- Electronic Supplementary Information (ESI) -

Asymmetric hydrogenation of α- or β-acyloxy α,β-unsaturated phosphonates catalyzed by Rh(I) complex of monodentate phosphoramidite

Jinzhu Zhang, Kaiwu Dong, Zheng Wang, Kuiling Ding*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (P. R. China) Fax: Int. code + (21)-6416-6128 E-mail: <u>kding@mail.sioc.ac.cn</u>

Table of Contents

1. General	l
2 Synthesis of α -acyloxy α , β -unsaturated phosphonic acid dimethyl esters 1a-v1	l
3 Preparation of β -substituted β -benzoloxy α , β -unsaturated phosphonic acid	d
diethyl esters 3a-c	5
4 Asymmetric hydrogenation procedures10)
5. Characterization of the chiral products 2a-v and 4a-c10)
6. References	1
7. HPLC spectra of chiral products25	5

1. General

All reactions and manipulations were performed using standard Schlenk techniques. Anhydrous THF, Et₂O and toluene were distilled from sodium benzophenone ketyl. Anhydrous CH₂Cl₂, ClCH₂CH₂Cl, and *i*PrOH were distilled from CaH₂ under an atmosphere of argon. Anhydrous MeOH were distilled from magnesium under argon atmosphere. Melting points were measured on a RY-I apparatus and uncorrected. ¹H, ¹³C, ³¹P and ¹⁹F NMR spectra were recorded on Varian Mercury 300 MHz or 400 MHz spectrometers. Chemical shifts (δ values) were reported in ppm downfield from internal TMS (¹H NMR) or CDCl₃ (¹³C NMR), external 85% H₃PO₄ (³¹P NMR) and external CF₃CO₂H (¹⁹F NMR), respectively. Optical rotations were determined using a Perkin Elmer 341 MC polarimeter. EI (70 eV) and ESI-MS mass spectra were obtained on Shimadzu GCMS-OP 2010, Agilent 5973N, Agilent LC/MSD SL, or Shimadzu LCMS-2010EV, respectively. HRMS (EI) and HRMS (ESI) were determined on Waters Micromass GCT Premier and APEX III 7.0 TESLA FTMS spectrometers. Elemental analyses were performed on an Elementar VARIO EL III instrument. The IR spectra were measured on a Bruker Tensor 27 spectrometer. Chiral HPLC analyses were performed on a JASCO 2089, JASCO 1580, Techcomp N2000 liquid chromatography, or the HPLC system consisted of a Waters 515 HPLC pump plus a Waters 2487 Dual λ absorbance detector. The chiral monodentate phosphoramidite ligands (R,R)-L1,^[1] (R)-L2 and MonoPhos,^[2] (S,S)-L3-L5^[3] were prepared by published procedures.

2 Synthesis of α-acyloxy α,β-unsaturated phosphonic acid dimethyl esters 1a-v

2.1 General procedure for the preparation of β -aryl α -benzoloxy α , β -unsaturated phosphonic acid dimethyl esters.

The β -aryl- α -enol ester phosphonates **1a-g** and **1n-o** were synthesized by following the procedure reported by Zheng et al,^[4] while **1h-m** were prepared by using a similar protocol.

(E)-2-(2-bromophenyl)-1-(dimethoxyphosphoryl)vinyl benzoate, 1h

White solid, 19% yield; m.p. 89-91°C; ¹H NMR (400 MHz, CDCl₃) δ 8.07-8.05 (m, 2H), 7.63-7.53 (m, 4H), 7.46 (t, J = 8.0 Hz, 2H), 7.16-7.12 (m, 2H), 3.88 (d, J = 11.6 Hz, 3H), 3.87 (d, J = 11.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.5 (d, J = 1.6 Hz),138.5 (d, J = 224.8 Hz), 133.9, 133.4 (d, J = 28.2 Hz), 133.0 (d, J = 0.8 Hz), 132.1 (d, J = 15.9 Hz), 130.5, 130.1, 129.6 (d, J = 1.9 Hz), 128.6, 128.3, 127.3, 124.2 (d, J = 0.8 Hz) 53.4 (d, J = 5.1 Hz) ppm; ³¹P NMR (161 MHz, CDCl₃) δ 11.6 ppm; FTIR v 3011, 2852, 1743, 1641, 1600, 1561, 1463, 1240, 1178, 1122, 1094, 1018, 826, 797, 751, 705, 664 cm⁻¹; ESI-MS(m/z): 411.1 [M+H⁺], 433.1 [M+Na⁺]; HRMS (ESI) m/z: calc. for [C₁₇H₁₆BrNaO₅P]⁺: 432.9811, Found: 432.9821 [M+Na⁺].

(E)-1-(dimethoxyphosphoryl)-2-(2-methoxyphenyl)vinyl benzoate, 1i

White solid, 54% yield; m.p. 73-74°C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.2 Hz, 2H), 7.70 (d, J = 12.0 Hz, 1H), 7.62-7.60 (m, 2H), 7.50-7.46 (m, 2H), 7.27-7.23 (m, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.79-6.75 (m, 1H), 3.85 (d, J = 11.2 Hz, 6H), 3.83 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.6 (d, J = 1.9 Hz), 157.3, 136.2 (d, J = 228.4 Hz), 133.7, 131.1, 130.1, 129.2 (d, J = 1.5 Hz), 129.1 (d, J = 28.7 Hz), 128.7, 128.5 (d, J = 2.3 Hz), 120.8 (d, J = 16.2 Hz), 120.4, 110.7 (d, J = 0.8 Hz), 55.4, 53.1 (d, J = 5.1 Hz) ppm; ³¹P NMR (161 MHz, CDCl₃) δ 13.0 ppm. FTIR v 3007, 2851, 1741, 1637,

1598, 1485, 1237, 1176, 1093, 1018, 827, 781, 752, 707 cm⁻¹.

(E)-1-(dimethoxyphosphoryl)-2-(3, 4-dimethoxyphenyl)vinyl benzoate, 1j^[5]

White solid, 61% yield; m.p. 113-114°C; ¹H NMR (300 MHz, CDCl₃) δ 8.19 (d, J = 7.8 Hz, 2H), 7.66 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 7.5 Hz, 2H), 7.26 (d, J = 12.0 Hz, 1H), 7.10 (d, J = 10.8 Hz, 2H), 6.79 (d, J = 8.4 Hz, 1H), 3.86 (d, J = 7.5 Hz, 6H), 3.83 (s, 3H), 3.46 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 163.4 (d, J = 1.6 Hz), 150.3, 148.6, 134.8 (d, J = 229.2 Hz), 134.6 (d, J = 27.8 Hz), 134.0, 130.1, 128.7, 128.6, 124.7 (d, J = 16.3 Hz), 124.1, 111.3, 110.8 (d, J = 1.0 Hz), 55.7, 55.1, 53.1 (d, J = 4.8 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 14.3 ppm. EI-MS(m/z): 392 [M⁺]; HRMS (EI) m/z: calc. for [C₁₉H₂₁O₇P]⁺: 392.1019, Found: 392.1030 [M⁺].

(E)-1-(dimethoxyphosphoryl)-2-(3,4-dichlorophenyl)vinyl benzoate, 1k

White solid, 58% yield; m.p. 100°C; ¹H NMR (300 MHz, CDCl₃) δ 8.11 (d, *J* = 7.5 Hz, 2H), 7.67-7.60 (m, 2H), 7.50 (t, *J* = 7.5 Hz, 2H), 7.33 (s, 2H), 7.20 (d, *J* = 11.4 Hz, 1H), 3.82 (d, *J* = 11.4 Hz, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 163.2, 138.7 (d, *J* = 225.3 Hz), 134.2, 133.7, 132.9 (d, *J* = 1.6 Hz), 132.3, 131.9 (d, *J* = 9.0 Hz), 131.7, 130.9 (d, *J* = 32.7 Hz), 130.2, 128.8, 128.3, 128.1, 53.3 (d, *J* = 4.9 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 12.7 ppm; FTIR v 2980, 2906, 1719, 1504, 1453, 1392, 1228, 1134, 1015, 962, 857, 814, 797, 770, 696, 644 cm⁻¹; EI-MS (m/z): 400 (M⁺, 2.5), 186 (10.1), 123 (5.8), 105 (100.0), 93 (6.2), 77 (27.8), 51 (5.3); HRMS(EI) calcd. for [C₁₇H₁₅O₅PCl₂]⁺ [M⁺]: 400.0029, Found: 400.0035.

(E)-1-(dimethoxyphosphoryl)-2-(3,4-diacetoxylphenyl)vinyl benzoate, 11

Yellow liquid, 32% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, *J* = 8.4 Hz, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.47 (t, *J* = 8.1 Hz, 2H), 7.42-7.26 (m, 2H), 7.21 (d, *J* = 11.4 Hz, 1H), 7.10 (d, *J* = 8.4 Hz, 1H), 3.82 (d, *J* = 11.4 Hz, 3H), 3.80 (d, *J* = 10.8 Hz, 3H), 2.20 (s, 3H), 2.14 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 167.6 (d, *J* = 3.0 Hz), 163.2, 142.8, 141.9, 138.0 (d, *J* = 225.9 Hz), 133.9, 133.7, 132.4, 130.5, 130.3, 130.1, 128.6, 128.1, 127.6, 124.0 (d, *J* = 65.5 Hz), 53.2 (d, *J* = 4.8 Hz), 20.4, 20.2 ppm; ³¹P NMR (121 MHz, CDCl₃) δ 13.2 ppm; FTIR: v 3011, 2852, 1742, 1600, 1508, 1451, 1316, 1236, 1177, 1102, 1017, 909, 869, 829, 779, 704, 686 cm⁻¹; EI-MS (m/z): 448 (M⁺, 5.8), 296 (5.4), 234 (30.3), 192 (80.6), 150 (44.0), 122 (7.4), 105 (100.0), 93 (6.0), 77 (25.2), 43 (17.9); HRMS(EI) calcd. for C₂₁H₂₁O₉P⁺[M⁺]: 448.0918, Found: 448.0921.

(E)- 1-(dimethoxyphosphoryl)-2-(benzo[d][1,3]dioxol-5-yl)vinyl benzoate, 1m

White solid, 47% yield; m.p. 80-81°C; ¹H NMR (300 MHz, CDCl₃) δ 8.15 (d, *J* = 7.2 Hz, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.21 (d, *J* = 12.0 Hz, 1H), 7.05-7.02 (m, 2H), 6.74 (d, *J* = 8.1 Hz, 1H), 5.91 (s, 2H), 3.83 (d, *J* = 11.1 Hz, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 163.5 (d, *J* = 1.6 Hz), 148.8, 147.9 (d, *J* = 1.1 Hz), 134.8 (d, *J* = 228.1 Hz), 134.4 (d, *J* = 27.8 Hz), 133.9, 130.2, 128.7, 128.5, 125.9 (d, *J* = 12.2 Hz), 125.3, 108.7 (d, *J* = 0.6 Hz), 108.4 (d, *J* = 0.8 Hz), 101.3, 53.1 (d, *J* = 4.8 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 14.2 ppm; FTIR v 2955, 2852, 1741, 1637, 1601, 1503, 1489, 1448, 1237, 1178, 1092, 1017, 925, 820, 754, 730, 706, 687 cm⁻¹; EI-MS (m/z): 376 (M⁺, 7.1), 162 (100.0), 134 (23.2), 105 (100.0), 93 (8.7), 77 (23.3), 51 (7.5); HRMS(EI) calcd. for C₁₈H₁₇O₇P⁺ [M⁺]: 376.0706, Found: 376.0722.

2.2 Preparation of β -H or alkyl α -enol ester phosphonates 1p and 1q.

The procedure for synthesis of $1p^{[4,6]}$ and $1q^{[4,6]}$ is similar to that described above except using the corresponding (commercially available) acid chlorides as the starting material.

2.3 General procedure for the preparation of β -alkoxy substituted α -benzoloxy α , β -unsaturated phosphonic acid dimethyl esters 1r-u.

The general procedure for the preparation of 1r-u is similar to that described above for synthesis of 1a-o except using the corresponding alkoxyacetic acids as the starting material, which were synthesized by following a reported procedure^[7]

(E)-2-(benzyloxy)-1-(dimethoxyphosphoryl)vinyl benzoate, 1u

Yellow oil, 21% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, *J* = 7.8 Hz, 2H), 7.53 (t, *J* = 6.9 Hz, 1H), 7.41 (t, *J* = 7.8 Hz, 2H), 7.32-7.25 (m, 5H), 7.15 (d, *J* = 3.9 Hz, 1H), 4.99 (s, 2H), 3.73 (d, *J* = 11.4 Hz, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.8, 151.9 (d, *J* = 43.2 Hz), 135.1, 133.2, 129.9, 128.5, 128.4, 128.3, 128.2, 127.1, 117.3 (d, *J* = 238.5 Hz), 75.8, 52.6 (d, *J* = 4.8 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 15.7 ppm; FTIR v 3011, 2853, 1743, 1644, 1601, 1508, 1239, 1178, 1161, 1093, 1018, 833, 785, 706, 687 cm⁻¹; EI-MS (m/z): 362 (M⁺, 0.6), 271 (10.1), 105 (100.0), 91 (35.0), 77 (16.5), 65 (3.3), 51 (3.9); HRMS(EI) calcd. for $[C_{18}H_{19}O_6P]^+[M^+]$: 362.0914, Found: 362.0905.

Synthesis of (*E*)-1-(dimethoxyphosphoryl)-2-phenylvinyl acetate, $1v^{[8]}$

Compound **1v** was prepared by following a literature procedure reported by Afarinkia et al.^[8]

Yellow oil, 84% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.49 (m, 2H), 7.38-7.36 (m, 3H), 7.19 (d, *J* = 11.7 Hz, 1H), 3.81 (d, *J* = 11.1 Hz, 6H), 2.27 (s, 3H) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 13.9 ppm. EI-MS (m/z): 270 (M⁺); HRMS(EI) calcd. for $[C_{12}H_{15}O_5P]^+[M^+]$: 270.0652, Found: 270.0653.

3 Preparation of β -substituted β -benzoloxy α , β -unsaturated

phosphonic acid diethyl esters 3a-c

3.1 Synthesis of β -phenyl- β -benzoloxy α , β -unsaturated phosphonic acid diethyl ester 3a.^[9]

2-Bromoacetophenone (2.0 g, 10.05 mmol) was added to triethyl phosphite (1.8 g, 10.83 mmol) at 90°C within 2 min and the mixture was stirred for a further 15 min at 90°C with a simultaneous release of ethyl bromide. The unreacted triethyl phosphite and resultant ethyl bromide were removed under vacuum. The resulting viscous, oily

mixture of phosphonate and enol phosphate was shaken in an aqueous solution of potassium hydroxide (2.0 g KOH in 150 mL H₂O) and extracted twice with a mixture of petroleum ether (30–60°C) and dichloromethane 19:1 (2×100 mL). The combined organic phase was dried over anhydrous MgSO₄. After evaporation of the solvents, 1-[(diethoxyphosphinyl)oxo]styrene was isolated as a colorless oil. The aqueous phase was acidified with concentrated hydrochloric acid to pH=4, followed by extraction with dichloromethane (2 \times 50 mL). The combined organic phase was dried over anhydrous MgSO₄. Removal of the solvent under vacuum afforded 2-(diethoxyphosphinyl) acetophenone as a colorless oil.

To a solution of 2-(diethoxyphosphinyl)acetophenone (4.60 g, 17.9 mmol) in THF (30 mL) was added NaH (1.11 g, 60 % w/w dispersion in mineral oil) in small portions. The mixture was stirred for 30 min, benzoyl chloride (3.2 mL, 27.8 mmol) was then added slowly. The resulting mixture was stirred for 16 h and then CH₂Cl₂ (50 mL) and HCl (3 mL, 1M solution) were added sequentially to the above obtained suspension. The aqueous phase was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic phase were dried over MgSO₄ and the solvent was evaporated under vacuum. The resultant residue was purified by column chromatography on silica gel (AcOEt/MeOH, 9:1) to give (*Z*)-2-(diethoxyphosphoryl)-1-phenylvinyl benzoate **3a** as a pale yellow oil in 75% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 7.6 Hz, 2H), 7.64 (m, 1H), 7.58-7.50 (m, 4H), 7.42-7.38 (m, 3H), 6.10 (d, *J* = 8.8 Hz, 1H), 4.13-4.06 (m, 4H), 1.27-1.23 (m, 6H) ppm; ³¹P NMR (161 MHz, CDCl₃) δ 13.9 ppm; FTIR v 3062, 3036, 2981, 2928, 1740, 1626, 1478, 1233, 1083, 1065, 1020, 833, 754, 705 cm⁻¹; EI-MS (m/z): 360 (M⁺, 2.9), 255 (2.6), 105 (100.0), 77 (28.0); HRMS(EI) calcd. for [C₁₉H₂₁O₅P]⁺, 360.1121 [M⁺]; Found: 360.1129.

3.2 Procedure for the preparation of β -methyl- β -benzoloxy α , β -unsaturated phosphonic acid diethyl ester 3b.

7

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

β-Methyl-β-benzoloxy $-\alpha$,β-unsaturated phosphonic acid diethyl ester **3b** was prepared by following a procedure analogous to that reported by Pizzano et al.^[9]

3b: Yellow liquid, 75% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.12 (dd, *J* = 8.1, 0.9 Hz, 2H), 7.63-7.58 (m, 1H), 7.50-7.45 (m, 2H), 5.45 (dt, *J* = 11.1, 0.9 Hz, 1H), 4.08-3.98 (m, 4H), 2.22 (s, 3H), 1.24-1.19 (m, 6H) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 14.4 ppm; FTIR v 3063, 2983, 2928, 1736, 1671, 1644, 1450, 1243, 1198, 1017, 785, 705 cm⁻¹; EI-MS (m/z): 298 (M⁺, 1.7), 105 (100.0), 77 (22.3); HRMS(EI) calcd. for [C₁₄H₁₉O₅P]⁺, 298.0965 [M⁺], Found: 298.0966.

3.3 Preparation of β -PhtNHmethyl- β -benzoloxy α , β -unsaturated phosphonic acid diethyl ester 3c.

Glycine (6.1 g, 80 mmol) and phthalic anhydride (16.7 g, 120 mmol) were added to a 25-mL round flask and heated to melt, and then cooled to room temperature. White needles of 2-(1,3-dioxoisoindolin-2-yl)acetic acid was obtained by recrystallization from 95% EtOH.

2-(1,3-dioxoisoindolin-2-yl)acetic acid (4.1 g, 20 mmol) was dissolved in anhydrous CH₂Cl₂ (15 mL), oxalyl chloride (100 mmol) and catalytic amount DMF were added to the above solution. The mixture was heated to reflux for 2 hours, the

solvent and excessive oxalyl chloride were removed under vacuum and the solids were washed with CH_2Cl_2 (2 × 10 mL). A light yellow powder was obtained which can be used without further purification.

Under argon, ethyl 2-(diethoxyphosphoryl)acetate (3.58 g, 16 mmol), magnesium chloride (1.71 g, 18 mmol), anhydrous CH_2Cl_2 (30 mL), freshly distilled Et_3N (5.6 mL) were added to a 100-mL round flask and the mixture was cooled to 0°C. The above prepared acid chloride in CH_2Cl_2 (10 mL) was added dropwise to the mixture. Once the substrate was consumed up as the TLC indicates, 1-M HCl (30 mL) was added to the solution. The mixture was extracted with CH_2Cl_2 (3 × 20 mL) and the combined organic phase was dried over anhydrous Na₂SO₄. After removal of the solvent in vacuo, the residue was obtained as viscous oil, which was used without further purification.

Water (3 mL) was added to the above residue, and heated to 130°C for 2 hours. The mixture was cooled down to room temperature and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phase was dried over anhydrous Na₂SO₄. After removal of the solvent in vacuo, the resultant residue was treated with cesium carbonate (35 mmol) and acetonitrile (30 mL), stirred at room temperature for 3 hours, and then benzoyl chloride (20 mmol) in acetonitrile (10 mL) was added dropwise at 0°C. Once the substrates were comsumed up, CH₂Cl₂ (20 mL) was added, and the reaction mixture was washed with 2-M HCl (3 \times 10 mL), water (2 \times 5 mL). The organic phase was dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the resulting residue was purified by column chromatography on silica with EA/PE as the eluent to afford **3c** as a vellow solid in 58% vield, M.p. 134-135°C, ¹H NMR (300 MHz, CDCl₃) δ 8.08 (dd, J = 6.3, 0.9 Hz, 2H), 7.86-7.83 (m, 2H), 7.77-7.74 (m, 2H), 7.62-7.57 (m, 1H), 7.45 (t, J = 6.0 Hz, 2H), 5.69 (dd, J = 6.9, 0.3 Hz, 1H), 4.65 (s, 2H), 4.06-3.98 (m, 4H), 1.20 (t, J = 5.4 Hz, 6H) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 11.8 ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3) \delta 166.9, 163.8 \text{ (d}, J = 1.7 \text{ Hz}), 158.5 \text{ (d}, J = 3.3 \text{ Hz}), 134.1, 133.6,$ 131.6, 130.1, 128.4, 123.4, 107.2 (d, J = 139.4 Hz), 61.8 (d, J = 3.9 Hz), 40.2 (d, J =11.7 Hz), 15.9 (d, J = 5.0 Hz) ppm; FTIR v 3062, 2981, 1774, 1716, 1663, 1468, 1452, 1418, 1315, 1256, 1110, 1080, 1020, 953, 797, 732, 707 cm⁻¹; ESI-MS (m/z): 444.3 $(M+H^{+})$, 466.3 $(M+Na^{+})$; HRMS(EI) calcd. for $[C_{22}H_{22}NNaO_7P]^{+}$, 466.1026 $[M+Na^{+}]$,

9

Found: 466.1034.

4 Asymmetric hydrogenation procedures

See the text for general procedures for hydrogenation of substrates 1a-v and 3a-c.

5. Characterization of the chiral products 2a-v and 4a-c

(S)-1-(dimethoxyphosphoryl)-2-phenylethyl benzoate, (S)-2a^[10]

Oil, >99% conv. >99% ee, $[\alpha]_D^{20} = +110.6 (c = 1.00, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, J = 8.1 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.26-7.14 (m, 5H), 5.80-5.73 (m, 1H), 3.78 (d, J = 10.8 Hz, 3H), 3.76 (d, J = 10.2 Hz, 3H), 3,39-3.17 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.9 (d, J = 4.5 Hz), 136.0 (d, J = 13.7 Hz), 133.3, 129.7, 129.1, 129.0, 128.4, 128.3, 126.8, 68.4 (d, J = 164.8 Hz), 53.4 (d, J = 6.9 Hz), 53.2 (d, J = 6.3 Hz), 35.6 ppm; ³¹P NMR (121 MHz, CDCl₃) δ 23.5 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel OD column, hexane: isopropanol = 97:3; flow rate = 1.0 mL/min; UV detection at 230 nm; t_R = 37.7 min (major), 57.0 min (minor).

(+)-1-(dimethoxyphosphoryl)-2-(4-fluorophenyl)ethyl benzoate, 2b^[10]

Oil, >99% conv. >99% ee, $[\alpha]_D{}^{20} = +112.9 (c = 0.52, CH_2Cl_2); {}^{1}H NMR (300 MHz, CDCl_3) \delta 7.99 (d, <math>J = 7.8 Hz, 2H$), 7.57(t, J = 7.2 Hz, 1H), 7.43 (t, J = 8.1 Hz, 2H), 7.24-7.19 (m, 2H), 6.91 (t, J = 8.4 Hz, 2H), 5.76-5.68 (m, 1H), 3.79 (d, J = 10.5 Hz, 3H), 3.77 (d, J = 10.5 Hz, 3H), 3.36-3.14 (m, 2H) ppm; ${}^{13}C NMR (100 MHz, CDCl_3) \delta$

164.9 (d, J = 5.2 Hz), 161.7 (d, J = 243.9 Hz), 133.4, 130.7 (d, J = 7.2 Hz), 129.7, 128.9, 128.4, 115.3 (d, J = 20.8 Hz), 68.5 (d, J = 164.3 Hz), 53.4 (d, J = 8.8 Hz), 53.3 (d, J = 8.8 Hz), 34.9 ppm; ³¹P NMR (121 MHz, CDCl₃) δ 23.3 ppm, ¹⁹F NMR (282 MHz, CDCl₃) δ -116.2 (h) ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 14.9 min (minor), 18.4 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(4-chlorophenyl)ethyl benzoate, 2c^[10]

Pale oil, >99% conv. 99% ee, $[\alpha]_D{}^{20} = +118.7 (c = 0.91, CH_2Cl_2); {}^{1}H NMR (300 MHz, CDCl_3) \delta 7.99 (d,$ *J*= 7.8 Hz, 2H), 7.58 (t,*J*= 7.2 Hz, 1H), 7.44 (t,*J*= 7.2 Hz, 2H), 7.19 (s, 4H), 5.76-5.68 (m, 1H), 3.78 (d,*J* $= 10.5 Hz, 6H), 3,33-3.18 (m, 2H) ppm; {}^{13}C NMR (75 MHz, CDCl_3) \delta 164.9 (d,$ *J*= 4.5 Hz), 134.5 (d,*J*= 13.6 Hz), 133.5, 132.7, 130.5, 129.7, 128.8, 128.6, 128.5, 68.1 (d,*J*= 164.8 Hz), 53.4 (d,*J*= 7.4 Hz), 53.2 (d,*J* $= 7.4 Hz), 35.0 ppm; {}^{31}P NMR (121 MHz, CDCl_3) \delta 23.2 ppm.$

The enantiomeric excess was determined by HPLC on a Chiralcel AD column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 27.1 min (minor), 35.1 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(4-bromophenyl)ethyl benzoate, 2d^[10]

Pale yellow oil, >99% conv. 98% ee, $[\alpha]_D^{20} = +128.5 (c = 1.30, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, J = 7.5 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 5.76-5.68 (m, 1H), 3.79 (d, J = 1.2 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 5.76-5.68 (m, 1H), 3.79 (d, J = 1.2 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 5.76-5.68 (m, 1H), 3.79 (d, J = 1.2 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 5.76-5.68 (m, 1H), 3.79 (d, J = 1.2 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 5.76-5.68 (m, 1H), 3.79 (d, J = 1.2 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 5.76-5.68 (m, 1H), 3.79 (d, J = 1.2 Hz, 2H), 7.14 (d, J = 1.2 Hz, 2H), 5.76-5.68 (m, 1H), 3.79 (d, J = 1.2 Hz, 2H), 5.76-5.68 (m, 1H), 5.76

10.5 Hz, 3H), 3.78 (d, J = 10.5 Hz, 3H), 3.34-3.13 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.9, 135.1 (d, J = 13.9 Hz), 133.4, 131.5, 130.8, 129.7, 128.8, 128.4, 120.8, 68.1 (d, J = 165.6 Hz), 53.5 (d, J = 6.6 Hz), 53.2 (d, J = 6.0 Hz), 35.1 (d, J = 1.8 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 23.2 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 16.1 min (minor), 20.7 min (major).

(S)-1-(dimethoxyphosphoryl)-2-(4-methoxyphenyl)ethyl benzoate, (S)-2e^[10]

Pale oil, >99% conv. 98% ee, $[\alpha]_D{}^{20} = +117.7 (c = 1.36, CH_2Cl_2); {}^{1}H NMR (300 MHz, CDCl_3) \delta 8.01 (d,$ *J*= 7.8 Hz, 2H), 7.56 (t,*J*= 7.5 Hz, 1H), 7.43 (t,*J*= 7.8 Hz, 2H), 7.16 (d,*J*= 8.4 Hz, 2H), 6.75 (d,*J*= 8.4 Hz, 2H), 5.75-5.68 (m, 1H), 3.78 (d,*J*= 10.5 Hz, 3H), 3.77 (d,*J* $= 10.8 Hz, 3H), 3.68 (s, 3H), 3.34-3.11 (m, 2H) ppm; {}^{13}C NMR (75 MHz, CDCl_3) \delta 164.9 (d,$ *J*= 4.5 Hz), 158.3, 133.2, 130.1, 129.6, 128.9, 128.3, 127.9 (d,*J*= 13.7 Hz), 113.7, 68.5 (d,*J*= 164.2 Hz), 55.0, 53.4 (d,*J*= 6.8 Hz), 53.1 (d,*J* $= 6.8 Hz), 34.7 ppm; {}^{31}P NMR (161 MHz, CDCl_3) \delta 23.6 ppm.$

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 33.4 min (minor), 39.0 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(4-nitrophenyl)ethyl benzoate, 2f^[10]

Oil, >99% conv. 98% ee, $[\alpha]_D^{20} = +126.0 (c = 1.05, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 2H), 7.98 (d, J = 7.8 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H),

7.47-7.42 (m, 4H), 5.81-5.74 (m, 1H), 3.81 (d, J = 10.5 Hz, 3H), 3.81 (d, J = 10.5 Hz, 3H), 3.79 (d, J = 11.1 Hz, 3H), 3.49-3.28 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.9 (d, J = 4.5 Hz), 147.0, 143.8 (d, J = 13.7 Hz), 133.7, 130.1, 129.7, 128.6, 128.5, 123.6, 67.6 (d, J = 167.1 Hz), 53.6 (d, J = 7.4 Hz), 53.4 (d, J = 7.4 Hz), 35.5 ppm; ³¹P NMR (121 MHz, CDCl₃) δ 22.6 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel AD column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 30.7 min (minor), 45.2 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(2-chlorophenyl)ethyl benzoate, 2g^[10]

Yellow oil, >99% conv. 97% ee, $[\alpha]_D^{20} = +128.4$ (c = 1.05, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.41 (t, J = 7.8 Hz, 2H), 7.33-7.24 (m, 2H), 7.14-7.04 (m, 2H), 5.93-5.86 (m, 1H), 3.82 (d, J = 10.8 Hz, 6H), 3.56-3.49 (m, 1H), 3.40-3.28 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.8, 134.2, 133.5, 133.3, 131.4, 129.7, 129.5, 128.8, 128.5, 128.3, 126.6, 66.9 (d, J = 166.2 Hz), 53.6 (d, J = 6.6 Hz), 53.3 (d, J = 6.6 Hz), 33.5 (d, J = 3.0 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 23.2 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 14.9 min (minor), 16.6 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(2-bromophenyl)ethyl benzoate, 2h

Oil, >99% conv. 98% ee, $[\alpha]_D^{20} = +128.7 (c = 0.92, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, J = 7.5 Hz, 2H), 7.58-7.49 (m, 2H), 7.41 (t, J = 7.8 Hz, 2H), 7.28-7.23 (m, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.05-6.99 (m, 1H), 5.95-5.88 (m, 1H), 3.83 (d, J = 10.8 Hz, 6H), 3.57-3.49 (m, 1H), 3.42-3.30 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.8 (d, J = 4.4 Hz), 135.3 (d, J = 14.9 Hz), 133.3, 132.9, 131.5, 129.7, 128.8, 128.7, 128.4, 127.2, 124.6, 66.9 (d, J = 165.8 Hz), 53.6 (d, J = 6.7 Hz), 53.3 (d, J = 6.7 Hz), 36.0 (d, J = 2.3 Hz) ppm; ³¹P NMR (161 MHz, CDCl₃) δ 23.1 ppm; FTIR υ 3062, 3030, 2925, 1743, 1494, 1240, 1019, 800, 706 cm⁻¹; ESI-MS m/z: 414.9 [M+H⁺]; HRMS (ESI) m/z: calc. for $[C_{17}H_{19}O_5PBr]^+$ [M+H⁺]: 413.0148, Found: 413.0139.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 17.1 min (minor), 18.8 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(2-methoxyphenyl)ethyl benzoate, 2i^[10]

Pale yellow oil, >99% conv. >99% ee, $[\alpha]_D^{20} = +140.1$ (c = 1.36, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.2 Hz, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.16-7.12 (m, 2H), 6.80-6.73 (m, 2H), 5.94-5.87 (m, 1H), 3.81 (s, 3H), 3.80 (d, J = 10.2 Hz, 3H), 3.78 (d, J = 11.4 Hz, 3H), 3.49-3.41 (m, 1H), 3.20-3.08 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.9, 157.4, 133.0, 131.0, 129.5, 129.1, 128.2 (d, J = 3.0 Hz), 124.1, 123.9, 120.0, 110.0, 67.0 (d, J = 164.4 Hz), 55.1, 53.3 (d, J = 6.6 Hz), 53.1 (d, J = 6.6 Hz), 30.7 (d, J = 1.8 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 24.1 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 18.7 min (major), 21.1 min (minor).

(+)-1-(dimethoxyphosphoryl)-2-(3,4-dimethoxyphenyl)ethyl benzoate, 2j^[5]

Pale oil, >99% conv. >99% ee, $[\alpha]_D^{20} = +130.3$ (c = 1.03, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, J = 7.8 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 7.8 Hz, 2H), 6.78-6.68 (m, 3H), 5.74-5.67 (m, 1H), 3.77 (d, J = 9.9 Hz, 3H), 3.76 (d, J = 10.8 Hz, 3H), 3.76 (s, 3H), 3.65 (s, 3H), 3.29-3.09 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.7, 148.4, 147.6, 133.3, 129.6, 128.9, 128.5, 128.3 (d, J = 4.2 Hz), 121.0 (d, J = 7.8 Hz), 112.0, 110.9, 68.6 (d, J = 163.8 Hz), 55.6, 55.4, 53.3 (d, J = 6.6 Hz), 53.1 (d, J = 6.6 Hz), 35.1 (d, J = 1.8 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 23.6 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 90: 10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 19.7 min (minor), 26.4 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(3,4-dichlorophenyl)ethyl benzoate, 2k

Pale yellow oil, >99% conv. >99% ee, $[\alpha]_D^{20} = +113.0 (c = 1.28, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, J = 7.5 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.36-7.31 (m, 2H), 7.11-7.08 (m, 1H), 5.74-5.67 (m, 1H), 3.80 (d, J = 10.5 Hz, 6H), 3.33-3.13 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 136.0 (d, J = 13.4 Hz), 133.4, 129.8, 129.7, 129.1, 129.0, 128.5, 128.4, 128.2, 126.9, 68.7 (d, J = 165.1 Hz), 53.5 (d, J = 7.4 Hz), 53.2 (d, J = 6.0 Hz), 35.7 ppm; ³¹P NMR (161 MHz, CDCl₃) δ 23.6 ppm; FTIR υ 3030, 2956, 2853, 1724, 1452, 1256, 1022, 799, 709 cm⁻¹; ESI (MS) m/z: 403.0 [M+H⁺], 425.1 [M+Na⁺]; HRMS (ESI) m/z: calc. for [C₁₇H₁₈Cl₂O₅P]⁺: 403.0263, Found: 403.0266 [M+H⁺].

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 14.4 min (minor), 15.9 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(3,4-diacetoxylphenyl)ethyl benzoate, 2l

Yellow oil, >99% conv. 98% ee, $[\alpha]_D^{20} = +65.2 (c = 1.07, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 7.5 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.2 Hz, 2H), 7.24-7.06 (m, 3H), 5.75-5.73 (m, 1H), 3.74 (d, J = 10.5 Hz, 6H), 3.33-3.18 (m, 2H), 2.23 (s, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 168.1, 167.9, 164.9, 141.7, 140.9, 134.7 (d, J = 11.4 Hz), 133.4, 129.7, 128.8, 128.4, 127.3, 124.2, 123.2, 68.1 (d, J = 165.6 Hz), 53.4 (d, J = 7.2 Hz), 53.2 (d, J = 7.2 Hz), 35.0, 20.5, 20.4 ppm; ³¹P NMR (121 MHz, CDCl₃) δ 23.0 ppm. FTIR υ 2957, 2927, 1769, 1724, 1505, 1370, 1256, 1109, 1023, 899, 710 cm⁻¹; HRMS (EI) m/z: calc. for $[C_{21}H_{23}O_9P]^+$: 450.1074, Found: 450.1068 [M⁺].

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 90: 10; flow rate = 1.0 mL/min; UV detection at 230 nm; t_R = 43.0 min (minor), 53.3 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(benzo[d][1,3]dioxol-5-yl)ethyl benzoate, 2m

Yellow oil, >99% conv. 98% ee, $[\alpha]_D^{20} = +121.9 (c = 0.99, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 6.9 Hz, 2H), 7.59-7.54 (m, 1H), 7.46-7.41 (m, 2H), 6.74-6.63 (m, 3H), 5.86 (d, J = 3.9 Hz, 1H), 5.85 (d, J = 3.9 Hz, 1H), 5.73-5.66 (m,

1H), 3.79 (d, J = 10.8 Hz, 3H), 3.78 (d, J = 10.5 Hz, 3H), 3.30-3.08 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.9 (d, J = 4.2 Hz), 147.5, 146.3, 133.3, 129.7, 129.5 (d, J = 9.7 Hz), 128.9, 122.2, 109.3, 108.1, 100.7, 68.0 (d, J = 163.8 Hz), 53.4 (d, J = 6.6 Hz), 53.2 (d, J = 6.6 Hz), 35.3 (d, J = 1.8 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 27.9 ppm; FTIR υ 2956, 2853, 1743, 1644, 1508, 1239, 1093, 1018, 833, 706 cm⁻¹; EI-MS (m/z): 378 (M⁺, 6.9), 256 (100), 161 (16.9), 146 (20.6), 135 (30.8), 105 (51.2), 77 (50.1), 51 (12.2); HRMS(EI) calcd. for C₁₈H₁₉O₇P⁺ [M⁺]: 378.0863, Found: 378.0871.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 90: 10; flow rate = 1.0 mL/min; UV detection at 230 nm; t_R = 23.6 min (minor), 28.1 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(naphthalen-1-yl)ethyl benzoate, 2n^[10]

White solid, >99% conv. 98% ee, m.p. 112-113°C; $[\alpha]_D^{20} = +177.6 (c = 1.13, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, J = 8.1 Hz, 1H), 7.93 (d, J = 7.5 Hz, 2H), 7.81 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.57-7.31 (m, 6H), 7.29-7.25 (m, 1H), 5.93-5.85 (m, 1H), 3.91-3.58 (m, 8H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.9 (d, J = 5.1 Hz), 133.7, 133.2, 131.8, 131.7, 129.6, 128.8, 128.7, 128.3, 127.8, 127.6, 126.3, 125.6, 125.1, 123.3, 67.9 (d, J = 165.1 Hz), 53.5 (d, J = 6.6 Hz), 53.2 (d, J = 6.6Hz), 32.7 (d, J = 1.2 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 23.7 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel OD-H column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 56.3 min (minor), 65.2 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(thiophen-2-yl)ethyl benzoate, 20^[10]

White solid, >99% conv. 90% ee, m.p. 82-83°C; $[\alpha]_D^{20} = +86.8 (c = 1.40, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, J = 7.8 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.2 Hz, 2H), 7.09 (d, J = 4.8 Hz, 1H), 6.89-6.84 (m, 2H), 5.76-5.69 (m, 1H), 3.80 (d, J = 10.5 Hz, 3H), 3.78 (d, J = 10.8 Hz, 3H), 3.60-3.42 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.0, 137.8 (d, J = 15.7 Hz), 133.4, 129.8, 128.9, 128.4, 126.7, 126.4, 124.7, 68.2 (d, J = 163.8 Hz), 53.4 (d, J = 7.2 Hz), 53.2 (d, J = 7.2 Hz), 29.9 (d, J = 2.4 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 22.8 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 90: 10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 15.9 min (minor), 17.8 min (major).

(S)-1-(dimethoxyphosphoryl)ethyl benzoate, (S)-2p^[10]

Oil, >99% conv. >99% ee, $[\alpha]_D^{20} = -15.9 (c = 0.98, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, J = 8.1 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 5.59-5.54 (m, 1H), 3.84 (d, J = 10.5 Hz, 3H), 3.82 (d, J = 10.5 Hz, 3H), 1.61 (dd, J = 7.2, 16.8 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.2 (d, J = 7.3 Hz), 133.3, 129.7, 129.2, 128.4, 64.5 (d, J = 169.9 Hz), 53.4 (d, J = 6.8 Hz), 53.2 (d, J = 6.8 Hz), 15.1 ppm; ³¹P NMR (121 MHz, CDCl₃) δ 24.9 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 96: 4; flow rate = 0.8 mL/min; UV detection at 254 nm; t_R = 28.6 min (major), 31.2 min (minor).

(S)-1-(dimethoxyphosphoryl)propyl benzoate, (S)-2q^[10]

Oil, >99% conv. >99% ee, $[\alpha]_D^{20} = +15.9 (c = 1.25, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 7.98-7.95 (m, 2H), 7.49-7.44 (m, 1H), 7.36-7.31 (m, 2H), 5.40-5.33 (m, 1H), 3.70-3.62 (m, 6H), 1.93-1.87 (m, 2H), 0.91 (t, *J* = 7.5 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.2 (d, *J* = 4.8 Hz), 133.1, 129.5, 128.9, 128.2, 68.8 (d, *J* = 165.6 Hz), 53.1 (d, *J* = 7.2 Hz), 52.8 (d, *J* = 6.6 Hz), 22.6, 9.9 (d, *J* = 12.7 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 24.2 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel OD-H column, hexane: isopropanol = 98: 2; flow rate = 0.9 mL/min; UV detection at 254 nm; t_R = 33.4 min (minor), 35.9 min (major).

(S)-1-(dimethoxyphosphoryl)-2-methoxyethyl benzoate, (S)-2r^[10]

Oil, >99% conv. >99% ee, $[\alpha]_D^{20} = +7.3$ (c = 1.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.10-8.06 (m, 2H), 7.61-7.57 (m, 1H), 7.48-7.44 (m, 2H), 5.80-5.74 (m, 1H), 3.96-3.80 (m, 8H), 3.39 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.1 (d, J = 5.5 Hz), 133.3, 129.8, 129.3 (d, J = 67.2 Hz), 128.3, 70.2 (d, J = 5.5 Hz), 67.3 (d, J = 164.0 Hz), 58.8, 53.4 (d, J = 6.7 Hz), 53.1 (d, J = 6.7 Hz) ppm; ³¹P NMR (161 MHz, CDCl₃) δ 20.8 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel OD column, hexane: isopropanol = 98: 2; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 41.6 min (minor), 47.5 min (major).

(+)-1-(dimethoxyphosphoryl)-2-ethoxyethyl benzoate, 2s^[10]

EtO P(O)(OMe)₂ OBz

Pale oil, >99% conv. >99% ee, $[\alpha]_D^{20} = +13.0 (c = 1.26, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, J = 7.8 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 5.80-5.73 (m, 1H), 3.98-3.86 (m, 2H), 3.82 (d, J = 10.8 Hz, 3H), 3.81 (d, J = 10.8 Hz, 3H), 3.63-3.49 (m, 2H), 1.17 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.2 (d, J = 5.1 Hz), 133.3, 129.8, 129.4 (d, J = 47.2 Hz), 128.4, 68.2 (d, J = 5.1 Hz), 67.5 (d, J = 163.6 Hz), 66.7, 53.5 (d, J = 6.8 Hz), 53.1 (d, J = 6.8 Hz), 14.9 ppm; ³¹P NMR (121 MHz, CDCl₃) δ 22.1 ppm.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 18.1 min (minor), 20.4 min (major).

(+)-1-(dimethoxyphosphoryl)-2-isopropoxyethyl benzoate, 2t

Pale oil, >99% conv. >99% ee, $[\alpha]_D^{20} = +15.2$ (c = 1.06, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.09-8.06 (m, 2H), 7.60-7.56 (m, 1H), 7.46 (t, J = 8.0 Hz, 2H), 5.75-5.69 (m, 1H), 3.94-3.89 (m, 2H), 3.85-3.75 (m, 6H), 3.66-3.63 (m, 1H), 1.14 (d, J = 6.4 Hz, 3H), 1.12 (d, J = 6.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.1 (d, J = 5.1 Hz), 133.2, 129.7, 129.4 (d, J = 47.4 Hz), 128.3, 72.1, 67.8 (d, J = 163.2 Hz), 65.8 (d, J = 5.5 Hz), 53.4 (d, J = 6.4 Hz), 53.0 (d, J = 6.4 Hz), 21.8, 21.6 ppm; ³¹P NMR (161 MHz, CDCl₃) δ 21.1 ppm; HRMS (EI) m/z: calc. for $[C_{14}H_{21}O_6P]^+$: 316.1070, Found: 316.1078.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 96:4; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R = 21.1 min (minor), 22.3 min (major).

(+)-1-(dimethoxyphosphoryl)-2-(benzyloxy)ethyl benzoate, 2u

Oil, >99% conv. 98% ee, $[\alpha]_D^{20} = +19.8$ (c = 1.10, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, J = 7.8 Hz, 2H), 7.60 (t, J = 7.8 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.34-7.22 (m, 5H), 5.85-5.78 (m, 1H), 4.65-4.52 (m, 2H), 4.01-3.92 (m, 2H), 3.79 (d, J = 10.2 Hz, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.2, 137.4, 133.4, 129.9, 129.1, 128.4, 128.3, 127.7, 127.6, 73.1, 67.9 (d, J = 5.7 Hz), 67.5 (d, J = 163.6 Hz), 53.6 (d, J = 6.8 Hz), 53.2 (d, J = 6.8 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 21.9 ppm; FTIR υ 2956, 2856, 1726, 1493, 1251, 1107, 1026, 831, 711 cm⁻¹; GCMS (EI) (m/z): 365 (M+H⁺, 0.4), 258 (3.5), 242 (2.6), 214 (2.0), 153 (30.0), 137 (100.0), 105 (84.5), 91 (58.7), 77 (38.3), 57 (13.1); HRMS(EI) calcd. for C₁₈H₂₁O₆P⁺[M⁺]: 364.1070, Found: 364.1073.

The enantiomeric excess was determined by HPLC on a Chiralcel OJ column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 230 nm; t_R = 16.3 min (major), 27.8 min (minor).

(+)-1-(dimethoxyphosphoryl)-2-phenylethyl acetate, 2v

Pale oil, >99% conv. 96% ee, $[\alpha]_D^{20} = +40.0 (c = 1.06, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 7.28-7.08 (m, 5H), 5.54-5.46 (m, 1H), 3.78 (d, J = 9.9 Hz, 3H), 3.75 (d, J = 10.2 Hz, 3H), 3.25-3.14 (m, 1H), 3.10-2.93 (m, 1H), 1.96 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 169.1 (d, J = 5.1 Hz), 135.9 (d, J = 13.6 Hz), 128.9, 128.2 (d, J = 5.5 Hz), 126.7, 67.6 (d, J = 165.3 Hz), 53.1 (d, J = 5.1 Hz), 53.0 (d, J = 3.9 Hz), 35.2, 20.2 ppm; ³¹P NMR (121 MHz, CDCl₃) δ 23.7 ppm. FTIR υ 3030, 2960, 2854, 1749, 1496, 1259, 1017, 874, 796 cm⁻¹; GCMS (EI) (m/z): 272 (M⁺); HRMS(EI) calcd. for

 $C_{18}H_{21}O_6P^+[M^+]$: 272.0808, Found: 272.0816.

The enantiomeric excess was determined by HPLC on a Chiralcel AD-H column, hexane: isopropanol = 95: 5; flow rate = 0.75 mL/min; UV detection at 217 nm; t_R = 19.5 min (major), 21.0 min (minor).

(+)-1-phenyl-2-(diethoxyphosphoryl)ethyl benzoate, 4a

Pale oil, >99% conv. 95% ee, $[\alpha]_D^{20} = +12.5 (c = 1.13, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, J = 7.5 Hz, 2H), 7.57-7.53 (m, 1H), 7.48-7.27 (m, 7H), 6.35-6.28 (m, 1H), 4.07-3.94 (m, 4H), 2.76-2.63 (m, 1H), 2.49-2.35 (m, 1H), 1.25-1.16 (m, 6H) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 26.5 ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.1, 139.8 (d, J = 10.7 Hz), 133.0, 129.9, 129.6, 128.5, 128.3, 128.2, 126.4, 71.5 (d, J = 2.2 Hz), 61.8 (d, J = 6.7 Hz), 61.6 (d, J = 6.2 Hz), 33.5 (d, J = 139.9 Hz), 16.2 (d, J = 6.1 Hz) ppm; FTIR v 2961, 2926, 1716, 1452, 1259, 1097, 1017, 796, 711 cm⁻¹; EI-MS (m/z): 362 (M⁺, 4.4), 257 (100.0), 201 (24.9), 105 (60.5), 77 (30.1); HRMS(EI) calcd. for C₁₉H₂₃O₅P⁺ [M⁺]: 362.1278, Found: 362.1279.

The enantiomeric excess was determined by HPLC on a Chiralcel OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 214 nm; t_R = 10.2 min (minor), 14.3 min (major).

(+)-1-(diethoxyphosphoryl)isopropyl benzoate, 4b

Pale oil, >99% conv. 96% ee, $[\alpha]_D^{20} = -3.9 (c = 1.20, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 8.06-8.04 (m, 2H), 7.57-7.53 (m, 1H), 7.45-7.41 (m, 2H), 5.46-5.42 (m, 1H), 4.14-4.06 (m, 4H), 2.41-2.31 (m, 1H), 2.19-2.09 (m, 1H), 1.51 (dd, *J* = 6.4, 0.8 Hz, 3H)

1.32-1.24 (m, 6H) ppm; ³¹P NMR (161 MHz, CDCl₃) δ 27.6 ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 132.8, 130.2, 129.5, 128.2, 66.8, 61.73 (d, *J* = 6.4 Hz), 61.72 (d, *J* = 7.5 Hz), 32.7 (d, *J* = 139.3 Hz), 21.1 (d, *J* = 8.1 Hz), 16.3 (d, *J* = 5.1 Hz), 16.2 (d, *J* = 5.1 Hz) ppm; EI-MS (m/z): 300 (M⁺, 3.0), 195 (100.0), 179 (36.2), 105 (87.3), 77 (28.8); HRMS(EI) calcd. for C₁₄H₂₁O₅P⁺[M⁺]: 300.1121, Found: 300.1129.

The enantiomeric excess was determined by HPLC on a Chiralcel OD-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 214 nm; t_R = 11.1 min (major), 12.2 min (minor).

(+)-1-(diethoxyphosphoryl)-3-(1,3-dioxoisoindolin-2-yl)propan-2-yl benzoate, 4c

Pale oil, 86% conv. 93% ee, $[\alpha]_D^{20} = +29.0$ (c = 1.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 9.6 Hz, 2H), 7.85-7.79 (m, 2H), 7.74-7.68 (m, 2H), 7.53 (t, J = 10.0 Hz, 1H), 7.40 (t, J = 10.0 Hz, 2H), 5.68-5.60 (m, 1H), 4.20-4.05 (m, 6H), 2.46-2.24 (m, 2H), 1.34-1.21 (m, 6H) ppm; ³¹P NMR (161 MHz, CDCl₃) δ 25.3 ppm; ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 165.6, 134.0, 133.0, 131.7, 129.6, 129.5, 128.2, 123.3, 67.8 (d, J = 2.3 Hz), 62.11 (d, J = 6.6 Hz), 62.04 (d, J = 7.4 Hz), 41.2 (d, J = 9.7 Hz), 29.3 (d, J = 140.9 Hz), 16.2 (d, J = 5.8 Hz), 16.1 (d, J = 6.2 Hz) ppm; FTIR υ 3063, 2962, 1774, 1714, 1468, 1452, 1425, 1393, 1317, 1176, 1098, 1045, 958, 887, 797, 709 cm⁻¹; ESI-MS (m/z): 446.2 (M+H⁺), 468.1 (M+Na⁺); HRMS(ESI) calcd. for [C₂₂H₂₅NO₇P]⁺[M+H⁺]: 446.1363, Found: 446.1364.

The enantiomeric excess was determined by HPLC on a Chiralcel OD-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 214 nm; t_R = 72.8 min (major), 85.1 min (minor).

6. References

- [1] A. Bayer, P. Murszat, U. Thewalt, B. Rieger, Eur. J. Inorg. Chem. 2002, 2614.
- [2] [(a) A. Duursma et al, Org. Biomol. Chem. 2004, 2, 1682; (b) R. Hulst, N. K.
 Devries, B. L. Feringa, Tetrahedron-Asymmetry 1994, 5, 699.
- [3] Y. Liu, K. Ding, J. Am. Chem. Soc. 2005, 127, 10488.
- [4] D. Y. Wang, X. P. Hu, J. D. Huang, J. Deng, S. B. Yu, Z. C. Duan, X. F. Xu, Z. Zheng, Angew. Chem. Int. Ed. 2007, 46, 7810.
- [5] M. Rubio, S. Vargas, A. Suarez, E. Alvarez, A. Pizzano, Chem. Eur. J. 2007, 13, 1821.
- [6] M. J. Burk, T. A. Stammers, J. A. Straub, Org. Lett. 1999, 1, 387.
- [7] R. C. Fuson and B. H. Wojcik, Org. Synth. 1943, Coll. Vol. 2, p 260.
- [8] K. Afarinkia; J. Echenique; C. Nyburg, Tetrahedron Lett. 1997, 38, 1663.
- [9] S. Vargas, A. Suarez, E. Alvarez, A. Pizzano, Chem. Eur. J. 2008, 14, 9856.
- [10] Wang, D.-Y.; Huang, J.-D.;Hu, X.-P.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z. J. Org. Chem.
 2008, 73, 2011.

7. HPLC spectra of chiral products

Results							
Peak No.	Peak ID	Ret Time	Height	Area	Conc.		
1		37.765	318808.563	33443142.000	99.5353		
2		56.967	1436.455	156140.313	0.4647		
Total			320245.018	33599282.313	100.0000		

26

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		30.690	146932.297	7770098.000	50.0592
2		45.157	98010.961	7751709.500	49.9408
Total			244943.258	15521807.500	100.0000

129313.831

10261112.297

100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		14.908	1196.457	28771.199	1.4806
2		16.637	66061.508	1914408.375	98.5194
Total			67257.964	1943179.574	100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		43.013	3171.642	180940.359	0.5718	_
2		53.325	303294.500	31461396.000	99.4282	
Total			306466.142	31642336.359	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		54.648	29408.721	3633888.000	50.1886
2		63.048	23214.143	3606583.500	49.8114
Total			52622.863	7240471.500	100.0000

Peak No.	Peak ID	Ret 11me	Height	Area	Conc.
1		56.303	101.257	8572.146	0.7121
2		65.253	7944.277	1195142.625	99.2879
Tota			8045.535	1203714.771	100.0000

39

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		28.048	100934.102	4238598.000	49.8094	_
2		30.082	88523.922	4271034.000	50.1906	
Total			189458.023	8509632.000	100.0000	

Total

1 Car 1 (0.	I Car ID	Teet Time	incight	741 04	conc.	
1		41.608	137.478	8783.104	0.0847	
2		47.530	68326.258	10355696.000	99.9153	
Total			68463.736	10364479.104	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		21.007	9349.437	304014.344	50.5365
2		22.545	8259.232	297559.500	49.4635
Total			17608.669	601573.844	100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		21.093	1108.297	34378.023	0.3249	
2		22.323	238780.063	10545837.000	99.6751	
Total			239888.360	10580215.023	100.0000	

44

l 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Time(min)

Results									
Peak No.	Peak ID	Ret Time	Height	Area	Conc.				
1		16.593	44528.926	4167733.250	49.3476				
2		28.057	25919.570	4277930.000	50.6524				
Total			70448.496	8445663.250	100.0000				

0	1	2	3	4	5	6	7	8	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	35	
Time(min)											

Results											
Peak No.	Peak ID	Ret Time	Height	Area	Conc.						
1		16.372	162423.531	17316186.000	99.1778						
2		27.840	924.936	143546.094	0.8222						
Total			163348.467	17459732.094	100.0000						

Total 175582.105 7490325.844 100.0000

Total

4b

351010.777

100.000

7351949.391

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

49