 (d, J = 10.2 Hz, 3H), 1.94 (s, 3H), 1.42 (s, 9H). ¹³C **NMR** (100 MHz, CDCl₃) $\delta = 200.8$, 168.2, 147.1, 143.5, 136.6, 136.2, 134.9, 130.6, 129.5, 128.8, 128.4, 128.3, 85.1, 83.1, 59.6,

57.5, 56.6, 28.1, 26.1, 21.1, 21.1. **HRMS** (**ESI**) calculated for C₂₅H₃₁N₂O₃(M+1): 407.2329. Found: 407.2323.

Diethyl 2,8-dimethyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5]diazocine-13,13dicarboxylate (5k):

Following procedure **I**, 1.65 mg (40%) of **5k** was obtained from 100 mg of *rac-2*. **M.P.**: 190-193 °C. **IR**: (neat): v = 2980, 2925, 1735, 1497, 1444 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.22$ (d, J et = 8.0 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.88-6.86 (m, 2H), 6.70 (s, 1H), 6.59 (s, 1H), 5.14 (d, J = 18.4 Hz, 1H), 4.86 (d, J = 17.4 Hz,

1H), 4.68 (d, J = 15.2 Hz, 1H), 4.46 (d, J = 18.4 Hz, 1H), 4.33 – 4.13 (m, 3H), 3.96 (dq, J = 10.7, 7.1 Hz, 1H), 3.84 (dq, J = 10.7, 7.1 Hz, 1H), 3.68 (d, J = 15.2 Hz, 1H), 2.17 (s, 3H), 2.15(s, 3H), 1.22 (t, J = 7.1 Hz, 3H), 0.77 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 169.1$, 168.7, 147.0, 143.8, 137.4, 137.0, 135.9, 135.1, 130.8, 128.8, 128.7, 128.3, 128.2, 78.3, 62.3, 62.1, 59.7, 59.3, 57.3, 21.1, 21.08, 14.5, 13.6. HRMS (ESI) calculated for C₂₄H₂₉N₂O₄ (M+1): 409.2121. Found: 409.2116.

1-(2,8-dimethyl-14-phenyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5]diazocin-14-yl)propan-1-one (5l):

Following procedure **I**, 131.5 mg (83%, major diastereoisomer) of **5**I was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 5/95).

^LOEt Major diastereoisomer {(5*R*,11*S*,14*S*) and (5*S*,11*R*,14*R*)}: White solid 131.5 mg (60%). **M.P.**: 196-198 °C. **IR**: (neat): v = 2964, 1706, 1495, 1259, 1015 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = \delta$ 7.58 (b, 2H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.32 – 7.27 (m, 12H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 7.7 Hz, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.63 (s, 1H), 6.62 (s, 1H), 5.28 (d, *J* = 14.6 Hz, 1H), 4.73 (d, *J* = 17.6 Hz, 1H), 4.60 (d, *J* = 17.5 Hz, 1H), 4.41 (d, *J* = 17.6 Hz, 1H), 4.29 (d, *J* = 17.4 Hz, 1H), 3.49 (d, *J* = 14.6 Hz, 1H), 2.25 – 1.96 (m, 8H), 0.26 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ = 209.37, 147.66, 144.74, 141.61, 136.28, 136.21, 135.90, 134.47, 130.67, 129.78, 129.03, 128.78, 128.76, 128.28, 128.09, 127.72, 127.33, 82.13, 59.70, 59.35, 56.41, 30.68, 21.16, 21.09, 9.47. **HRMS (ESI)** calculated for C₂₇H₂₉N₂O(M+1): 397.2274. Found: 397.2293. Following procedure **II**, using (+)-(*S*,*S*)-2 as substrate, (5*S*,11*R*,14*R*)-51: *major diastereoisomer* (83%, *ee* 90%), $[\alpha]_D^{20} = +217$ (c 0.02, CH₂Cl₂).

(2,8-dimethyl-14-phenyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5]diazocin-14-yl)(phenyl)methanone (5m):

Following procedure **I**, 152 mg (85%, major diastereoisomer) of **5m** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by precipitation in acetone/hexane solution.

^{LOPh} *Major diastereoisomer* {(5*R*,11*S*,14*S*) and (5*S*,11*R*,14*R*)}: White solid 152 mg (85%). **M.P.**: 255-257 °C. **IR**: (neat): v = 2921, 1671, 1596, 1495, 1259 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.72$ (d, J = 7.5 Hz, 2H), 7.68 – 7.61 (m, 2H), 7.39 (t, J = 7.8Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.15 (t, J = 7.4 Hz, 1H), 7.06 – 6.95 (m, 3H), 6.84 (d, J =7.9 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 6.66 (s, 1H), 6.48 (s, 1H), 6.44 (d, J = 8.1 Hz, 1H), 5.41 (d, J = 14.7 Hz, 1H), 5.12 (d, J = 17.4 Hz, 1H), 4.70 (d, J = 17.4 Hz, 1H), 4.50 (d, J =17.5 Hz, 1H), 4.27 (d, J = 17.5 Hz, 1H), 3.48 (d, J = 13.9 Hz, 1H), 2.14 (s, 3H), 2.00 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) $\delta = 198.4$, 147.7, 144.7, 141.0, 138.0, 136.5, 135.7, 135.2, 134.4, 131.5, 131.3, 129.4, 129.2, 129.0, 128.7, 128.4, 128.2, 127.8, 127.6, 127.4, 127.3, 82.5, 62.2, 59.7, 56.9, 21.1, 21.0. **HRMS** (**ESI**) calculated for C₃₁H₂₉N₂O(M+1): 445.2274. Found: 445.2272.

Following procedure **II**, using (+)-(*S*,*S*)-**2** as substrate, (**5***S*,**11***R*,**14***R*)-**5**m: major diastereoisomer before crystallization (85%, ee 90%) and after crystallization (80%, ee 95%), $[\alpha]_D^{20} = +245$ (c 0.02, CH₂Cl₂).

1-(2,8-dimethyl-14-(*p*-tolyl)-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocin-14-yl)ethanone (5n):

Following procedure **I**, 181 mg (80%, major diastereoisomer) of **5n** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 5/95).

^cOMe *Major diastereoisomer* {(5*R*,11*S*,14*S*) and (5*S*,11*R*,14*R*)}: White solid 181 mg (80%). **M.P.**: 174-175 °C. **IR**: (neat): v = 2922, 1705, 1679, 1496, 1432, 1260, 1220 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.47$ (b, 2H), 7.28 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 8.3 Hz, 2H), 6.98 (d, J = 8.0 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.84 (d, J = 8.8 Hz, 1H), 6.62 (s, 2H), 5.24 (d, J = 14.6 Hz, 1H), 4.72 (d, J = 17.5 Hz, 1H), 4.58 (d, J = 17.5 Hz, 1H), 4.38 (d, J = 17.6 Hz, 1H), 4.28 (d, J = 17.6 Hz, 1H), 3.49 (d, J = 14.2 Hz, 1H), 2.34 (s, 3H), 2.17 (s, 3H), 2.13 (s, 3H), 1.64 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) $\delta = 205.59$, 147.63, 144.88, 137.57, 136.31, 135.89, 135.88, 134.43, 130.56, 129.82, 129.78, 128.80, 128.72, 128.24, 128.07, 127.32, 82.12, 59.64, 59.46, 56.33, 25.23, 21.37, 21.16, 21.09. **HRMS** (**ESI**) calculated for C₂₇H₂₉N₂O(M+1): 397.2274. Found: 397.2271.

Following procedure **II**, using (+)-(*S*,*S*)-**2** as substrate, (**5***S*,**11***R*,**14***R*)-**5**n: *major diastereoisomer* (80%, *ee* 82%), $[\alpha]_D^{20} = +138$ (c 0.02, CH₂Cl₂).

1-(2,8-dimethyl-14-(*m*-tolyl)-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocin-14-yl)ethanone (50):

Following procedure **I**, 187.8 mg (83%, major diastereoisomer) of **50** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 5/95).

 $\begin{array}{c} \text{COMe} & \text{Major diastereoisomer} \\ \{(5R,11S,14S) \text{ and } (5S,11R,14R)\}: \\ \text{White solid 187.8 mg (83\%). M.P.: 174-175 °C. IR: (neat): } v = 2922, 1705, 1679,1496, \\ 1432, 1260, 1220 \text{ cm}^{-1}. 7.45 (b, 1H), 7.36 - 7.22 (m, 3H), 7.07 (d, J = 7.5 Hz, 1H), 7.01 - \\ 6.92 (m, 2H), 6.83 (d, J = 8.1 Hz, 1H), 6.62 (s, 2H), 5.24 (d, J = 14.6 Hz, 1H), 4.73 (d, J = \\ 17.6 \text{ Hz}, 1\text{H}), 4.58 (d, J = 17.4 \text{ Hz}, 1\text{H}), 4.39 (d, J = 17.6 \text{ Hz}, 1\text{H}), 4.28 (d, J = 17.4 \text{ Hz}, 1\text{H}), \\ 3.50 (d, J = 14.6 \text{ Hz}, 1\text{H}), 2.36 (s, 4\text{H}), 2.17 (s, 3\text{H}), 2.14 (s, 3\text{H}), 1.64 (s, 3\text{H}). \\ \begin{array}{c} ^{13}\text{C} \text{ NMR} \\ (100 \text{ MHz}, \text{CDCl}_3) \delta = 205.6, 147.6, 144.8, 141.5, 138.7, 136.3, 135.9, 135.8, 134.4, 130.6, \\ \end{array}$

129.8, 128.9, 128.8, 128.7, 128.5, 128.2, 128.1, 128.0, 124.5, 82.3, 59.6, 59.5, 56.4, 25.3, 22.0, 21.2, 21.1 **HRMS (ESI)** calculated for $C_{27}H_{29}N_2O(M+1)$: 397.2274. Found: 397.2263.

Following procedure **II**, using (+)-(*S*,*S*)-2 as substrate, (5*S*,11*R*,14*R*)-50: *major* diastereoisomer (83%, *ee* 84%), $[\alpha]_D^{20} = +153$ (c 0.02, CH₂Cl₂).

1-(14-(4-chlorophenyl)-2,8-dimethyl-6,12-dihydro-5,11-ethanodibenzo[b,f] [1,5]diazocin-14-yl)ethanone (5p):

Following procedure **I**, 138.3 mg (83%, both diastereoisomers) of **5p** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was performed by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 5/95).

Following procedure **II**, using (+)-(*S*,*S*)-**2** as substrate, (**5***S*,**11***R*,**14***R*)-**5***p*: *major diastereoisomer before crystallization* (83%, *ee* 93%) and *after crystallization* (75%, *ee* 99%), $[\alpha]_D^{20} = +226$ (c 0.02, CH₂Cl₂).

1-(2,8-dimethyl-14-(4-nitrophenyl)-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocin-14-yl)ethanone (5q):

Following procedure **I**, 145.2 mg (85 %, major diastereoisomer) of **5q** was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 5/95).

Major diastereoisomer $\{(5R, 11S, 14S) \text{ and } (5S, 11R, 14R)\}$:

White solid 145.2 mg (85%). **M.P.**: 174-175 °C. **IR**: (neat): v = 2916, 1711, 1601, 1520, 1496,1346 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.24$ (d, J = 9.1 Hz, 2H), 7.92 – 7.64 (m, 2H), 7.30 (d, J = 8.0 Hz, 1H), 7.01 – 6.95 (m, 2H), 6.86 (d, J = 8.0 Hz, 1H), 6.64 (s, 2H), 5.30 (d, J = 14.5 Hz, 1H), 4.59 (d, J = 17.5 Hz, 1H), 4.54 (d, J = 17.5 Hz, 1H), 4.44 (d, J = 17.6 Hz, 1H), 4.30 (d, J = 17.6 Hz, 1H), 3.48 (d, J = 14.5 Hz, 1H), 2.19 (s, 3H), 2.15 (s, 3H), 1.64 (s, 3H). ¹³C **NMR** (125 MHz, CDCl₃) $\delta = 204.0$, 148.8, 147.5, 147.2, 144.0, 136.5, 135.5, 134.9, 130.4, 130.0, 129.1, 128.8, 128.6, 128.3(2C), 128.1, 124.3(2C), 82.93, 59.57, 59.40, 56.47, 25.43, 21.18, 21.09. **HRMS (ESI)** calculated for C₂₆H₂₆N₃O₃(M+1): 428.1968. Found: 428.1951.

Following procedure **II**, using (+)-(*S*,*S*)-**2** as substrate, (**5***S*,**11***R*,**14***R*)-**5q**: major diastereoisomer (85%, ee 95%), $[\alpha]_D^{20} = +197$ (c 0.02, CH₂Cl₂).

1-(2,8-dimethoxy-14-phenyl-6,12-dihydro-5,11-ethanodibenzo[b,f][1,5] diazocin-14-yl)ethanone(5r):

Following procedure **I**, 132.5 mg (80%, major diastereoisomer) of 5r was obtained from 100 mg of *rac-2*. Separation of the diastereoisomers was done by column chromatography (SiO₂, 3 x 30 cm, acetone/pentane 5/95).

 $\begin{array}{l} \text{Major diastereoisomer} \{(5R,11S,14S) \text{ and } (5S,11R,14R)\}: \\ \text{White solid 132.5 mg (80\%). M.P.: 213-215 °C. IR: (neat): <math>v = 2928, 1705, 1608, 1493, 1462 \text{ cm}^{-1}. \ ^{1}\text{H NMR} (400 \text{ MHz, CDCl}_3) \ \delta = 7.60 \ (b, 2\text{H}), 7.43 - 7.32 \ (m, 3\text{H}), 7.31 - 7.24 \ (m, 1\text{H}), 7.04 \ (d, J = 8.7 \text{ Hz}, 1\text{H}), 6.73 \ (dd, J = 8.7, 2.9 \text{ Hz}, 1\text{H}), 6.61 \ (dd, J = 8.7, 2.9 \text{ Hz}, 1\text{H}), 6.37 \ (d, J = 2.9 \text{ Hz}, 1\text{H}), 6.33 \ (d, J = 2.9 \text{ Hz}, 1\text{H}), 5.28 \ (d, J = 14.6 \text{ Hz}, 1\text{H}), 4.74 \ (d, J = 17.6 \text{ Hz}, 1\text{H}), 4.60 \ (d, J = 17.4 \text{ Hz}, 1\text{H}), 4.40 \ (d, J = 17.6 \text{ Hz}, 1\text{H}), 4.29 \ (d, J = 17.4 \text{ Hz}, 1\text{H}), 3.69 \ (s, 3\text{H}), 3.66 \ (s, 3\text{H}), 3.51 \ (d, J = 14.5 \text{ Hz}, 1\text{H}), 1.67 \ (s, 3\text{H}). \ ^{13}\text{C NMR} \ (100 \text{ MHz}, \text{CDCl}_3) \ \delta = 205.4, 157.8, 156.8, 143.1, 141.4, 140.1, 137.8, 137.5, 131.9, 129.3, 129.1, 127.8, -S12- \end{array}$

127.4, 114.5, 113.1, 112.8, 112.6, 82.5, 59.9, 59.6, 56.6, 55.6, 55.5, 25.3. **HRMS** (ESI) calculated for $C_{26}H_{27}N_2O_3(M+1)$: 415.2016. Found: 415.2014.

Following procedure II, using (+)-(*S*,*S*) enantiomer of dimethoxy Tröger base as substrate, (5*S*,11*R*,14*R*)-5*r*: *major diastereoisomer* (80%, *ee* 92%), $[\alpha]_D^{20} = +210$ (c 0.02, CH₂Cl₂).

References:

- (1) Satishkumar, S.; Periasamy, M. *Tetrahedron: Asymmetry* **2009**, *20*, 2257.
- (2) Satishkumar, S.; Periasamy, M. *Tetrahedron: Asymmetry* **2006**, *17*, 1116.

	5a	5c	
Empirical formula	C ₂₆ H ₂₆ N ₂ O	$C_{22}H_{24}N_2O_3$	C ₂₄ H ₂₈ N ₂ O ₃
Formula weight	382.49	364.44	392.50
Temperature / K	180(2)	220(2)	200(2)
Wavelength	1.54184 Å	0.71073 Å	0.71073 Å
Diffractometer	Supernova CCD (Agilent)	Stoe IPDS	Stoe IPDS
Crystal system	monoclinic	monoclinic	orthorhombic
Space group	C2/c	C2/c	Pbca
a / Å, b / Å, c / Å	17.0172(3), 8.60512(13), 28.3901(5)	17.051(2), 7.5405(6), 28.226(4)	14.113(6), 14.919(5), 19.801(5)
$lpha/^\circ,eta/^\circ,\gamma/^\circ$	90, 91.4359(17), 90	90, 93.201(10), 90	90, 90, 90
Volume / $Å^3$	4156.01(12)	3623.3(7)	4169(2)
Ζ	8	8	8
$ ho_{ m calc}$ / mg mm ⁻³	1.223	1.336	1.251
μ / mm^{-1}	0.578	0.089	0.083
<i>F</i> (000)	1632	1552	1680
Crystal size / mm ³	$\begin{array}{c} 0.2416 \times 0.1364 \times \\ 0.1012 \end{array}$	$0.500 \times 0.400 \times 0.050$	$0.400 \times 0.400 \times 0.100$
2Θ range for data collection	6.22 to 148.52°	2.89 to 51.314°	9.886 to 52.76°
Index ranges	$-17 \le h \le 21, -10 \le k \le 10, -35 \le l \le 35$	$-20 \le h \le 20, -9 \le k \le$ 9, $-34 \le l \le 34$	$-17 \le h \le 17, -18 \le k \le 18, -24 \le l \le 24$
Reflections collected	22460	11824	29403
Independent reflections	4161 [<i>R</i> (int) = 0.0242]	3385 [<i>R</i> (int) = 0.051]	4240 [<i>R</i> (int) = 0.031]
Data/restraints/parameters	4161/0/264	3385/0/244	4240/0/262
Goodness-of-fit on F^2	1.025	1.1573	0.9975
Final <i>R</i> indexes $[I>2\sigma(I)]$	$R_1 = 0.0406,$ $wR_2 = 0.1118$	$R_1 = 0.0667,$ $wR_2 = 0.1011$	$R_1 = 0.0561,$ $wR_2 = 0.1189$
Final <i>R</i> indexes [all data]	$R_1 = 0.0457,$ $wR_2 = 0.1174$	$R_1 = 0.0721,$ $wR_2 = 0.1015$	$R_1 = 0.0576,$ $wR_2 = 0.1193$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.197/-0.183	0.34/-0.28	0.31/-0.26

Table 1x: Crystal data and structure refinement for 5a, 5c, 5i

Spectrums

¹H NMR (CDCl₃, 400 MHz) 5d (Major)

-S18-

¹H NMR (CDCl₃, 400 MHz) 5e

¹H NMR (CDCl₃, 400 MHz) 5f (Major)

-S20-

as1065t2 PROTON CDCl3 /opt/topspin nmr 1

-S22-

-S23-

¹H NMR (CDCl₃, 400 MHz) 5j

-S24-

¹H NMR (CDCl₃, 400 MHz) 5k

¹H NMR (CDCl₃, 500 MHz) 5n

CSP-HPLC: Whelk O1 column, n-Hexane/i-PrOH 99/1%, 0.7 ml/min, 23 °C, λ = 254 nm

#	Time	Area	Height	Width	Area%	Symmetry
1	9.245	2015.3	122.7	0.2738	51.775	0.592
2	10.404	1877.1	88.8	0.3524	48.225	0.46

	1 mie	Area	Height	Width	Area%	Symmetry
1	8.964	6270.1	283	0.3693	94.921	0.856
2	10.166	335.5	16.6	0.3364	5.079	0.956

#	lime	Area	Height	Width	Area%	Symmetry
1	8.74	132.6	10.6	0.1928	51.797	0.917
2	15.962	123.4	4.9	0.3726	48.203	0.982

_	#	Time	Area	Height	Width	Area%	Symmetry
	1	8.793	4038.7	325.8	0.1916	81.877	0.883
	2	16.037	893.9	34.9	0.4008	18.123	0.943

#	Time	Area	Height	Width	Area%	Symmetry
1	7.301	1450.9	143.1	0.1573	50.149	0.885
2	10.834	1442.3	80.8	0.2762	49.851	0.859

#	Time	Area	Height	Width	Area%	Symmetry
1	7.01	3986.6	401.4	0.1529	75.071	0.847
2	8.942	1323.8	91.7	0.2224	24.929	0.858

#	Time	Area	Height	Width	Area%	Symmetry
1	5.628	713.9	101.3	0.1092	49.850	0.893
2	7.779	718.2	59.2	0.1875	50.150	0.902

Ŧ	Time	Area	Height	Width	Area%	Symmetry
1	5.56	989.7	146	0.113	4.908	0.85
2	7.535	19176	1660	0.1925	95.092	0.817

 #	Time	Area	Height	Width	Area%	Symmetry
1	6.057	1144.2	124.6	0.1411	50.578	0.843
2	6.686	1118.1	109	0.1577	49.422	0.875

#	Time	Area	Height	Width	Area%	Symmetry
1	6.084	86.1	9.6	0.1389	2.741	0.86
2	6.675	3056.8	296.5	0.1583	97.259	0.9

#	Time	Area	Height	Width	Area%	Symmetry
1	10.29	3364.2	202.9	0.2554	49.816	0.801
2	13.688	3389.1	152.6	0.3462	50.184	0.915

#	Time	Area	Height	Width	Area%	Symmetry
1	10.008	1348.1	70	0.2847	9.235	0.524
2	12.444	13250.1	543.1	0.3656	90.765	0.54

_	#	Time	Area	Height	Width	Area%	Symmetry
[1	5.642	539.2	71.8	0.1156	49.662	0.853
[2	7.337	546.6	49.7	0.1704	50.338	0.904

#	Time	Area	Height	Width	Area%	Symmetry
1	5.637	28700.8	3481.4	0.1282	91.871	0.72
2	7.337	2539.5	225.7	0.1743	8.129	0.902

#	Time	Area	Height	Width	Area%	Symmetry
1	5.024	12858.2	1995.7	0.0992	49.884	0.786
2	7.138	12918.2	1188.3	0.1678	50.116	0.83

	#	Time	Area	Height	Width	Area%	Symmetry
[1	5.026	465.6	76	0.0955	3.386	0.852
[2	6.907	13283.1	1312.8	0.156	96.614	0.814

#	Time	Area	Height	Width	Area%	Symmetry
1	10.815	1747.8	98.7	0.2725	50.631	0.859
2	19.78	1704.2	44.9	0.585	49.369	0.822

#	Time	Area	Height	Width	Area%	Symmetry
1	10.84	429.4	25.5	0.2561	2.442	0.917
2	19.63	17154.9	453.5	0.5804	97.558	0.664

CSP-HPLC: IC column, *n*-Hexane/i-PrOH 80/20%, 1 ml/min, 23 °C, λ = 254 nm

- #	Time	Area	Height	Width	Area%	Symmetry
1	8.371	2551.4	199	0.1976	49.963	0.818
2	9.919	2555.2	164.6	0.2401	50.037	0.857

#	Time	Area	Height	Width	Area%	Symmetry
1	8.358	16445.6	1278.1	0.1981	96.141	0.787
2	10.066	660.2	41.8	0.2452	3.859	0.9

OMe