Supporting Information:

Pd-Catalyzed Asymmetric Hydrogenation of 3(Toluenesulfonamidoalkyl)indoles

Ying Duan, Mu-Wang Chen, Qing-An Chen, Chang-Bin Yu, and Yong-Gui Zhou*
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China

1. General and Materials

General: All reactions were carried out under an atmosphere of nitrogen using standard schlenk techniques, unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DRX-400 spectrometers. The chemical shifts for ${ }^{1} \mathrm{H}$ NMR were recorded in ppm downfield from tetramethylsilane (TMS) with the solvent resonance as the internal standard. The chemical shifts for ${ }^{13} \mathrm{C}$ NMR were recorded in ppm downfield using the central peak of deuterochloroform (77.23 ppm) as the internal standard. Coupling constants (J) are reported in Hz and refer to apparent peak multiplications. TLC analysis was performed using glass-backed plates coated with 0.2 mm silica. Quantitative analysis was performed by ${ }^{1} \mathrm{H}$ NMR on Bruker DRX 400 instrument. Flash column chromatography was performed on silica gel (200-300 mesh). Enantiomeric excess was determined by HPLC analysis, using chiral column described below in detail. Optical rotations were measured with JASCO P-1010 polarimeter. The configuration was determined by comparison of rotation sign with the literature data or by analogue.

Materials: Commercially available reagents were used throughout without further purification other than those detailed below. Acetone was dried with anhydrous CaSO_{4} and distilled over KMnO_{4}. The solvents for asymmetric hydrogenation reaction were purchased without further purification.

2. General Procedure for the Synthesis of 3-(Toluenesulfonamidoalkyl)indoles 1

3-(Toluenesulfonamidoalkyl)indoles 1a-n were synthesized from the corresponding 2 -substituted indoles and N-tosyl imines according to the following Method \mathbf{A} or $\mathbf{B} .{ }^{1}$

Method A: In a dry Schlenk tube, N-tosyl imines $4(1 \mathrm{mmol})$ and $(\mathrm{EtO})_{2} \mathrm{POH}(0.1 \mathrm{mmol})$ were dissolved in toluene (4 mL) under nitrogen. The solution was stirred for 10 minutes at room temperature and then for another 5 minutes at $0{ }^{\circ} \mathrm{C}$. Subsequently, 2-substituted indoles $\mathbf{3}(3 \mathrm{mmol})$ were added in one portion at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature naturally. After the reaction was complete (monitored by TLC), $10 \% \mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added to quench the reaction. The mixture was extracted with ethyl acetate (10 mL). The organic layer was washed by brine (10 mL), separated, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed
under reduced pressure and the residue was purified by flash chromatography (ethyl acetate/petroleum ether $=1 / 5$) to afford the product.

Method B: In a dry Schlenk tube, 2-substituted indoles 3 (1 mmol) and $\mathrm{I}_{2}(10 \mathrm{~mol} \%)$ was dissolved in 4 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 min before N-tosyl imines 4 (1 mmol) was added. Finally, saturated solution of sodium subsulfite was not added to quench the reaction until the starting materials were consumed as indicated by TLC (about 5 min). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layer was washed by brine (10 mL), separated, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed under reduced pressure and the residue was purified by flash chromatography (ethyl acetate/petroleum ether $=1 / 5$) to afford the product.

4-Methyl- \boldsymbol{N}-((2-methyl-1H-indol-3-yl)(phenyl)methyl)benzenesulfonamide (1a). ${ }^{2,3}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.11(\mathrm{~m}, 4 \mathrm{H})$, $7.03(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, $2.12(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{IR}(\mathrm{KBr}) \vee 3363,3293,1493,1318,1158,745,698,556 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-(Cyclohexyl(2-methyl-1H-indol-3-yl)methyl)-4-methylbenzenesulfonamide (1b). White solid, m.p. $94-95{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=18.3,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.53$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.97(\mathrm{~m}$, $1 \mathrm{H}), 1.76(\mathrm{dd}, J=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{dd}, J=19.4,11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-0.95(\mathrm{~m}, 6 \mathrm{H}), 0.87-0.77(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 142.03,136.75,133.63,128.83,127.24,126.80,120.95$, 119.64, 119.17, 111.04, 110.71, 57.46, 42.54, 31.85, 30.93, 27.11, 26.81, 26.66, 21.24, 11.79. HRMS Calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 419.1769$, found 419.1769; IR (KBr) v 3386, 2924, 2857, 1307, 1156, $670 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-((4-Fluorophenyl)(2-methyl- $\mathbf{1 H}$-indol-3-yl)methyl)-4-methylbenzenesulfonamide (1c). White solid, m.p. $156-157{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.44(\mathrm{dd}, J=8.2,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.06-6.87(\mathrm{~m}, 4 \mathrm{H})$, $6.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}^{6}-$ Acetone) $\delta 163.69,161.27,143.18,139.51,138.93(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 136.63,134.06,129.86,129.78$, $129.67,127.58,127.31,121.39,119.53(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 115.37,115.16,111.19,53.89,21.32,11.60$; HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$431.1205, found 431.1204; IR (KBr) v 3366, 3305, 1507, 1460, 1318, 1160, 750, 668, $550 \mathrm{~cm}^{-1}$.

4-Methyl- N -((2-methyl-1H-indol-3-yl)(p-tolyl)methyl)benzenesulfonamide (1d). White solid, m.p. $154-155{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 142.98$, 139.81, 136.80, 136.64, 133.85, 129.56, 129.36, 127.86, 127.51, 121.27, 119.75, 119.38, 111.58, 111.11, 54.27, 21.32, 20.99, 11.68.; HRMS Calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 427.1456$, found 427.1447; IR $(\mathrm{KBr}) \vee 3396,1460,1325,1155,747,673,562 \mathrm{~cm}^{-1}$.

4-Methyl- \mathbf{N}-((2-methyl-1H-indol-3-yl)(m-tolyl)methyl)benzenesulfonamide (1e). Pale yellow solid, m.p. 168-169 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.84$ ($\mathrm{s}, 1 \mathrm{H}$), $7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-$ $7.07(\mathrm{~m}, 7 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}$, 3 H), 2.17 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , d${ }^{6}$-Acetone) 142.99, 142.68, 139.75, 138.04, 136.59, 133.86, $129.58,128.63,128.51,128.08,127.52,125.04,121.27,119.68,119.40,111.59,111.10,110.86,54.47$, 21.48, 21.32, 11.71; HRMS Calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 427.1456$, found 427.1459; IR $(\mathrm{KBr}) \vee 3375,1460,1315,1160,1093,1152,743,668,560 \mathrm{~cm}^{-1}$.

4-Methyl- \boldsymbol{N}-((2-methyl-1H-indol-3-yl)(o-tolyl)methyl)benzenesulfonamide (1f). White solid, m.p. $165-166{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.99-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~s}$, $1 \mathrm{H}), 5.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone) $\delta 143.24,143.11,142.40,140.34,139.70,136.31,134.19,131.10$, $130.17,129.68,128.24,128.10,127.64,127.62,127.53,126.90,125.99,121.21,119.48,119.39$, 111.07, 110.83, 109.81, 52.60, 52.50, 21.33, 21.31, 19.44, 11.83; HRMS Calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 427.1456$, found 427.1458; IR (KBr) v 3389, 1461, 1319, 1158, 1093, 1046, $740,672,563 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-((2-Butyl-1 H -indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (1g). White solid, m.p. 148-149 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.07(\mathrm{~m}, 5 \mathrm{H}), 7.05-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{dd}, J=7.9,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 2 \mathrm{H})$, $0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 143.11,143.04,139.66,138.50,136.79$, 129.70, 128.67, 127.97, 127.66, 127.38, 127.30, 121.36, 120.01, 119.39, 111.25, 111.09, 54.44, 32.59, 26.37, 23.25, 21.35, 14.11; HRMS Calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 455.1769$, found 455.1768; IR (KBr) v 3405, 2956, 1493, 1324, 1160, 742, 668, $560 \mathrm{~cm}^{-1}$.

4-Methyl- N -((2-phenethyl-1 H -indol-3-yl)(phenyl)methyl)benzenesulfonamide (1h). White solid, m.p. $175-176{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 10.01(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.09(\mathrm{dd}, J=8.0,2.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.94(\mathrm{dd}, J=11.0,4.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.83-6.69 (m, 1H), $5.87(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}^{6}-$ Acetone) $\delta 143.20,142.85,142.22,139.67,137.50,136.85,129.77,129.21,128.64,127.94,127.67$, 127.31, 126.86, 121.57, 120.05, 119.46, 111.81, 111.30, 54.34, 36.56, 28.92, 21.31; HRMS Calculated for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$503.1769, found 503.1760; IR (KBr) v 3375, 1451, 1324, 1163, 743, 697, $669,560 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-((2,7-Dimethyl-1H-indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (1i). White solid, m.p. $144-145^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.74(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J$ $=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) δ 142.87, 142.82, 135.96, 133.77, 129.44, $128.70,127.95,127.45,127.41,127.04,122.02,120.24,119.70,117.46,111.81,54.54,21.29,16.82$, 11.62; HRMS Calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$427.1456, found 427.1459; IR (KBr) v 3395, $3275,1453,1318,1153,670,560 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-(Cyclohexyl(2,7-dimethyl-1H-indol-3-yl)methyl)-4-methylbenzenesulfonamide (1j). White solid, m.p. $156-157{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.25(\mathrm{~m}$, $7 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.03(\mathrm{~m}, 5 \mathrm{H}), 0.87-0.77(\mathrm{~m}, 2 \mathrm{H}) ;$ ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 141.73,139.87,135.98,133.44,128.53,126.63,121.68,120.00$, 119.43, 117.42, 111.06, 57.55, 42.38, 31.87, 30.93, 27.11, 26.80, 26.64, 21.15, 16.87, 11.73; HRMS Calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$433.1926, found 433.1938; IR (KBr) \vee 3384, 2924, 2853, $1452,1303,1154,667,559 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-(1-(2,7-dimethyl-1H-indol-3-yl)-2-methylpropyl)-4-methylbenzenesulfonamide (1k). White solid, m.p. $166-167{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.47(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.0,1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2$, $2 \mathrm{H}), 6.76-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.54(\mathrm{~d}, J=8.5,1 \mathrm{H}), 4.18(\mathrm{dd}, J=9.9,8.7,1 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$,
2.27 ($\mathrm{s}, 3 \mathrm{H}$), 2.14 ($\mathrm{s}, 3 \mathrm{H}$), 1.16 (d, $J=6.5,3 \mathrm{H}), 0.69(\mathrm{~d}, J=6.7,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) δ $141.76,139.73,135.95,133.37,128.53,126.63,121.68,120.00,119.42,117.39,111.41,58.99,21.14$, 21.09, 20.42, 16.84, 11.70; HRMS Calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$393.1613, found 393.1619; IR (KBr) v 3421, 3352, 1460, 1158, 1098, 1023, 664, $572 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-((2,7-Dimethyl-1 \mathbf{H}-indol-3-yl)(p-tolyl)methyl)-4-methylbenzenesulfonamide (11). yellow solid, m.p. 153-154 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-6.95(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 142.79,139.76,136.79,135.96,133.67,129.38,129.35,127.90,127.39$, $127.05,121.97,120.20,119.65,117.55,111.88,54.35,54.25,21.30,20.98,16.84,11.64$; HRMS Calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 441.1613$, found 441.1599; IR $(\mathrm{KBr}) \vee 3371,1321,1156,810$, $669,558 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-((2,7-Dimethyl-1H-indol-3-yl)(m-tolyl)methyl)-4-methylbenzenesulfonamide (1m). Yellow solid, m.p. 156-158 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20$ $(\mathrm{d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, d ${ }^{6}$-Acetone) $\delta 142.80,142.64,139.69,138.02,135.91,133.67$, $129.39,128.61,128.53,128.07,127.40,127.07,125.06,121.98,120.19,119.67,117.47,111.89,54.54$, 21.48, 21.28, 16.82, 11.66; HRMS Calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 411.1613$, found 411.1603; IR $(\mathrm{KBr}) \vee 3372,1319,1155,669,562 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-((2,7-Dimethyl-1 \mathbf{H}-indol-3-yl)(o-tolyl)methyl)-4-methylbenzenesulfonamide (1n). White solid, m.p. 159-161 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-Acetone) $\delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.03(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=10.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.89(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, d ${ }^{6}$-Acetone) $\delta 142.97$, 140.33, 139.69, 136.45, 135.66, 133.99, 131.13, 129.54, 128.36, 127.73, 127.56, 126.00, 121.96, 120.17, 119.79, 117.25, 110.27, 52.75, 21.32, 19.51, 16.83, 11.85; HRMS Calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 441.1613$, found 441.1610; IR (KBr) v $3388,1460,1305,1155,1092,1035,666,555 \mathrm{~cm}^{-1}$.

3. General Procedure for Pd-Catalyzed Asymmetric Hydrogenation of 3(Toluenesulfonamidoalkyl)indoles

(R)-H8-BINAP $(3.8 \mathrm{mg}, 0.006 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol})$ were placed in a dried schlenk tube under nitrogen atmosphere, and degassed anhydrous acetone 1 mL was added. The mixture was stirred at room temperature for 1 h , and then solvent was removed under vacuum to give the catalyst. In a glovebox, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{mmol})$ and substrate $\mathbf{1}(0.25 \mathrm{mmol})$ were stirred in 1 mL solvent (DCM and TFE were mixed in ratio of $1: 1$ prior to use) at room temperature for 5 min . Subsequently, the above catalyst together with 2 mL solvent was added to the reaction mixture. The hydrogenation was performed at $50{ }^{\circ} \mathrm{C}$ under $\mathrm{H}_{2}(600 \mathrm{psi})$ in a stainless steel autoclave for $16-20 \mathrm{~h}$. After carefully releasing the hydrogen, the resulting mixture was concentrated under vacuum and dissolved in saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. After stirring for 10 min , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After purified by silica gel chromatography using petroleum ether/EtOAc (10/1) as eluent, the enantiomeric excess of the products were determined by HPLC with chiral columns (OJ-H, OD-H or AD-H).

Racemates of 2 were prepared by the hydrogenation of the 3-(toluenesulfonamidoalkyl)indoles catalyzed by $\mathrm{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2} /(+/-)-$ SynPhos in TFE.
$(2 R, 3 R)-(-)$-2-Methyl-3-benzylindoline (2a). ${ }^{4}\left[\right.$ Known compound, $91 \% e e,[\alpha]^{27} \mathrm{D}=-70.3(c 1.0$, $\left.\left.\mathrm{CHCl}_{3}\right)\right] ; 89 \%$ yield, $87 \% e e,[\alpha]^{27}{ }_{\mathrm{D}}=-68.0\left(c 0.83, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.23(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.87(\mathrm{dd}, J=13.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=15.9,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.96-4.03(\mathrm{~m}, 1 \mathrm{H}), 6.54-6.65(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{t}, J=7.4,1 \mathrm{H}), 7.17-7.31(\mathrm{~m}$, 5 H); HPLC (OJ-H, elute: Hexanes $/ i-\mathrm{PrOH}=80 / 20$, detector: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}=10.4$ $\min , \mathrm{t}_{2}=11.6 \mathrm{~min}(\mathrm{maj}$.$) .$
(-)-2-Methyl-3-(cyclohexylmethyl)indoline (2b). ${ }^{4}\left[\right.$ Known compound, $94 \% e e,[\alpha]^{29}{ }_{\mathrm{D}}=-8.6(c$ $\left.\left.1.04, \mathrm{CHCl}_{3}\right)\right] ; 97 \%$ yield, $92 \% e e,[\alpha]^{27}{ }_{\mathrm{D}}=-7.9\left(c 0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.98$ $(\mathrm{d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.89(\mathrm{~m}, 11 \mathrm{H}), 3.23-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 3.92-3.96 (m, 1H), $6.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.06(\mathrm{~m}, 2 \mathrm{H})$; HPLC (OD-H, elute: Hexanes $/ i-\mathrm{PrOH}=99 / 1$, detector: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}=9.6 \mathrm{~min}, \mathrm{t}_{2}=11.5 \mathrm{~min}$ (maj.).
(-)-2-Methyl-3-(4-fluorobenzyl)indoline (2c). ${ }^{4}$ [Known compound, $88 \% e e,[\alpha]^{28}{ }_{\mathrm{D}}=-76.3(c 0.84$, $\left.\mathrm{CHCl}_{3}\right) ; 81 \%$ yield, $86 \% e e,[\alpha]^{27}{ }_{\mathrm{D}}=-71.5\left(c 0.83, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.24(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.77-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.96(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.98-4.01(\mathrm{~m}$, $1 \mathrm{H}), 6.49(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.95-7.10(\mathrm{~m}, 5 \mathrm{H})$; HPLC (OJ-H, elute: Hexanes $/ i-$ PrOH = 90/10, detector: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}=15.1 \mathrm{~min}, \mathrm{t}_{2}=17.1 \mathrm{~min}$ (maj.).
(-)-2-Methyl-3-(4-methylbenzyl)indoline (2d). ${ }^{4}$ [Known compound, $90 \% \mathrm{ee},[\alpha]^{30}{ }_{\mathrm{D}}=-64.5(\mathrm{c}$ $\left.\left.1.0, \mathrm{CHCl}_{3}\right)\right] ; 84 \%$ yield, $84 \% e e,[\alpha]^{27}{ }_{\mathrm{D}}=-75.9\left(c 0.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.30$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{qd}, J=22.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-4.13(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), \delta 7.09-7.12(\mathrm{~m}, 4 \mathrm{H})$; HPLC $(\mathrm{OJ}-\mathrm{H}$, elute: $\mathrm{Hexanes} / i-\operatorname{PrOH}=90 / 10$, detector: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}=12.9 \mathrm{~min}, \mathrm{t}_{2}=16.1 \mathrm{~min}$ (maj.).
(-)-2-Methyl-3-(3-methylbenzyl)indoline (2e). ${ }^{4}\left[\right.$ Known compound, $90 \% e e,[\alpha]^{28}{ }_{\mathrm{D}}=-63.7(c$
$\left.0.96, \mathrm{CHCl}_{3}\right) ; 97 \%$ yield, $87 \% e e,[\alpha]^{28}{ }_{\mathrm{D}}=-59.8\left(c 0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.21$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{qd}, J=14.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.95-4.02(\mathrm{~m}, 1 \mathrm{H})$, 6.53-6.68 (m, 3H), 6.93-7.08 (m, 4H), $7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$; HPLC (OJ-H, elute: Hexanes $/ i-\mathrm{PrOH}=$ $90 / 10$, detector: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}=12.7 \mathrm{~min}\left(\mathrm{maj}\right.$.), $\mathrm{t}_{2}=13.6 \mathrm{~min}$.
(-)-2-Methyl-3-(2-methylbenzyl)indoline (2f). ${ }^{4}$ [Known compound, $91 \% e e,[\alpha]^{29}{ }_{\mathrm{D}}=-79.0(\mathrm{c}$ $\left.0.82, \mathrm{CHCl}_{3}\right) ; 93 \%$ yield, $89 \% e e,[\alpha]^{27}{ }_{\mathrm{D}}=-84.0\left(c 0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.96(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.58(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{p}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-7.08(\mathrm{~m}, 3 \mathrm{H})$, $7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$; HPLC (OJ-H, elute: Hexanes $/ i-\mathrm{PrOH}=85 / 15$, detector: 254 nm , flow rate: 0.8 $\mathrm{mL} / \mathrm{min}$), $\mathrm{t}_{1}=11.4 \mathrm{~min}(\mathrm{maj}),. \mathrm{t}_{2}=15.0 \mathrm{~min}$.
(-)-2-Butyl-3-benzylindoline (2g). ${ }^{4}$ [Known compound, $94 \% e e,[\alpha]^{28}{ }_{\mathrm{D}}=-86.3\left(c\right.$ 1.10, $\left.\left.\mathrm{CHCl}_{3}\right)\right]$; 97% yield, $92 \% e e,[\alpha]^{30}{ }_{\mathrm{D}}=-79.4\left(c 1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.93(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.33-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.70(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=13.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.4,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.36-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=13.9,7.6 \mathrm{~Hz}), 6.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.28(\mathrm{~m}$, $5 \mathrm{H})$; HPLC (AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 254 nm , flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}=7.9$ \min (maj.), $\mathrm{t}_{2}=10.7 \mathrm{~min}$.
(-)-2-Phenethyl-3-benzylindoline (2h). ${ }^{4}$ [Known compound, $93 \% e e,[\alpha]^{30}{ }_{\mathrm{D}}=-74.3$ (c 0.67, $\left.\mathrm{CHCl}_{3}\right) ; 95 \%$ yield, $91 \% e e,[\alpha]^{30}{ }_{\mathrm{D}}=-64.5\left(c 1.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.01-2.07$ $(\mathrm{m}, 2 \mathrm{H}), 2.62-2.80(\mathrm{~m}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=13.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.89(\mathrm{~m}, 2 \mathrm{H}), 6.28$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.32(\mathrm{~m}, 8 \mathrm{H})$; HPLC (OD-H, elute: Hexanes $/ i-\mathrm{PrOH}=90 / 10$, detector: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}=9.6 \mathrm{~min}, \mathrm{t}_{2}=10.9 \mathrm{~min}(\mathrm{maj}$.$) .$
(-)-2,7-Dimethyl-3-benzylindoline (2i). ${ }^{4}$ (Known compound, $97 \% e e,[\alpha]^{29}{ }_{\mathrm{D}}=-70.6(c 0.88$, $\left.\mathrm{CHCl}_{3}\right)$); 94% yield, $95 \% e e,[\alpha]^{30}{ }_{\mathrm{D}}=-75.7\left(c 0.93, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.25(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.83-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.55(\mathrm{~m}, 2 \mathrm{H}), 4.00-4.02(\mathrm{~m}, 1 \mathrm{H}), 6.41-6.53(\mathrm{~m}$, 2H), $6.85(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.29(\mathrm{~m}, 5 \mathrm{H})$; HPLC (OD-H, elute: Hexanes $/ i-\mathrm{PrOH}=99 / 1$, detector: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}=12.8 \mathrm{~min}, \mathrm{t}_{2}=20.9 \mathrm{~min}(\mathrm{maj}$.).
(-)-2,7-Dimethyl-3-(cyclohexylmethyl)indoline (2j). ${ }^{4}\left[\right.$ Known compound, $97 \% e e,[\alpha]^{29}{ }_{\mathrm{D}}=-17.0$ (c 0.96, CHCl_{3})]; 90% yield, $97 \% e e,[\alpha]_{\mathrm{D}}^{28}=-21.6\left(c 0.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 0.93-0.95 (m, 2H), 1.12-1.29 (m, 6H), 1.39-1.44 (m, 2H), 1.52-1.54 (m, 1H), 1.66-1.76 (m, 4H), 1.87$1.90(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.93-4.00(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;$ HPLC $(\mathrm{OD}-\mathrm{H}$, elute: Hexanes $i-\mathrm{PrOH}=$ $99 / 1$, detector: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}=5.5 \mathrm{~min}, \mathrm{t}_{2}=6.4 \mathrm{~min}$ (maj.).
(-)-2,7-Dimethyl-3-(2-methylpropyl)indoline (2k). ${ }^{4}\left[\right.$ Known compound, $97 \% e e,[\alpha]^{30}{ }_{\mathrm{D}}=-3.74$ (c 0.93, CHCl_{3})]; 88% yield, $94 \% e e,[\alpha]^{28}{ }_{\mathrm{D}}=-7.6\left(c 0.47, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.52-$ $1.57(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.74(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.94-4.01(\mathrm{~m}$, $1 \mathrm{H}), 6.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$; HPLC (OJ-H, elute: Hexanes $/ i-\mathrm{PrOH}=90 / 10$, detector: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}=5.1 \mathrm{~min}, \mathrm{t}_{2}=5.7 \mathrm{~min}$ (maj.).
(-)-2,7-Dimethyl-3-(4-methylbenzyl)indoline (21). ${ }^{4}$ [Known compound, $96 \% \mathrm{ee},[\alpha]^{27}{ }_{\mathrm{D}}=-69.7(c$ 1.17, $\left.\mathrm{CHCl}_{3}\right)$]; 87% yield, $94 \% e e,[\alpha]^{24}{ }_{\mathrm{D}}=-80.8\left(c 1.17, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $1.23(\mathrm{~d}, J=6.3,3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.71-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.84-4.20(\mathrm{~m}, 1 \mathrm{H})$, 6.41-6.67 (m, 2H), $6.86(\mathrm{~d}, J=6.3,1 \mathrm{H}), 7.07-7.09(\mathrm{~d}, J=6.0,4 \mathrm{H})$; HPLC (OD-H, elute: Hexanes $/ i-\mathrm{PrOH}$
$=99 / 1$, detector: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}=8.0 \mathrm{~min}, \mathrm{t}_{2}=11.1 \mathrm{~min}($ maj. $)$.
(-)-2,7-Dimethyl-3-(3-methylbenzyl)indoline (2m). ${ }^{4}$ [Known compound, $95 \% e e,[\alpha]^{28}{ }_{\mathrm{D}}=-61.1$ (c 1.07, $\left.\mathrm{CHCl}_{3}\right)$]; 97% yield, $93 \% e e,[\alpha]^{28}=-75.0\left(c 0.83, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.96(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.58(\mathrm{~m}, 2 \mathrm{H}), 4.00-4.03(\mathrm{~m}$, $1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.04(\mathrm{~m}, 3 \mathrm{H}), 7.18$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$); HPLC (OD-H, elute: Hexanes $/ i-\mathrm{PrOH}=99 / 1$, detector: 254 nm , flow rate: 1.0 $\mathrm{mL} / \mathrm{min}$), $\mathrm{t}_{1}=8.8 \mathrm{~min}, \mathrm{t}_{2}=12.6 \mathrm{~min}($ maj. $)$.
(-)-2,7-Dimethyl-3-(2-methylbenzyl)indoline (2n). ${ }^{4}$ [Known compound, $94 \% e e,[\alpha]^{29}{ }_{\mathrm{D}}=-89.7$ (c 0.92, $\left.\mathrm{CHCl}_{3}\right)$]; 97% yield, $94 \% e e,[\alpha]_{\mathrm{D}}^{30}=-87.0\left(c 0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.32(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.95(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{dd}, J=16.3,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.05-4.08(\mathrm{~m}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, 1 H), 7.08-7.14 (m, 4H); HPLC (OJ-H, elute: Hexanes $/ i-\operatorname{PrOH}=90 / 10$, detector: 254 nm , flow rate: 1.0 $\mathrm{mL} / \mathrm{min}), \mathrm{t}_{1}=6.1 \mathrm{~min}(\mathrm{maj}),. \mathrm{t}_{2}=7.8 \mathrm{~min}$.

4. General Procedure for Pd-Catalyzed Tandem Reactions of 2-Substituted Indoles and N-Tosyl Imines ${ }^{5}$

(R)-H8-BINAP ($3.8 \mathrm{mg}, 0.006 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol})$ were placed in a dried Schlenk tube under nitrogen atmosphere, and degassed anhydrous acetone was added. The mixture was stirred at rt for 1 h , then solvent was removed under vacuum to give the catalyst. In a glovebox, acid (0.25 mmol) and indole (0.25 mmol) were stirred in 1 mL DCM/TFE at room temperature for 1 min . Subsequently, N-tosyl imine (0.25 mmol) was added to the solution. Finally, the above catalyst together with 2 mL DCM/TFE was added to the reaction mixture. The hydrogenation was performed at $50{ }^{\circ} \mathrm{C}$ under $\mathrm{H}_{2}(600 \mathrm{psi})$ in a stainless steel autoclave for 16 h . After carefully releasing the hydrogen, the resulting mixture was concentrated under vacuum and dissolved in saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. After stirring for 10 min , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 5 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After purified by silica gel chromatography using petroleum ether/EtOAc (10/1) as eluent, the enantiomeric excess of the products were determined by HPLC with chiral column.

5. References

1. Q. Kang, Z.-A. Zhao, S.-L. You, J. Am. Chem. Soc., 2007, 129, 1484.
2. F. Xu, D. Huang, C. Han, W. Shen, X. Lin, Y. Wang, J. Org. Chem., 2010, 75, 8677.
3. Q.-L. He, F.-L. Sun, X.-J. Zheng, S.-L. You, Synlett, 2009, 1111.
4. D.-S. Wang, J. Tang, Y.-G. Zhou, M.-W. Chen, C.-B. Yu, Y. Duan, G.-F. Jiang, Chem. Sci., 2011, 2, 803.
5. Y. Duan, M.-W. Chen, Z.-S. Ye, D.-S. Wang, Q.-A. Chen, Y.-G. Zhou, Chem. Eur. J., 2011, 17, 7193.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

6. Copy of NMR and HRMS Spectra

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
6 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: 0-100 } & \mathrm{H}: ~ 0-120 & \mathrm{~N}: 2-2 & \mathrm{O}: 2-2 & \mathrm{Na}: 1-1 & \mathrm{~S}: 1-1\end{array}$
DY-3-36C
1101171617 (0.420) AM (Cen,6, 80.00, Ar, $5000.0,429.20,0.70$, LS 10); Sm (SG, 2×3.00); Sb ($1,40.00$); Cm (17:18)

Minimum:
Maximum:
Mass Calc. Mass mDa PPM DBE
$\begin{array}{lllllllllllllllll}419.1769 & 419.1769 & 0.0 & 0.0 & 10.5 & 10.1 & C 23 & H 28 & N 2 & O 2 & \mathrm{Na} & \mathrm{S}\end{array}$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Single Mass Analysis
Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
5 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{lllllll}\text { C: 0-100 } & \text { H: 0-120 } & \mathrm{N}: \mathbf{2 - 2} & \mathrm{O}: \mathbf{2 - 2} & \mathrm{Na}: ~ 1-1 & \mathrm{~S}: 1-1 & \mathrm{~F}: 1\end{array}$

Minimum:Maximum:		-10.0										
		5.0	50.0	100.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Forr						
431.1204	431.1205	-0.1	-0.2	13.5	14.1	C23	H21	N2	02	Na	S	F

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
6 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\text { E: } 0-100 & \mathrm{H}: 0-120 & \mathrm{~N}: 2-2 & \mathrm{O}: 2-2 & \mathrm{Na}: 1-1 & \mathrm{~S}: 1-1\end{array}$
DY-3-18A
1101170820 (0.521) AM (Cen,6, 80.00, Ar,5000.0,429.20,0.70,LS 10); Sm (SG, 2×3.00); Sb (1,40.00); Cm (20:26)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Single Mass Analysis
 Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
 Selected filters: None

Monoisotopic Mass, Even Electron Ions
6 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: 0-100 } & \mathrm{H}: 0-120 & \mathrm{~N}: 2-2 & \mathrm{O}: 2-2 & \mathrm{Na}: 1-1 & \mathrm{~S}: 1-1\end{array}$
DY-3-16

Minimum: -10.0

Maximum:		5.0	50.0	100.0		
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula

| 427.1459 | 427.1456 | 0.3 | 0.7 | 13.5 | 7.7 | $C 24$ | $H 24$ | N 2 | 02 | Na | S |
| :--- |

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

 ©

CQA-2011-03
1H NMR DY-3-20B in d6-acetone
H:/CQA-2011-03/300/fid

CQA-2011-03
13C NMR DY-3-20B in d6-acetone
H:/CQA-2011-03/1082/fid

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Single Mass Analysis
Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
6 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\text { Elements } \\ \text { C: 0-100 } & \mathrm{H}: 0-120 & \mathrm{~N}: \mathbf{2 - 2} & \mathrm{O}: \mathbf{2 - 2} & \mathrm{Na}: 1-1 & \mathrm{~S}: 1-1\end{array}$
DY-3-20B

Minimum: $\quad 5.0$
$\begin{array}{llll}\text { Maximum: } & 5.0 & 50.0 & 100.0\end{array}$
Mass Calc. Mass mDa PPM DBE i-FIT Formula
$\begin{array}{llllllllllllllllll}427.1458 & 427.1456 & 0.2 & 0.5 & 13.5 & 4.5 & C 24 & H 24 & N 2 & 02 & \mathrm{Na} & \mathrm{S}\end{array}$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Selected filters: None
Monoisotopic Mass, Even Electron lons
6 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: 0-100 } & \mathrm{H}: 0-120 & \mathrm{~N}: 2-2 & \mathrm{O}: 2-2 & \mathrm{Na}: 1-1 & \mathrm{~S}: 1-1\end{array}$

Minimum:
Maximum: -10.0
Mass Calc. Mass mDa PPM DBE i-FIT Formula

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

CQA-2011-03
13C NR DY-3-5

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
7 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\text { Elements } \\ \text { C: 0-100 } & \mathrm{H}: ~ 0-120 & \mathrm{~N}: 2-2 & \mathrm{O}: 2-2 & \mathrm{Na}: 1-1 & \mathrm{~S}: 1-1\end{array}$
DY-3-57A
1101171551 (1.304) AM (Cen,6, 80.00, Ar,5000.0,429.20,0.70,LS 10); Sm (SG, 2×3.00); Sb (1,40.00); Cm (50:53) 1: TOF MS ES +

Minimum: Maximum:			
	5.0	50.0	100.0

Mass Calc. Mass mDa PRM DBE i-FIT Formula
$\begin{array}{llllllllllllllllllllll}503.1760 & 503.1769 & -0.9 & -1.8 & 17.5 & 10.4 & \text { C30 } & H 28 & \mathrm{~N} 2 & \mathrm{O} 2 & \mathrm{Na} & \mathrm{S}\end{array}$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

```
Single Mass Analysis
Tolerance = 50.0 PPM / DBE: }\operatorname{min}=\mathbf{-10.0, max = 100.0
Selected filters: None
```

Monoisotopic Mass, Even Electron lons
6 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\mathrm{C}: ~ 0-100 & \mathrm{H}: ~ 0-120 & \mathrm{~N}: ~ 2-2 & \mathrm{O}: 2-2 & \mathrm{Na}: 1-1 & \mathrm{~S}: 1-1\end{array}$

Minimum:			-10.0
Maximum:	5.0	50.0	100.0

Mass Calc. Mass mDa PPM DBE i-FIT Formula

| 427.1459 | 427.1456 | 0.3 | 0.7 | 13.5 | 3.1 | $C 24$ | $H 24$ | $N 2$ | 02 | Na | S |
| :--- |

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
6 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\text { Elements } \\ \text { C: 0-100 } & \mathrm{H}: \mathbf{0 - 1 2 0} & \mathrm{N}: \mathbf{2 - 2} & \mathrm{O}: \mathbf{2 - 2} & \mathrm{Na}: 1-1 & \mathrm{~S}: 1-1\end{array}$
DY-3-418
11011718 43 (1.112) AM (Cen,6, 80.00, Ar,5000.0.429.20,0.70,LS 10); Sm (SG, 2x3.00); Sb (1,40.00); Cm (34:44)

| Minimum: | |
| :--- | :--- | :--- |
| Maximum: | -10.0 |

Maximum:	5.0	50.0	100.0

Mass Calc. Mass mDa PRM DBE i-FIT Formula
$\begin{array}{llllllllllllllllll}433.1938 & 433.1926 & 1.2 & 2.8 & 10.5 & 4.1 & \text { C24 } & H 30 & N 2 & O & \mathrm{Na} & \mathrm{S}\end{array}$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Single Mass Analysis
Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
6 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: 0-100 } & \text { H: 0-120 } & \mathrm{N}: ~ 2-2 & \mathrm{O}: 2-2 & \mathrm{Na}: 1-1 & \mathrm{~S}: 1-1\end{array}$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
6 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: } 0-100 & \mathrm{H}: ~ 0-120 & \mathrm{~N}: 2-2 & \mathrm{O}: 2-2 & \mathrm{Na}: 1-1 & \mathrm{~S}: 1-1\end{array}$
DY-3-29A
1101172041 (1.032) AM (Cen,6, 80.00, Ar,5000.0,429.20,0.70,LS 10); Sm (SG, 2x3.00); Sb (1,40.00); Cm (38:42)

Minimum:

Mass
Calc. Mass
5.0
50.0
$\begin{array}{llllllllllllllllllllll}441.1599 & 441.1613 & -1.4 & -3.2 & 13.5 & 8.6 & \mathrm{C} 25 & \mathrm{H} 26 & \mathrm{~N} 2 & \mathrm{O} 2 & \mathrm{Na} & \mathrm{S}\end{array}$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Single Mass Analysis
Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
6 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
Elements Used:
$\begin{array}{llllll}\text { C: 0-100 } & \mathrm{H}: \mathbf{0 - 1 2 0} & \mathrm{N}: ~ 2-2 & \mathrm{O}: \mathbf{2 - 2} & \mathrm{Na}: ~ 1-1 & \mathrm{~S}: 1-1\end{array}$
DY-3-31
11011721

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Elemental Composition Report

Single Mass Analysis
Tolerance $=50.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
6 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
6 formula(e) evaluated with 1 results within limits (ail resu
Elements Used:
$\begin{array}{llllll}\text { C: } 0-100 & \text { H: 0-120 } & \text { N: 2-2 } & \text { O: 2-2 } & \text { Na: 1-1 } & \text { S: 1-1 }\end{array}$
DY-3-57B

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

1 H NMR DY-3-80B In CDC13
咅

		3
	3T0099999	27

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

CQA-2

II .

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

9. Copy of HPLC for Racemic and Chiral Compounds

Si gmal 1: wod A , waveleng th=254 nim

Totals :
3684.42053 171.14101
** End of Report ***

${ }_{\text {Acta }}^{\text {Acq. }}$ Onerator	Instrument 1	Location: Vial 1
	8/20/2011 4:16:25 pH	
t chanced		
Hethod		
anged	(modified after 1oadin	

Si gnal 1: VWDi A, wavelength=254 nim

$\begin{array}{llll}\text { Totals : } & 1350.42469 & 59.79262\end{array}$

** End of Report ***

Area Percent Report			
$\underset{\substack{\text { Sorted Ev } \\ \text { Hultiplier }}}{\text { der }}$	${ }_{\text {Sional }}^{\text {Sional }}$		
Dilution	1.0000		
Sigmal 1: VIDI A , Wavelength=254 nim			
$\stackrel{\text { Peak }}{\substack{\text { Retrime } \\ \text { [mini }}}$		$\underset{\text { Hematiaht }}{1}$	${ }_{\text {area }}^{\text {a }}$
	$\begin{aligned} & 0.4141-1004.8431 \\ & 0.48551003 .35028 \end{aligned}$	36.70139 31.34911	
Totals :	2008.19409	68.05049	
Results obtained with enhanced integrator!			

	Area Percent Report
Sorted By Multiplier Dilution	$\begin{aligned} & \text { Si.mal } \\ & 1.0000 \\ & 1.0000 \end{aligned}$

Signal 1: vidi 1 , wavelength=254 ni

Totals : $3193.86493 \quad 100.19195$

Sorted By Multiplier	$\begin{aligned} & \text { siimal } \\ & 1.00000 \end{aligned}$		
Signal 1: VID1 A , Wavelength=254 nim			
		Height [naU	Area
	$\begin{array}{lll}0.3434 \\ 0.4512 & 443.65973 \\ 44.2787\end{array}$	19.11051	$\begin{aligned} & 49.5675 \\ & 50.4325 \end{aligned}$
Totals :	874.88760	34.03628	

Sample Name: DY-4-94i

Sorted By Multiplier Dilution	Siomal 1.0000 1.0000

Signal 1: VID1 A , Wavelength=254 nim

Totals : $2598.34930 \quad 89.82900$
Results obtained with enhanced intecrator

Acq. Operator Acq. Instrument Acq. Hethod Last chanced	Instrument 1	Location: vial 1
	10/28/2010 3 3 23.55 pH	
	10/28/2010 $3: 14: 28$ MM	
	(H10dified after Hoad	
danged	7:44:34 pII	
ple Info	-H, H/i-Prof =90/10,	

Signal 1: vid 1 A , Wavelength=254 nim

$\begin{array}{llll}\text { Totals : } & 1813.45313 & 74.14969\end{array}$
$==$

Acg. Onerator		Location : Vial 1
Injection Date	9/6/2011 2:19:43 pr	
Acq. Method		
Last changed	9/6/2011 1:37:07 ph	
Last changed	9/8/2011 7: 50.59 PM	
ample Info		

$=========-=========-=================$

```
Sorted EY
Iultipip1ier: \(\quad\) : sigmal
```


Si gmal 1: VID1 A, wavelength=254 nim

$\begin{array}{llll}\text { Totals : } & 2127.46245 & 90.03172\end{array}$
$==$

${ }_{\text {Acta }}^{\text {Acc. }}$ Ac. Operator	Instrument 1	Location : Vial 1
In iection Date	10/28/2/2010 2:33:27 pM	
Acq. Me ehod		
Last chanced		
Analysis Metho		
Last changed	9/8/2011 7745: 19 PH	
Ie Info		

Si gnal 1: vidi 1 A , waveleng th=254 nim

Totals: $2917.14136 \quad 113.11581$

${ }_{\text {acc }}^{\text {Acq. }}$ Operator Instrument		Location: Vial 1
Injection Date	9/6/2011 3:43:58 pr	
${ }_{\text {a }}^{\text {Acq. Hethod }}$ Lest		
	(modifitied after 10ading)	
${ }_{\text {a }}^{\text {Analvsis Hethod }}$ Last changed		
	(modified after loadi	


```
\(\begin{aligned} & \text { Sorted By } \\ & \text { fultiplier: }\end{aligned} \quad: \quad\) sigmal
```


Si mal 1: VIDI A, wavelength=254 nim

$\begin{array}{llll}\text { Totals : } & 3227.49307 & 142.68562\end{array}$
$===$

		Location : Via
Iniection Date	10/27/72010 8: $19: 34 \mathrm{pM}$	
	(Imodified after looding)	
ample Info	(modifed after	

Si gnal 1: vid 1 A, Wavelength=254 nim

Totals : 3779.19934
\qquad

${ }_{\text {Acta }}^{\text {Acq. }}$ Anerator	Instrument 1	Location: Vial 1
Iniection Date	8/24/2011 3: $23: 56 \mathrm{pm}$	
Acc. Method Last chanced		
	(modified after loading)	
${ }_{\text {den }}^{\text {Analvsis Method }}$ Lest changed		
Sambe Tnfo	(modified after load	

$\begin{aligned} & \text { Sorted By } \\ & \text { luitiplier: }\end{aligned} \quad: \quad$ Sigmal

Si gmal 1: VID1 A, wavelength=254 nim

$\begin{array}{lll}\text { Totals : } & 7554.71539 & 745.57401\end{array}$
$===$

Sorted Ev	${ }_{\text {Simal }}$		
$\underset{\text { Milution }}{\text { Multiplier }}$	${ }_{1}^{1.00000}$		
	$\begin{aligned} & \text { Width Area } \\ & \text { Imini mat } \end{aligned}$	$\underset{\substack{\text { Heiaht } \\ \text { rnat }}}{ }$	$\stackrel{\text { area }}{\text { a }}$
	$\begin{array}{lll}0.2937 \\ 0.2857 & 6354.169983\end{array}$	${ }_{35.40527}^{33.3329}$	49.2334 50.7665
$\begin{array}{ll}\text { Totals : } 1290.11896 & 68.73 \\ \text { Results obtained with enhanced intearator! }\end{array}$			

${ }_{\text {Acta }}^{\text {Acc. }}$ A Onerator Instrument	Instrument 1	Location: Vial 1
In iection Date	8/24/2011 4:39:18 pM	
Acq. Me ehod		
Last chanced		
${ }_{\text {Analvsis }}^{\text {Aethod }}$ Last changed		
	(modified after loading)	

$$
\begin{aligned}
& \begin{array}{l}
\text { Sorted By } \\
\text { Multiplier: }
\end{array}
\end{aligned}
$$

i gnal 1: vid 1 A, Wavelength=254 nim

Totals : 253.69093 8.57575
$==$

$\begin{aligned} & \text { Sorted Ey } \\ & \text { Multiplier: }\end{aligned} \quad: \quad \stackrel{\text { Sigmal }}{1.0000}^{1.000}$

Si gnal 1: VID1 A, wavelength=254 nin

$\begin{array}{llll}\text { Totals : } & 2864.86586 & 69.07127\end{array}$
$==$

Sample Name: DY-4-101N+ ocation: vial

Area Percent Report			
Sorted Ev	simal		
Dilution	1.0000		
Signal 1: VTD1 A , wavelength 254 nm			
Peak $\#$ \# RetTime Type 「minl			${ }^{\text {Area }}$
$\begin{array}{ll} \frac{1}{2} & 5.519 \\ 6.383 \\ \mathrm{WW} \end{array}$	0.15691453 .65698 0.17921471 .56946	142.75349 124.01060	49.6938 50.3062
Totals :	2925.22644	264.76410	
Results obtained with enhanced integrator!			

	Area Percent Report
Sorted Bv Multiplier Dilution	$\begin{gathered} \text { Si.mal } \\ 1 \\ 1.00000 \\ 1.0000 \end{gathered}$

Signal 1: vidi A , wavelength=254 nil

```
Ne,
<lul
```

Totals : $\quad 2924.10529 \quad 317.30965$

Results obtained with enhanced intecrator

sample Name: DY-4-101L+

Area Percent Report				
Sorted Ev		Simal		
$\underset{\substack{\text { Multiplier } \\ \text { Dilution }}}{\text { den }}$!	${ }_{1}^{1.00000}$		
Signal 1: YTD 14 , Wavelength 254 nim				
Peak RetTime Tyoe \# 「minl		$\text { mat }_{\text {ATS }}^{\text {Area }}$	Heicht	$\stackrel{\text { Area }}{\text { a }}$
$\begin{array}{cc} \frac{1}{2} \\ 11.205 \mathrm{VE} \\ 11 \end{array}$	0.2451 0.3357	${ }_{308}^{318.89032}$	${ }_{13.91515}^{19.3121}$	50.8424 49.1576
Totals : 627.21368 33.225				
Results obtained with enhanced intearato				

Results obtained with enhanced intearator! *** End of Report ***

Sorted Bv Multiplier Dilution	$\begin{aligned} & \text { simmal } \\ & \text { So } \\ & 1 \\ & 1.00000 \end{aligned}$

Signal 1: vidi A , wavelength=254 nim


```
*)
```

Totals :
$5432.82527 \quad 215.04120$

Results obtained with enhanced integrator!

Use Multiplier \& Dilution Factor with ISTDs
Si gnal 1: vid 1 A, Wavelength=254 nim

Totals
$925.55502 \quad 66.39658$
$===============+$
End of Report $\# \pi$

