Org. Biomol. Chem.

Electronic Supplementary Information (ESI)
 Intramolecular proton transfer impact on antibacterial properties of ansamycin antibiotic rifampicin and its new amino analogues

Krystian Pyta ${ }^{\text {a }}$, Piotr Przybylski ${ }^{\text {a }}$, Barbara Wicher ${ }^{\text {a }}$, Maria Gdaniec ${ }^{\text {a }}$ and Joanna Stefańska ${ }^{\text {b }}$
${ }^{a}$ Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland
${ }^{b}$ Medical University of Warsaw, Department of Pharmaceutical Microbiology, Oczki 3, 02-007 Warsaw, Poland

E-mail: piotrp@amu.edu.pl; Fax:+48 618291505; Tel: +48 618291252

Contents:

1. Experimental details
2. General procedure of synthesis of new rifampicin analogs.

Table 1S. Selected hydrogen-bond parameters.
Table 2S. Crystal data and details of structure refinement.
Table 3S. Total assignment of ${ }^{1} \mathrm{H}$ NMR δ [ppm] chemical shifts and coupling constants $J[\mathrm{~Hz}]$ for 1-9 and Ral (rifaldehyde) in CDCl_{3}.
Table 4S. Total assignment of ${ }^{13} \mathrm{C}$ NMR δ [ppm] chemical shifts for $\mathbf{1 - 9}$ and Ral (rifaldehyde) in CDCl_{3}.
Table 5S. Antibacterial activity MIC ($\mu \mathrm{g} / \mathrm{mL}$) of 1-9 against Gram- $(+)$ strains including methicillin-resistant/MRSA/ and methicillin-susceptible /MSSA/ ones.

Figure 1S. $\quad{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{1}$ in DMSO- d_{6} after addition of water drop.
Figure 2S. ${ }^{1} \mathrm{H}_{-}{ }^{15} \mathrm{~N}$ HSQC spectrum of $\mathbf{1}$ in DMSO- d_{6} after addition of water drop.
Figure 3S. $\quad{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{2}$ in DMSO- d_{6} after addition of water drop.
Figure 4S. $\quad{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC spectrum of $\mathbf{2}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$ after addition of water drop.
Figure 5S. $\quad{ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1}$ in DMSO- d_{6} after addition of water drop.
Figure 6S. $\quad{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1}$ in DMSO- d_{6} after addition of water drop in the range ${ }^{1} \mathrm{H}(1.4-2.2)-{ }^{13} \mathrm{C}$ (164-188) ppm.

Figure 7S. $\quad{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1}$ in CDCl_{3}.

Figure 8S. $\quad{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1}$ in CDCl_{3} in the range ${ }^{1} \mathrm{H}(11.5-14.5)-{ }^{13} \mathrm{C}(103-$ 195) ppm.

Figure 9S. $\quad{ }^{1} \mathrm{H}-{ }_{-}^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1}$ in CDCl_{3} in the range ${ }^{1} \mathrm{H}(1.5-2.4)-{ }^{13} \mathrm{C}(166-198)$ ppm.
Figure 10S. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of 5 in CDCl_{3}.
Figure 11S. $\quad{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{5}$ in CDCl_{3} in the range ${ }^{1} \mathrm{H}(1.75-2.2)-{ }^{13} \mathrm{C}(168-190)$ ppm.

1. Experimental

X-ray measurements

All crystals of the studied compounds were solvated and unstable in the air. Therefore diffraction data were collected at 130 K and crystals were mounted on a loop with small amount of perfluoropolyether. The diffraction measurements for $1-\mathrm{CH}_{3} \mathrm{CCl}_{3}$ and $1-\mathrm{CH}_{3} \mathrm{OH}$ $\mathrm{H}_{2} \mathrm{O}$ were carried out with a KumaCCD diffractometer using Mo-K α radiation ($\lambda=0.71073$ Å). Data collection and reduction were performed with CrysAlis CCD ${ }^{1 \mathrm{~S}}$ and CrysAlis RED ${ }^{1 \mathrm{~S}}$, respectively. For $2-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the measurements were performed with a SuperNova diffractometer using hi-flux micro-focus Nova $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54184 \AA$). Data collection and reduction were performed with the CrysAlis Pro software. ${ }^{2 S}$ The structures were solved by directed method using the SHELXS-97 program for $1-\mathrm{CH}_{3} \mathrm{CCl}_{3}$ and 1$\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}^{3 \mathrm{~S}}$ and the Sir2004 program for $2-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{4 \mathrm{~S}}$ The structures were refined by full-matrix least-squares method on F^{2} with SHELXL-97. ${ }^{35}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atom positions of O-H and N-H groups were located in difference Fourier maps. For further refinement positions of all hydrogen atoms were determined geometrically (N-H $0.90 \AA$, O-H $0.84 \AA, \mathrm{C}-\mathrm{H}_{3} 0.98 \AA, \mathrm{C}-\mathrm{H}_{2}$ $0.99 \AA, \mathrm{C}-\mathrm{H} 1.00 \AA, \mathrm{HC}=\mathrm{CH} 0.95 \AA$) and were refined in the riding-model approximation, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}(\mathrm{N}, \mathrm{C})$ and $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}\left(\mathrm{O}, \mathrm{C}_{\text {methyl }}\right)$. In 2- $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ two carbon atoms (C28, C29) from rifampicin ansa chain and two methanol molecules are disordered over two position. The dichloromethane molecule is disordered at least over three positions. The crystal data and some details of data collection and structure refinement are given in
Table 2S. The intra- and intermolecular hydrogen-bond parameters are given in Tables 1S.

1S. Oxford Diffraction, CrysAlis CCD and CrysAlis RED Ver. 1.171.31. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England, 2006.
2S. Agilent Technologies, CrysAlis ${ }^{\text {Pro }}$, Agilent Technologies, Yarnton, Oxfordshire, England, 2010.
3S. G.M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
4S. M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori and R. Spagna, J. Appl. Cryst., 2005, 38, 381-388.

1D and 2D NMR measurements

The NMR spectra of rifaldehyde and 1-9 ($0.01-0.1 \mathrm{~mol} \mathrm{~L}^{-1}$) were recorded in following anhydrous solvents: $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{DMSO}-\mathrm{d}_{6}$ and py- d_{5} and after addition of water drop using a Bruker Avance 600 M spectrometer at $\mathrm{T}=253.0 \mathrm{~K}$ and $\mathrm{T}=293.0 \mathrm{~K}$. All spectra were locked to deuterium resonance of TMS.

The ${ }^{1} \mathrm{H}$ NMR measurements were carried out at the operating frequency of 600.001 M ; flip angle, $\mathrm{pw}=30^{\circ}$; spectral width, $\mathrm{swh}=6459.95$; acquisition time, $\mathrm{aq}=5.07 \mathrm{~s}$; relaxation delay, $\mathrm{d}_{1}=1.0 \mathrm{~s}$; using TMS as the internal standard. No window function or zero filling was used. Digital resolution was 0.2 per point. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at the operating frequency $151.000 \mathrm{M} ; \mathrm{pw}=90^{\circ} ; \mathrm{swh}=3594 ; \mathrm{aq}=0.9 \mathrm{~s} ; \mathrm{d}_{1}=2.0 \mathrm{~s}$ with TMS as the internal standard. Line broadening parameter was 1.
The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ NMR signals were assigned independently for each compound using twodimensional ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC, ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC, ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC as well as ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra. Two-dimensional ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra were acquired in the magnitude mode with the gradient selection method and with spectral widths of 6562 for both dimensions. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY data were collected with 2048 points in t_{2} and with 600 increments (4 scans per increment) in t_{1} dimension. A relaxation delay of 1.0 s was applied between scans. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY data were collected with 1024 points in t_{2} and with 1024 increments (16 scans per increment) in t_{1} dimension. A relaxation delay of 3.0 s was applied between scans. The data from ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC experiments were collected in the absolute-value mode using the gradient selection method and with spectral ranges of 6561 (${ }^{1} \mathrm{H}$ axis) and 33557 (${ }^{13} \mathrm{C}$ axis). The ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC data were collected with 1024 points in t_{2} and with $1024 t_{1}$ increments (4 scans per increment). A relaxation delay of 1.0 s was applied between scans. Before Fourier transformation, Gaussian window functions were applied to the data in both dimensions. The ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC data were collected with 2048 data points in t_{2} and $1024 \mathrm{t}_{1}$ increments (16 scans per increment) and with a delay of 1.0 s between scans. Prior to Fourier transformation, mixed-mode processing was used by applying to the data a sine-bell window function in t_{2} dimension and a shifted Gaussian window function in t_{1} dimension.
The data from ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC experiments were collected in the absolutevalue mode using the gradient selection method and with spectral ranges of 9995 (${ }^{1} \mathrm{H}$ axis) and 48732 (${ }^{15} \mathrm{~N}$ axis). ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC data were collected with 1024 points in t_{2} and with $2048 \mathrm{t}_{1}$ increments (16 scans per increment). ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC data were collected with 1024 points in t_{2} and with $1024 \mathrm{t}_{1}$ increments (4 scans per increment). Acquisition time were
0.2048 s and 0.0026 s , respectively. A relaxation delay of 1.0 s was applied between scans. The detailed ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were collected in Tables 3 S and $\mathbf{4 S}$. Exemplary ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC of $\mathbf{1}$ and 2 as well as ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC and HMBC of $\mathbf{5}$ and $\mathbf{8}$ spectra were shown in Figures 1S-11S.

MALDI-TOF measurements

The MALDI-TOF spectra of rifaldehyde and 1-9 were obtained on Water/Micromass (Manchester, UK) Q-TOF Premier mass spectrometer (software MassLynx V4.1, Manchester, UK) fitted with a 200 repetition rate $\mathrm{Nd} / \mathrm{YAG}\left(\lambda=355 \mathrm{~nm}\right.$, power density $\left.107 \mathrm{~W} / \mathrm{cm}^{2}\right)$. The compounds analyzed were solids and the matrix used was DHB.

PM5 modelling of interactions between 1-zwitterionic form (phenolate form) and aminoacid residues of the binding site in the RNA polymerase (RNAP)

X-ray structure of $\mathbf{1}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ as phenolate form (gray color- Figure 3a) was docked on the naphthalene ring carbon atom coordinates of rifampicin (yellow color - Figure 3a) from the X-ray structure of Rifampicin-RNA polymerase complex according to Campbell et al. ${ }^{3}$ The structure of RNAP enzyme was locked in earlier determined coordinates relative to rifampicin with exception of oxygen atoms of carboxylate group of E_{445}. The interactions between 1 molecule, docked as phenolate form, and the aminoacid residues at the binding site to RNAP were modelled via geometry calculation in MOPAC using PM5 parameters (Cache Work System Pro Version 7.5.085 - Fujitsu), with the energy gradient not exceeding 2 kcal mol^{-1} at one step (3678 steps). MOZYME algorithm suitable for large molecules was applied ${ }^{5 S}$. To get insight into interactions between 2 and RNAP binding site, the crystal structure of $2-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as zwitterion with the transferred proton from $\mathrm{O}_{8}-\mathrm{H}$ to $\mathrm{N}(40)$ atom (grey color - Figure 3b) was docked at the coordinates of carbon atoms of naphthalene ring of rifampicin molecule according to Campbell et al. ${ }^{3}$

5S. Cache Work System Pro Version 7.5.085 UserGuide, Fujitsu, Beaverton, Oregon, USA, 2007.

Antibacterial activity tests of 1-9 and ciprofloxacin (CIP)

The research of antibacterial activity performed for a series of Gram-positive, including reference and hospital strains. Microorganisms used in this study were as follows: standard strains of Gram-positive cocci: Staphylococcus aureus NCTC 4163, Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 6538, Staphylococcus aureus ATCC 29213, Staphylococcus epidermidis ATCC 12228 and 20 hospital isolates of Staphylococcus aureus (10 methicillin-susceptible /MSSA/ and 10 methicillin-resistant/MRSA/). Clinical strains of tested bacteria were isolated from different biological materials of patients of the Warsaw Medical University Hospital. Other microorganisms used were obtained from the collection of the Department of Pharmaceutical Microbiology, Medical University of Warsaw, Poland. Minimal Inhibitory Concentration (MIC) was examined by the twofold serial dilution method using Mueller-Hinton II agar medium (Beckton Dickinson) according to CLSI guidelines. ${ }^{65}$ Concentrated solutions of 1-9 and CIP tested compounds were prepared in methanol, then diluted in water were performed to obtain the required concentration. Concentrations of tested agents in solid medium ranged from 8 to $0.002 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ (Gram-positive bacteria). The final inoculum of all studied organisms were $104 \mathrm{CFU} \mathrm{mL}^{-1}$ (colony forming units per ml). Minimal inhibitory concentrations were read after 18 h of incubation at $35^{\circ} \mathrm{C}$. The complete data of antibacterial tests were collected in Table 5S.

6S. Clinical and Laboratory Standards Institute Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard M7-A-7, Clinical and Laboratory Standards Institute, Wayne, Pa. USA, 2006.

2. General procedure of synthesis of rifaldehyde and new rifampicin analogs.

Synthesis of rifaldehyde (Ral)

To rifampicin ($212.1 \mathrm{mg}, 0.25 \mathrm{mmol}$) dissolved in diethyl ether (200 ml) 50 ml of 0.2 M $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$ was added and stirred for four days at room temperature. Next the organic layer was separated, twice washed with 100 ml of water and evaporated. To crude rifaldehyde 50 ml $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and extracted with 25 ml of brine and separated. Organic layer was evaporated to dryness yielding rifaldehyde as red powder (167.5 mg ; Yield: 89\%). The rifaldehyde was characterised by: Elemental analysis $\mathrm{C}_{38} \mathrm{H}_{47} \mathrm{NO}_{13}$: calculated $\mathrm{C}=62.89 \%$,
$\mathrm{H}=6.53 \%, \mathrm{~N}=1.93 \%$; found $\mathrm{C}=62.83 \%, \mathrm{H}=6.50 \%, \mathrm{~N}=1.87 \%$; m.p. $=180-185^{\circ} \mathrm{C}$; HR-MALDITOF $[\mathrm{M}+\mathrm{H}]^{+} 726.3116$; FT-IR (KBr, 1.5 mg): $3415 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{21}-\mathrm{H}\right)+v\left(\mathrm{O}_{23}-\mathrm{H}\right), 3200 \mathrm{~cm}^{-1}$ $v\left(\mathrm{O}_{8}-\mathrm{H}^{\cdots} \mathrm{O}_{1}\right)+v\left(\mathrm{O}_{4}-\mathrm{H}^{\cdots} \mathrm{O}_{11}\right)+v\left(\mathrm{O}_{1}-\mathrm{H}^{\cdots} \mathrm{O}_{15}\right), 2550 \mathrm{~cm}^{-1} v\left(\mathrm{~N}_{\text {amide }}-\mathrm{H}\right), 1726 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{35}=\mathrm{O}\right), 1654$ $\mathrm{cm}^{-1} v\left(\mathrm{C}_{38}=\mathrm{O}\right)_{\text {aldehyde }}+v\left(\mathrm{C}_{11}=\mathrm{O}\right)_{\text {ketone }}, 1642 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{15}=\mathrm{O}\right)_{\text {amide }}, 1575 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})_{\text {napthalene }}$, $1538 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{N})_{\text {amide II }}, 1464 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C}), 1249 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 3S and 4S).

Syntheses of 2-8

Rifaldehyde ($181.4 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in $25 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the respective amine $(0.25 \mathrm{mmol})$ in 5 ml of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ with 0.025 mmol HCl was added. Mixture was stirred at $45^{\circ} \mathrm{C}$ for half an hour and after that a half of solvent volume was distilled off. To cooled reaction mixture (room temperature) reductant $\mathrm{NaBH}_{3} \mathrm{CN}(15.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ was added portionwise during 10 min . The reaction mixture was evaporated to dyness, dissolved in 30 ml of ethyl acetate and extracted twice with 30 ml of water and brine. The separated organic layer was evaporated and the respective synthesised analogs of rifampicin (compounds 2-8) were purified by column chromatography with silica gel $(25 \mathrm{~cm} \times 1 \mathrm{~cm}$, silica gel $60,0.040-$ $0.063 \mathrm{~mm} / 230-400$ mesh ASTM, Fluka) and ethyl acetate/methanol as eluent (from 100:0 to 15:1). TLC (10:1 ethyl acetate:methanol as eluent) was developed. Compounds 2-8 were obtained as orange-red solids.

2: Yield: 70%; Elemental analysis $\mathrm{C}_{41} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{12}$: calculated $\mathrm{C}=64.21 \%, \mathrm{H}=7.10 \%, \mathrm{~N}=3.65 \%$; found $\mathrm{C}=64.17 \%, \quad \mathrm{H}=7.11 \%, \mathrm{~N}=3.62 \%$; m.p. $=178-183^{\circ} \mathrm{C}$; HR-MALDI-TOF $[\mathrm{M}+\mathrm{H}]^{+}$ 767.3741; FT-IR $\left(\mathrm{CHCl}_{3,} c=0.05 \mathrm{M}\right): 3471 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{21}-\mathrm{H}\right)+v\left(\mathrm{O}_{23}-\mathrm{H}\right), 3384 \mathrm{~cm}^{-1} v\left(\mathrm{~N}_{\text {amide }}-\mathrm{H}\right)$, $3200 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{4}-\mathrm{H}^{\cdots} \mathrm{O}_{11}\right), 2750 \mathrm{~cm}^{-1} v\left(\mathrm{~N}_{38}{ }^{+}-\mathrm{H}^{\cdots} \mathrm{O}_{15}\right), 2500 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{1}-\mathrm{H}^{\cdots} \mathrm{O}_{8}^{-}\right), 1716 \mathrm{~cm}^{-1}$ $v\left(\mathrm{C}_{35}=\mathrm{O}\right), 1647 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{15}=\mathrm{O}\right)_{\text {amide } \mathrm{I}}+v(\mathrm{C}=\mathrm{C})_{\text {allyl }}, 1600 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})_{\text {napthalene }}, 1538 \mathrm{~cm}^{-1}$ $v(\mathrm{C}-\mathrm{N})_{\text {amide II }}, 1500$ and $1480 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C}), 1250$ and $1260 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 3S and 4S).

3: Yield: 46%; Elemental analysis $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{13}$: calculated $\mathrm{C}=62.32 \%, \mathrm{H}=7.06 \%, \mathrm{~N}=3.63 \%$; found $\mathrm{C}=62.27 \%, \mathrm{H}=7.00 \%, \mathrm{~N}=3.59 \%$; m.p. $=195-198^{\circ} \mathrm{C}$; HR-MALDI-TOF $[\mathrm{M}+\mathrm{H}]^{+}$ 771.3699 ; FT-IR (KBr, 1.5 mg): 3429 and $3402 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{21}-\mathrm{H}\right)+v\left(\mathrm{O}_{23}-\mathrm{H}\right)+v\left(\mathrm{O}_{40}-\mathrm{H}\right), 3350 \mathrm{~cm}^{-1}$ $v\left(\mathrm{~N}_{\text {amide }}-\mathrm{H}\right), 3141 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{4}-\mathrm{H}^{\cdots} \mathrm{O}_{11}\right), 2746 \mathrm{~cm}^{-1} v\left(\mathrm{~N}_{38}{ }^{+}-\mathrm{H}^{\cdots} \mathrm{O}_{15}\right), 2460 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{1}-\mathrm{H}^{\cdots} \mathrm{O}_{8}{ }^{-}\right)$, $1721 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{35}=\mathrm{O}\right), 1648 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{15}=\mathrm{O}\right)_{\text {amide }}, 1599 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})_{\text {napthalene }}, 1562 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})$, $1539 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{N})_{\text {amide II, }} 1453$ and $1445 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C}), 1249$ and $1238 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 3S and 4S).

4: Yield: 56\%; Elemental analysis $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{13}$: calculated $\mathrm{C}=63.14 \%, \mathrm{H}=7.32 \%, \mathrm{~N}=3.51 \%$; found $\mathrm{C}=63.07 \%, \mathrm{H}=7.29 \%, \mathrm{~N}=3.48 \%$; m.p. $=168-176^{\circ} \mathrm{C}$; HR-MALDI-TOF $[\mathrm{M}+\mathrm{H}]^{+}$ 799.4006; FT-IR (KBr, 1.5 mg): 3430 and $3400 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{21}-\mathrm{H}\right)+v\left(\mathrm{O}_{23}-\mathrm{H}\right)+v\left(\mathrm{O}_{42}-\mathrm{H}\right), 3348 \mathrm{~cm}^{-1}$ $v\left(\mathrm{~N}_{\text {amide }}-\mathrm{H}\right), 3140 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{4}-\mathrm{H}^{\cdots} \mathrm{O}_{11}\right), 2744 \mathrm{~cm}^{-1} v\left(\mathrm{~N}_{38}{ }^{+}-\mathrm{H}^{\cdots} \mathrm{O}_{15}\right), 2462 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{1}-\mathrm{H}^{\cdots} \mathrm{O}_{8}{ }^{-}\right)$, $1720 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{35}=\mathrm{O}\right), 1645 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{15}=\mathrm{O}\right)_{\text {amide }} \mathrm{I}, 1596 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})_{\text {napthalene }}, 1561 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})$, $1538 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{N})_{\text {amide II, }} 1452$ and $1444 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C}), 1247$ and $1236 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 3S and 4S).

5: Yield: 60%; Elemental analysis $\mathrm{C}_{44} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{13}$: calculated $\mathrm{C}=63.90 \%, \mathrm{H}=7.56 \%, \mathrm{~N}=3.39 \%$; found $\mathrm{C}=63.89 \%, \mathrm{H}=7.54 \%, \mathrm{~N}=3.36 \%$; m.p. $=152-158^{\circ} \mathrm{C}$; HR-MALDI-TOF $[\mathrm{M}+\mathrm{H}]^{+}$ 827.4321; FT-IR (KBr, 1.5 mg): 3434 and $3402 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{21}-\mathrm{H}\right)+v\left(\mathrm{O}_{23}-\mathrm{H}\right)+v\left(\mathrm{O}_{44}-\mathrm{H}\right), 3350 \mathrm{~cm}^{-1}$ $v\left(\mathrm{~N}_{\text {amide }}-\mathrm{H}\right), 3144 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{4}-\mathrm{H}^{\cdots} \mathrm{O}_{11}\right), 2740 \mathrm{~cm}^{-1} v\left(\mathrm{~N}_{38}{ }^{+}-\mathrm{H}^{\cdots} \mathrm{O}_{15}\right), 2460 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{1}-\mathrm{H}^{\cdots} \mathrm{O}_{8}{ }^{-}\right)$, $1719 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{35}=\mathrm{O}\right), 1649 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{15}=\mathrm{O}\right)_{\text {amide }}, 1598 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})_{\text {napthalene }}, 1560 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})$, $1536 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{N})_{\text {amide II, }}, 1450$ and $1441 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C}), 1245$ and $1235 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 3S and 4S).

6: Yield: 62%; Elemental analysis $\mathrm{C}_{46} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{14}$: calculated $\mathrm{C}=63.43 \%, \mathrm{H}=7.64 \%, \mathrm{~N}=3.22 \%$; found $\mathrm{C}=63.40 \%, \mathrm{H}=7.61 \%, \mathrm{~N}=3.18 \%$; m.p. $=190-193^{\circ} \mathrm{C}$; HR-MALDI-TOF $[\mathrm{M}+\mathrm{H}]^{+}$ 871.4581; FT-IR (KBr, 1.5 mg): 3427 and $3390 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{21}-\mathrm{H}\right)+v\left(\mathrm{O}_{23}-\mathrm{H}\right), 3342 \mathrm{~cm}^{-1}$ $v\left(\mathrm{~N}_{\text {amide }}-\mathrm{H}\right), 3100 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{4}-\mathrm{H}^{\cdots} \mathrm{O}_{11}\right), 2745 \mathrm{~cm}^{-1} v\left(\mathrm{~N}_{38}{ }^{+}-\mathrm{H}^{\cdots} \mathrm{O}_{15}\right), 2444 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{1}-\mathrm{H}^{\cdots} \mathrm{O}_{8}{ }^{-}\right)$, $1716 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{35}=\mathrm{O}\right), 1650 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{15}=\mathrm{O}\right)_{\text {amide }} \mathrm{I}, 1599 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})_{\text {napthalene }}, 1574 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})$, $1539 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{N})_{\text {amide II }}, 1458$ and $1441 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C}), 1246 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{O}), 1100$ and $1082 \mathrm{~cm}^{-1}$ $v(\mathrm{C}-\mathrm{O})_{\text {oxaalkyl chain; }}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 3S and 4S).

7: Yield: 59%; Elemental analysis $\mathrm{C}_{44} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{12}$: calculated $\mathrm{C}=63.29 \%, \mathrm{H}=7.00 \%, \mathrm{~N}=6.71 \%$; found $\mathrm{C}=63.27 \%, \quad \mathrm{H}=6.96 \%, \quad \mathrm{~N}=6.65 \%$; m.p. $=183-186^{\circ} \mathrm{C}$; HR-MALDI-TOF $[\mathrm{M}+\mathrm{H}]^{+}$ 835.4120; FT-IR (KBr, 1.5 mg): 3428 and $3394 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{21}-\mathrm{H}\right)+v\left(\mathrm{O}_{23}-\mathrm{H}\right), 3345 \mathrm{~cm}^{-1}$ $v\left(\mathrm{~N}_{\text {amide }}-\mathrm{H}\right), 3105 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{4}-\mathrm{H}^{\cdots} \mathrm{O}_{11}\right), 2740 \mathrm{~cm}^{-1} v\left(\mathrm{~N}_{38}{ }^{+}-\mathrm{H}^{\cdots} \mathrm{O}_{15}\right), 2440 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{1}-\mathrm{H}^{\cdots} \mathrm{O}_{8}{ }^{-}\right)$, $1718 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{35}=\mathrm{O}\right), 1652 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{15}=\mathrm{O}\right)_{\text {amide }}, 1619 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{N})_{\text {imidazole ring }}, 1598 \mathrm{~cm}^{-1}$ $v(\mathrm{C}=\mathrm{C})_{\text {napthalene }}, 1570 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C}), 1538 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{N})_{\text {amide II }}, 1460$ and $1443 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C}), 1250$ $\mathrm{cm}^{-1} v(\mathrm{C}-\mathrm{O}), 662 \mathrm{~cm}^{-1} \gamma(\mathrm{C}-\mathrm{H})_{\text {imidazole ring; }}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 3S and 4S).

8: Yield: 68\%; Elemental analysis $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}$: calculated $\mathrm{C}=63.14 \%, \mathrm{H}=6.74 \%$, $\mathrm{N}=3.35 \%$; found $\mathrm{C}=63.10 \%, \mathrm{H}=6.71 \%, \mathrm{~N}=3.33 \%$; m.p. $=187-192^{\circ} \mathrm{C}$; HR-MALDI-TOF $[\mathrm{M}+\mathrm{H}]^{+} 837.3627$; FT-IR (KBr, 1.5 mg): 3430 and $3390 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{21}-\mathrm{H}\right)+v\left(\mathrm{O}_{23}-\mathrm{H}\right), 3349 \mathrm{~cm}^{-1}$
$v\left(\mathrm{~N}_{\text {amide }}-\mathrm{H}\right), 3109 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{4}-\mathrm{H}^{\cdots} \mathrm{O}_{11}\right), 2736 \mathrm{~cm}^{-1} v\left(\mathrm{~N}_{38}{ }^{+}-\mathrm{H}^{\cdots} \mathrm{O}_{15}\right), 2445 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{1}-\mathrm{H}^{\cdots} \mathrm{O}_{8}{ }^{-}\right)$, $1717 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{35}=\mathrm{O}\right), 1650 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{15}=\mathrm{O}\right)_{\text {amide }} \mathrm{I}, 1595 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})_{\text {napthalene }}, 1566 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})$, $1538 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{N})_{\text {amide II }}, 1461$ and $1441 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C}), 1249$ and $1237 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{O}), 699 \mathrm{~cm}^{-1}$ $\gamma(\mathrm{C}-\mathrm{H})_{\text {thiophene ring; }}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 3S and 4S).

Synthesis of 9

Rifampicin ($212.1 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in $10 \mathrm{ml} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ with 0.025 mmol HCl . To reaction mixture (room temperature) reductant $\mathrm{NaBH}_{3} \mathrm{CN}(15.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ was added portionwise during 20 min . The reaction mixture was evaporated to dyness, dissolved in 30 ml of ethyl acetate and extracted twice with 30 ml of water and brine. The separated organic layer was evaporated and the reduced rifampicin (compound 9) were purified by column chromatography with silica gel $(25 \mathrm{~cm} \times 1 \mathrm{~cm}$, silica gel $60,0.040-0.063 \mathrm{~mm} / 230-400$ mesh ASTM, Fluka) and ethyl acetate/methanol as eluent (40:1). TLC (10:1 ethyl acetate:methanol as eluent) was developed. Compound $\mathbf{9}$ was obtained as orange solid.

9: Yield: 75%; Elemental analysis $\mathrm{C}_{43} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{12}$: calculated $\mathrm{C}=62.60 \%, \mathrm{H}=7.33 \%, \mathrm{~N}=6.79 \%$; found $\mathrm{C}=62.52 \%, \mathrm{H}=7.30 \%, \mathrm{~N}=6.74 \%$; m.p. $=180-186^{\circ} \mathrm{C}$; HR-MALDI-TOF $[\mathrm{M}+\mathrm{H}]^{+}$ 825.4273; FT-IR (KBr, 1.5 mg): 3440 and $3392 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{21}-\mathrm{H}\right)+v\left(\mathrm{O}_{23}-\mathrm{H}\right), 3345 \mathrm{~cm}^{-1}$ $v\left(\mathrm{~N}_{\text {amide }}-\mathrm{H}\right), 3230 \mathrm{~cm}^{-1} v\left(\mathrm{~N}_{40}{ }^{+}-\mathrm{H}\right), 3070 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{4}-\mathrm{H}^{\cdots} \mathrm{O}_{11}\right), 2450 \mathrm{~cm}^{-1} v\left(\mathrm{O}_{1}-\mathrm{H}^{\cdots} \mathrm{O}_{8}{ }^{-}\right), 1723 \mathrm{~cm}^{-}$ ${ }^{1} v\left(\mathrm{C}_{35}=\mathrm{O}\right), 1648 \mathrm{~cm}^{-1} v\left(\mathrm{C}_{15}=\mathrm{O}\right)_{\text {amide }} \mathrm{I}, 1584 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})_{\text {napthalene }}, 1561 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C})$, $1536 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{N})_{\text {amide II, }}, 1457$ and $1437 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{C}), 1253$ and $1236 \mathrm{~cm}^{-1} v(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 3S and 4S).

Table 1S. Selected hydrogen-bond parameters.
a) intramolecular hydrogen bonds

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}(\AA)$	$\mathrm{H} \cdots A(\mathrm{~A})$	$D \cdots A(\AA)$	$D-\mathrm{H} \cdots A\left({ }^{\circ}\right)$
1- $\mathrm{CH}_{3} \mathrm{CCl}_{3}$				
O1-H1 \cdots O15	0.84	1.64	2.457 (6)	164
O8-H8 $\cdots \mathrm{O} 1$	0.84	1.76	2.510 (6)	148
$\mathrm{O} 21-\mathrm{H} 21 \cdots \mathrm{O} 23$	0.84	2.01	2.744 (6)	146
O4-H4O..O11	0.84	1.75	2.567 (6)	164
N2—H2N \cdots N38	0.90	1.88	2.670 (7)	145
1- $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$				
O1- $\mathrm{H} 1 \cdots \mathrm{O} 8$	0.84	1.75	2.497 (3)	148
O21-H21O...O23	0.84	1.99	2.732 (3)	147
O4-H4O‥O11	0.84	1.71	2.553 (3)	178
N2—H2N..N38	0.90	2.00	2.701 (3)	134
2- $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$				
O1- $\mathrm{H} 1 \cdots \mathrm{O} 8$	0.84	1.76	2.507 (3)	146
O23-H23O..-O21	0.84	2.04	2.752 (3)	141
O4- $\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O} 11$	0.84	1.74	2.582 (3)	178
N38-H2N3 ..O15	0.90	2.08	2.893 (3)	150

b) intermolecular hydrogen bonds

$D-\mathrm{H} \cdots \mathrm{A}$	$D-\mathrm{H}(\AA)$	$\mathrm{H} \cdots A(\AA)$	$D \cdots A(\AA)$	$D-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
1- $\mathrm{CH}_{3} \mathrm{CCl}_{3}$				
O23-H23O $\cdots \mathrm{N} 40^{i}$	0.84	1.98	2.806 (6)	170
1- $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$				
O1A-H1OA \cdots O15	0.84	1.95	2.763 (3)	162
O1D-H2OD \cdots O11	0.84	1.85	2.678 (3)	169
O1E-H1OE \cdots O21	0.84	1.95	2.786 (3)	175
O1C-H2OC..O1E ${ }^{\text {ii }}$	0.84	1.94	2.691 (4)	147
O23-H23O‥O4iii	0.84	2.00	2.828 (3)	170
O1B-H1OB \cdots O1D	0.84	2.04	2.874 (4)	173
O1D-H1OD \cdots O8 ${ }^{\text {iv }}$	0.84	1.98	2.796 (3)	165

O1E-H2OE...O1D ${ }^{\text {iii }}$	0.84	2.05	2.888 (3)	176
O1C-H1OC..O27	0.84	1.95	2.772 (4)	166
	0.90	1.79	2.668 (4)	165
2- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$				
O1C-H1C..O11	0.84	1.88	2.654 (18)	153
O1C'—H1C'...O11	0.84	1.82	2.65 (3)	172
O1D-H1D...O15	0.84	2.09	2.872 (5)	155
O1D'-H1D'...O1	0.84	2.26	3.056 (15)	159
N2-H1N2..O1A	0.90	1.99	2.850 (4)	160
O1A-H1A‥O21	0.84	1.92	2.756 (3)	173
O21-H21O…O1C ${ }^{\text {vi }}$	0.84	1.86	2.677 (19)	163
O21-H21O $\cdots{ }^{\text {O }}$ 1C ${ }^{\text {vid }}$	0.84	1.94	2.77 (3)	169
N38-H1N3 \cdots O23 ${ }^{\text {vii }}$	0.90	1.95	2.828 (3)	164
N38-H2N3..O35 ${ }^{\text {vii }}$	0.90	2.34	2.813 (3)	112

Symmetry code(s): (i) $x+1, y, z$; (ii) $x-1, y, z$; (iii) $-x+3 / 2,-y+1, z-1 / 2$; (iv) $-x+1, y+1 / 2,-z+3 / 2$; (v) $-x+3 / 2,-y+1$, $z+1 / 2$; (vi) $-x+1, y-1 / 2,-z+1$; (vii) $-x+1, y+1 / 2,-z+1$.

Table 2S. Crystal data and details of structure refinement

Compound reference	1- $\mathrm{CH}_{3} \mathrm{CCl}_{3}$	1- $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$	2- $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Chemical formula	$\mathrm{C}_{43} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{12} \cdot 2\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}_{3}\right)$	$\mathrm{C}_{43} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{12} \cdot 2\left(\mathrm{CH}_{3} \mathrm{OH}\right) \cdot 3\left(\mathrm{H}_{2} \mathrm{O}\right)$	$\left(\mathrm{C}_{41} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{12}\right) \cdot 3\left(\mathrm{CH}_{3} \mathrm{OH}\right) \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
Formula Mass	1089.72	941.07	947.91
Crystal system	Monoclinic	Orthorhombic	Monoclinic
a / A	10.9716 (4)	13.8494 (6)	9.2035 (1)
b/ \AA	18.7546 (6)	17.4243 (7)	20.0206 (1)
c/ \AA	13.2194 (4)	20.0324 (9)	13.8049 (1)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	101.595 (3)	90	103.152 (1)
$\gamma /{ }^{\circ}$	90	90	90
Unit cell volume/Å ${ }^{3}$	2664.62 (15)	4834.1 (4)	2476.96 (3)
Temperature/K	130	130	130
Space group	$P 2_{1}$	$P 2{ }_{1} 2_{1} 2_{1}$	$P 2_{1}$
No. of formula units per unit cell, Z	2	4	2
Radiation type	Mo K α	Mo K α	$\mathrm{Cu} K \alpha$
Absorption coefficient, μ / mm^{-1}	0.38	0.10	1.73
No. of reflections measured	21144	18270	40851
No. of independent reflections	4837	4875	5207
$R_{\text {int }}$	0.036	0.042	0.030
Final R_{l} values ($I>2 \sigma(\mathrm{I})$)	0.054	0.040	0.047
Final $w \mathrm{R}\left(\mathrm{F}^{2}\right)$ values ($\mathrm{I}>2 \sigma(\mathrm{I})$)	0.139	0.095	0.138
Final R_{I} values (all data)	0.080	0.048	0.047
Final wR(F^{2}) values (all data)	0.165	0.100	0.138
Goodness of fit on F^{2}	1.05	1.05	1.06

Table 3S. Total assignment of ${ }^{1} \mathrm{H}$ NMR $\delta[\mathrm{ppm}]$ chemical shifts and coupling constants $J[\mathrm{~Hz}]$ for $\mathbf{1 - 9}$ and Ral (rifaldehyde) in CDCl_{3}.

Atom number	Ral	1	2	3	4	5	6	7	8	9
1	---	---	---	---	---	---	---	---	---	---
2	---	---	---	---	---	---	---	---	---	---
3	---	---	---	---	---	---	---	---	---	---
4	---	---	---	---	---	---	---	---	---	---
5	---	---	---	---	---	---	---	---	---	---
6	---	---	---	---	---	---	---	---	---	---
7	---	---	---	---	---	---	---	---	---	---
8	---	---	---	---	---	---	---	---	---	---
9	---	---	---	---	---	---	---	---	---	---
10	---	---	---	---	---	---	---	---	---	---
11	---	---	---	---	---	---	---	---	---	---
12	---	---	---	---	---	---	---	---	---	---
13	$3 \mathrm{H}$	$3 \mathrm{H}$	$3 \mathrm{H}$		$3 \mathrm{H}$	$3 \mathrm{H}$	$3 \mathrm{H}$		$3 \mathrm{H}$	$3 \mathrm{H}$
	$1.82(\mathrm{~s})$	$1.81(\mathrm{~s})$	$1.74(\mathrm{~s})$	$1.79(\mathrm{~s})$	$1.78(\mathrm{~s})$	$1.77 \text { (s) }$	$1.78 \text { (s) }$	$1.74(\mathrm{~s})$	$1.76(\mathrm{~s})$	$1.78(\mathrm{~s})$
14	3H	3H	3H	3H	3 H	3H	$3 \mathrm{H}$	$3 \mathrm{H}$	$3 \mathrm{H}$	$3 \mathrm{H}$
	2.27 (s)	2.21 (s)	2.03 (s)	2.04 (s)	2.01 (s)*	2.02 (s)*	$2.05(\mathrm{~s})$	2.00 (s)*	$2.03(\mathrm{~s})$	$2.21(\mathrm{~s})$
15	(s)	(,	((.	((
16	---	---	---	---	---	---	---	---	---	---
17	$1 \mathrm{H}$	1H	1H	$1 \mathrm{H}$	$1 \mathrm{H}$	1H		1H	$1 \mathrm{H}$	1H
	$6.51 \text { (d) }$	6.39 (d)	6.27 (d)	6.24 (m)	$6.28 \text { (d) }$	$6.28 \text { (d) }$	$6.28 \text { (d) }$	$6.23(\mathrm{~m})$	$6.26 \text { (d) }$	$6.27 \text { (d) }$
	$\begin{gathered} { }^{3} J_{\mathrm{H} 17-\mathrm{H} 18}=11.4 \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} { }^{3} J_{\mathrm{H} 17-\mathrm{H} 18}=11.1 \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} { }^{3} J_{\mathrm{H} 17-\mathrm{H} 18}=10.8 \\ 1 \mathrm{H} \end{gathered}$	1 H	${ }^{3} J_{\text {H17-H18 }}=10.4$	${ }^{3} J_{\text {H17-H18 }}=10.6$	$\begin{gathered} { }^{3} J_{\mathrm{H} 17-\mathrm{H} 18}=10.8 \\ 1 \mathrm{H} \end{gathered}$	1 H	$\begin{gathered} { }^{3} J_{\mathrm{H} 17-\mathrm{H} 18}=10.1 \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} { }^{3} J_{\mathrm{H} 17-\mathrm{H} 18}=10.9 \\ 1 \mathrm{H} \end{gathered}$
18	$6.57 \text { (dd) }$	$6.58 \text { (dd) }$	$6.55 \text { (dd) }$	6.48 (m)	$6.55 \text { (dd) }$	$6.56 \text { (dd) }$	$6.50 \text { (dd) }$	6.52 (m)	$6.48 \text { (dd) }$	$6.46 \text { (d) }$
	${ }^{3} J_{\mathrm{H} 18-\mathrm{H} 19}=14.9$	${ }^{3} J_{\mathrm{H} 18-\mathrm{H} 19}=15.2$	${ }^{3} J_{\mathrm{H} 18-\mathrm{H} 19}=15.0$		${ }^{3} J_{\mathrm{H} 18-\mathrm{H} 19}=15.5$	${ }^{3} J_{\mathrm{H} 18-\mathrm{H} 19}=15.8$	${ }^{3} J_{\mathrm{H} 18-\mathrm{H} 19}=15.1$		${ }^{3} J_{\mathrm{H} 18-\mathrm{H} 19}=14.9$	${ }^{3} J_{\mathrm{H} 18-\mathrm{H} 19}=15.4$
19	$1 \mathrm{H}$	$1 \mathrm{H}$	$1 \mathrm{H}$	1H	$1 \mathrm{H}$	$1 \mathrm{H}$	$1 \mathrm{H}$	1H	$1 \mathrm{H}$	$1 \mathrm{H}$
		5.93 (dd)		6.04 (m)				6.07 (m)	6.07 (m)	5.97 (m)
	${ }^{3} J_{\mathrm{H} 19-\mathrm{H20}}=5.0$	${ }^{3} J_{\mathrm{H} 19-\mathrm{H} 20}=4.9$	${ }^{3} J_{\mathrm{H} 19-\mathrm{H} 20}=6.0$	6.04 (m)	${ }^{3} J_{\mathrm{H} 19-\mathrm{H} 20}=6.7$	${ }^{3} J_{\mathrm{H} 19-\mathrm{H} 20}=6.7$	${ }^{3} J_{\mathrm{H} 19-\mathrm{H} 20}=5.9$	6.07 (m)	6.07 (m)	5.97 (m)
20	1H	1H	1H	$1 \mathrm{H}$						
	2.43 (m)	2.38 (m)	2.38 (m)	2.38 (m)	2.38 (m)	2.40 (m)	2.39 (m)	2.33 (m)	$2.37 \text { (m) }$	2.42 (m)
21	1H									
	3.78 (d)	3.78 (d)	3.71 (d)	3.73 (m)	3.71 (d)	3.73 (d)	$3.71 \text { (d) }$	3.72 (m)	$3.72 \text { (d) }$	3.85 (m)
	$\begin{gathered} { }^{3} J_{\mathrm{H} 16-\mathrm{H} 17}=9.5 \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} { }^{3} J_{\mathrm{H} 16-\mathrm{H} 17}=9.5 \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} { }^{3} J_{\mathrm{H} 16-\mathrm{H} 17}=9.1 \\ 1 \mathrm{H} \end{gathered}$	1 H	$\begin{gathered} { }^{3} J_{\mathrm{H} 16-\mathrm{H} 17}=9.4 \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} { }^{3} J_{\mathrm{H} 16-\mathrm{H} 17}=9.8 \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} { }^{3} J_{\mathrm{H} 16-\mathrm{H} 17}=8.9 \\ 1 \mathrm{H} \end{gathered}$	1 H	$\begin{gathered} { }^{3} J_{\mathrm{H} 16-\mathrm{H} 17}=8.6 \\ 1 \mathrm{H} \end{gathered}$	1 H
22	1.76 (m)	1.71 (m)	1.71 (m)	1.75 (m)	1.75 (m)	1.75 (m)	1.76 (m)	1.75 (m)	1.73 (m)	1.81 (m)
23	1H	1 H	1H	1H	1H	1H	1H	1 H	1H	1H
	3.05 (m)*	3.02 (m)*	2.97 (m)*	2.97 (m)	2.97 (m)	2.98 (m)	3.00 (m)	2.95 (m)	2.97 (m)	3.03 (m)
24	1H									
	1.54 (qd)	$1.53 \text { (qd) }$	1.43 (m)	1.39 (m)	1.44 (m)	1.45 (m)	1.45 (m)	1.43 (m)	1.39 (m)	1.56 (m)
	$\begin{aligned} & { }^{3} J_{\mathrm{H} 24-\mathrm{H} 33}=6.8 \\ & { }^{3} J_{\mathrm{H} 23-\mathrm{H} 24}=14.0 \end{aligned}$	$\begin{gathered} { }^{3} J_{\mathrm{H} 24-\mathrm{H} 33}=6.8 \\ { }^{3} J_{\mathrm{H} 23-\mathrm{H} 24}=14.0 \\ \hline \end{gathered}$								

25	1H									
	4.94 (d)	4.95 (d)	4.90 (d)	4.89 (bs)	4.87 (d)	4.87 (d)	4.88 (d)	4.91 (bs)	4.89 (d)	4.92 (d)
	${ }^{3} J_{\mathrm{H} 25-\mathrm{H} 26}=10.0$	${ }^{3} J_{\mathrm{H} 25-\mathrm{H} 26}=10.6$	${ }^{3} J_{\mathrm{H} 25-\mathrm{H} 26}=10.5$		${ }^{3} J_{\mathrm{H} 25-\mathrm{H} 26}=10.6$	${ }^{3} J_{\mathrm{H} 25-\mathrm{H} 26}=10.6$	${ }^{3} J_{\mathrm{H} 25-\mathrm{H} 26}=10.8$		${ }^{3} J_{\mathrm{H} 25-\mathrm{H} 26}=10.4$	${ }^{3} J_{\mathrm{H} 25-\mathrm{H} 26}=10.4$
26	1H									
	1.37 (m)	1.35 (m)	1.32 (m)	1.45 (m)	1.37 (m)	1.29 (m)	1.45 (m)	1.39 (m)	1.38 (m)	1.43 (m)
27	1 H	1H								
	3.51 (d)	3.51 (d)	3.34 (d)	3.34 (m)	3.37 (d)	3.38 (d)	$3.39 \text { (d) }$	3.36 (m)	3.31 (m)	$3.51 \text { (d) }$
	${ }^{3} J_{\mathrm{H} 27-\mathrm{H} 28}=7.0$	${ }^{3} J_{\text {H27-H28 }}=6.7$	${ }^{3} J_{\text {H27-H28 }}=6.6$	1 H	${ }^{3} J_{\text {H27-H28 }}=6.9$	${ }^{3} J_{\mathrm{H} 27-\mathrm{H} 28}=6.6$	$\begin{gathered} { }^{3} J_{\mathrm{H} 27-\mathrm{H} 28}=7.0 \\ 1 \mathrm{H} \end{gathered}$	1 H	1 H	$\begin{gathered} { }^{3} J_{\mathrm{H} 27-\mathrm{H} 28}=6.9 \\ 1 \mathrm{H} \end{gathered}$
28	5.12 (dd)	5.10 (dd)	5.06 (dd)	5.07 (m)	5.05 (dd)	5.05 (dd)	5.08 (dd)	5.02 (m)	5.11 (dd)	5.07 (dd)
	${ }^{3} J_{\mathrm{H} 28-\mathrm{H} 29}=12.7$	${ }^{3} J_{\mathrm{H} 28-\mathrm{H} 29}=12.6$	${ }^{3} J_{\mathrm{H} 28-\mathrm{H} 29}=12.5$	5.07 (m)	${ }^{3} J_{\text {H28-H29 }}=12.5$	${ }^{3} J_{\mathrm{H} 28-\mathrm{H} 29}=12.6$	${ }^{3} J_{\mathrm{H} 28-\mathrm{H} 29}=12.5$		$\begin{gathered} { }^{3} J_{\mathrm{H} 27-\mathrm{H} 28}=6.8^{3} \\ J_{\mathrm{H} 28-\mathrm{H} 29}=12.3 \end{gathered}$	$\begin{gathered} { }^{3} J_{\mathrm{H} 27-\mathrm{H} 28}=7.0^{3} \\ J_{\mathrm{H} 28-\mathrm{H} 29}=12.6 \end{gathered}$
29	1H	1 H	1 H							
	6.24 (d)	6.20 (d)	6.03 (d)	6.02 (m)	6.01 (d)	6.03 (d)	6.12 (d)	6.02 (m)	6.02 (d)	6.23 (d)
30	3H	3 H	3 H	3H	3H	3 H	3H	3H	3H	3 H
	2.07 (s)*	2.09 (s)	2.08 (s)	2.05 (s)	2.09 (s)	2.08 (s)	2.07 (s)	2.02 (s)	2.06 (s)	2.11 (s)
31	3H									
	0.91 (d)	0.88 (d)	0.84 (d)	0.84 (bs)	0.85 (d)	0.86 (d)	0.86 (d)	0.81 (m)	0.84 (d)	0.93 (d)
	${ }^{3} J_{\mathrm{H} 20-\mathrm{H} 31}=7.0$	${ }^{3} J_{\mathrm{H} 20-\mathrm{H} 31}=7.0$	${ }^{3} J_{\mathrm{H} 20-\mathrm{H} 31}=6.9$		${ }^{3} J_{\mathrm{H} 20-\mathrm{H} 31}=7.1$	${ }^{3} J_{\mathrm{H} 20-\mathrm{H} 31}=6.9$	${ }^{3} J_{\mathrm{H} 20-\mathrm{H} 31}=6.8$		${ }^{3} J_{\mathrm{H} 20-\mathrm{H} 31}=6.7$	${ }^{3} J_{\mathrm{H} 20-\mathrm{H} 31}=7.1$
32	3H	3H	3H	3 H	3H	3H	3H	3H	3H	3H
	1.03 (d)	1.01 (d)	0.96 (d)	1.00 (m)	0.99 (d)	0.98 (d)	$1.00 \text { (d) }$	0.96 (m)	0.99 (d)	$1.03 \text { (d) }$
	${ }^{3} J_{\mathrm{H} 22-\mathrm{H} 32}=7.0$	${ }^{3} J_{\mathrm{H} 22-\mathrm{H} 32}=7.0$	${ }^{3} J_{\text {H22-H32 }}=6.9$		${ }^{3} J_{\text {H22-H32 }}=6.8$	${ }^{3} J_{\mathrm{H} 22-\mathrm{H} 32}=7.1$	${ }^{3} J_{\mathrm{H} 22-\mathrm{H} 32}=6.9$		${ }^{3} \mathrm{~J}_{\mathrm{H} 22-\mathrm{H} 32}=6.4$	$\begin{gathered} { }^{3} J_{\mathrm{H} 22-\mathrm{H} 32}=7.1 \\ 3 \mathrm{H} \end{gathered}$
33	3 H 0.67 (d)	3 H 0.59 (d)	3 H 0.50 (d)	$\begin{gathered} 3 \mathrm{H} \\ 0.55(\mathrm{bs}) \end{gathered}$	3 H 0.52 (d)	3 H 0.49 (d)	3 H 0.56 (d)	3 H 0.50 (d)	3 H 0.50 (d)	$\begin{gathered} 3 \mathrm{H} \\ 0.70(\mathrm{~d}) \end{gathered}$
	${ }^{3} J_{\text {H24-H33 }}=6.9$	${ }^{3} J_{\mathrm{H} 24-\mathrm{H} 33}=6.9$	${ }^{3} J_{\text {H24- } \mathrm{H} 33}=6.6$		${ }^{3} J_{\text {H24- } \mathrm{H} 33}=6.8$	${ }^{3} J_{\mathrm{H} 24-\mathrm{H} 33}=6.8$	${ }^{3} J_{\mathrm{H} 24-\mathrm{H} 33}=6.8$	${ }^{3} J_{\mathrm{H} 24-\mathrm{H} 33}=6.6$	${ }^{3} J_{\text {H24-H33 }}=6.8$	${ }^{3} J_{\text {H24-H33 }}=6.9$
34	3H									
	-0.30 (d)	-0.31 (d)	-0.29 (d)	-0.30 (bs)	-0.27 (d)	-0.25 (d)	-0.23 (d)	-0.30 (bs)	-0.33 (d)	$-0.33(\mathrm{~d})$
	${ }^{3} J_{\mathrm{H} 26-\mathrm{H} 36}=6.9$	${ }^{3} J_{\mathrm{H} 26-\mathrm{H} 36}=6.9$	${ }^{3} J_{\mathrm{H} 26-\mathrm{H} 36}=6.5$		${ }^{3} J_{\mathrm{H} 26-\mathrm{H} 36}=7.1$	${ }^{3} J_{\mathrm{H} 26-\mathrm{H} 36}=6.7$	${ }^{3} J_{\mathrm{H} 26-\mathrm{H} 36}=6.9$		${ }^{3} J_{\mathrm{H} 26-\mathrm{H} 36}=6.1$	${ }^{3} J_{\mathrm{H} 26-\mathrm{H} 36}=6.9$
35	---	---	---	---	---	---	---	---	--	--
36	3H									
	2.06 (s)*	2.06 (s)	2.01 (s)	2.00 (s)	2.01 (s)*	2.01 (s)*	2.03 (s)	2.01 (s)	1.99 (s)	2.07 (s)
37	3H									
	3.05 (s)	3.04 (s)*	2.98 (s)*	3.01 (s)*	2.99 (s)*	2.99 (s)*	3.03 (s)*	2.97 (s)	2.99 (s)*	3.04 (s)
38	1H									
	10.65 (s)	8.25 (s)	$4.18 \text { (d) }$	4.29 (bs)	$4.20 \text { (d) }$	4.27 (d)	4.36 (d)	4.27 (bs)	$4.25 \text { (d) }$	4.49 (d)
			${ }^{2} J=11.6$		${ }^{2} J=11.5$	${ }^{2} J=11.9$	${ }^{2} J=11.6$		${ }^{2} J=10.8$	${ }^{2} J=13.3$
			1H							
			3.82 (d)	3.93 (bs)	3.86 (m)	3.77 (m)	3.89 (d)	3.77 (m)	3.91 (m)	3.99 (d)
HO-1	1H									
	12.30 (s)	13.19 (s)	15.96 (bs)	16.40 (bs)	16.15 (bs)	16.05 (bs)	16.07 (bs)	15.93 (bs)	16.20 (bs)	13.20 (s)
HO-4	1H									
	12.65 (s)	11.98 (s)	12.73 (s)	12.68 (s)	12.69 (s)	12.85 (s)	12.92 (s)	12.70 (s)	12.59 (s)	12.02 (s)

HO-8	1H	1H	---	---	---	---	---	---	---	1H
	13.16 (s)	13.19 (s)								12.02 (s)
HO-21	1H	1 H	1H							
	3.55 (bs)	3.48 (bs)	3.09 (bs)	3.10 (bs)	3.20 (bs)	3.15 (bs)	3.35 (bs)	3.15 (bs)	3.05 (bs)	3.58 (bs)
HO-23	1H									
	3.63 (bs)	3.69 (bs)	3.70 (bs)	3.84 (bs)	3.86 (bs)	4.04 (bs)	3.81 (bs)	4.01 (bs)	3.80 (bs)	3.75 (bs)
HO-40	---	((1.99 (bs)	(---	(---	---	(
HO-42	---	---	---	(2.03 (bs)	---	---	---	---	---
HO-44	---	---	---	---	---	2.08 (bs)	---	---	---	---
NH	13.75 (s)	1H								
(amid)		13.30 (vbs)	8.20 (s)	8.38 (s)	8.26 (s)	8.79 (s)	8.30 (s)	8.76 (s)	8.00 (s)	8.29 (s)
$\mathrm{N}^{+} \mathrm{H}$	---	---	1H	1H	1H	1 H	1H	1H	1H	---
(non-			3.99 (d)	3.92 (bs)	3.90 (bs)	3.96 (bs)	3.92 (bs)	4.16 (bs)	3.95 (m)	
hydrogen			${ }^{2} J=16.8$							
bonded)										
$\mathrm{N}^{+} \mathrm{H}$	---	---	1H	---						
(hydrogen bonded)			8.29 (vbs)	8.21 (vbs)	9.00 (vbs)	8.71 (vbs)	8.25 (vbs)	8.93 (vbs)	8.41 (vbs)	
NH	---	---	---	---	---	---	---	---	---	1H
										2.94 (bs)
39	---	1H	2H	1H						
		3.17 (m)	3.77 (m)	3.43 (m)	3.09 (m)	3.13 (m)	3.74 (m)	3.10 (m)	3.43 (m)	3.16 (m)
		1H								1H
		2.53 (m)								3.09 (m)
40	---	1H	1H	2H	2H	2H	2H	2H	2H	1H
		3.09 (m)	5.98 (m)	4.95 (m)	1.30 (m)	1.83 (m)	3.89 (m)	2.29 (m)	3.41 (m)	2.57 (m)
									3.33 (m)	
		1H								1H
		2.58 (m)								2.53 (m)
41	---	1H	1H	---	2H	2H	2H	2H	---	1H
		3.09 (m)	5.56 (d)		1.73 (m)	1.50 (m)	3.89 (m)	3.71 (m)		2.57 (m)
			${ }^{3} \mathrm{~J}_{\mathrm{H} 40-\mathrm{H} 41}=16.8$							
		1H								1H
		2.58 (m)								2.53 (m)
42	---	1H	1H	---	2H	2H	2H	1H	1H	1H
		3.17 (m)				1.43 (m)	3.63 (m)	7.75 (s)	$7.22 \text { (d) }$	3.16 (m)
			${ }^{3} \mathrm{~J}_{\mathrm{H} 40-\mathrm{H} 41}=10.2$		${ }^{3} J_{\mathrm{H} 41-\mathrm{H} 42}=5.0$				${ }^{3} J_{\mathrm{H} 42-\mathrm{H} 43}=4.9$	
		1H								1H
		2.53 (m)								3.09 (m)
43	---	3H	---	---	---	2H			1H	3H
		2.34 (s)				1.54 (m)	3.63 (m)	7.01 (m)	6.98 (dd)	2.29 (s)
									${ }^{3} J_{\text {H43-444 }}=3.2$	

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Table 4S. Total assignment of ${ }^{13} \mathrm{C}$ NMR $\delta[\mathrm{ppm}]$ chemical shifts for 1-9 and Ral (rifaldehyde) in CDCl_{3}.

Atom Number	Ral	1	2	3	4	5	6	7	8	9
1	137.8	138.5	144.9	144.9	144.9	144.8	144.9	144.9	144.7	138.6
2	120.6	120.4	118.2	118.1	118.1	118.4	118.4	118.3	118.1	119.0
3	109.7	110.8	112.1	112.5	112.2	112.4	111.5	112.4	112.1	110.6
4	156.0	147.9	147.8	147.4	147.9	148.0	148.0	147.9	147.9	148.0
5	105.5	104.5	99.3	99.1	99.4	99.3	99.2	99.5	99.7	105.4
6	168.6	169.2	173.3	173.1	173.4	173.2	173.2	173.2	173.5	169.3
7	109.5	106.0	103.4	103.3	103.2	103.3	103.3	103.4	103.5	106.2
8	174.8	174.4	183.0	182.5	182.1	182.6	183.0	182.7	181.7	174.2
9	117.4	112.8	115.3	114.9	115.0	115.2	115.4	115.3	115.0	112.6
10	119.1	117.9	115.8	115.6	115.6	115.6	115.6	115.6	115.8	117.0
11	196.6	195.4	187.3	187.7	189.8	187.5	187.7	187.6	188.5	195.3
12	109.2	108.7	108.5	108.3	108.4	108.4	108.6	108.5	108.4	108.9
13	21.5	21.4	21.3	21.0	20.9	21.1	21.4	21.1	21.2	21.7
14	7.8	7.5	7.3	7.1	7.2	7.3	7.1	7.4	7.3	7.4
15	170.4	169.6	171.6	171.3	172.0	171.5	171.6	171.7	171.8	171.5
16	127.8	129.3	130.9	130.5	131.1	130.7	131.1	130.9	131.0	130.6
17	136.9	135.1	133.6	134.0	133.3	133.6	133.6	133.6	133.5	133.6
18	122.6	123.2	124.6	124.5	124.2	124.8	124.4	124.7	124.3	123.5
19	143.7	142.7	141.5	141.6	141.9	141.3	141.6	141.3	141.7	141.5
20	38.6	38.5	37.8	37.7	37.8	37.6	37.8	37.8	38.0	38.2
21	70.7	70.6	73.3	73.2	71.9	73.3	71.4	73.3	73.0	70.9
22	33.3	33.3	33.3	33.2	33.2	33.1	33.3	33.1	33.3	33.3
23	77.0	76.8	76.9	77.0	76.8	76.9	76.8	76.8	76.8	76.8
24	37.6	37.5	37.5	37.3	37.5	37.4	37.4	37.5	37.6	37.5
25	74.2	74.4	74.0	74.0	73.8	74.1	74.1	73.9	73.8	74.4
26	39.6	39.5	39.0	38.7	38.4	39.0	38.8	38.9	38.7	39.6
27	76.5	76.7	78.1	78.2	78.8	78.1	78.9	79.0	78.8	76.7
28	119.4	118.6	116.8	116.2	116.3	116.7	116.2	116.6	116.8	118.1
29	142.8	142.6	142.6	142.5	142.9	142.4	134.1	142.1	142.8	143.0
30	20.5	20.5	20.3	20.5	20.4	20.5	20.3	20.4	20.4	20.6
31	16.9	17.8	17.8	17.7	17.8	17.8	17.9	17.7	17.7	17.3
32	10.9	10.8	11.0	11.1	11.1	11.1	11.0	11.1	11.1	10.9
33	8.6	8.4	8.6	8.7	8.7	8.7	8.7	8.8	8.8	9.0
34	9.1	8.9	9.1	9.1	9.5	9.0	9.3	9.1	9.4	9.1
35	172.1	172.0	171.9	172.0	172.6	172.1	172.3	172.9	171.8	172.2
36	20.7	20.5	20.8	20.8	20.7	20.8	20.8	20.8	20.9	20.7
37	57.1	57.0	56.7	56.8	56.8	56.8	56.7	56.8	56.7	57.0
38	194.1	134.4	44.5	45.5	44.8	45.2	45.3	44.5	45.5	43.4
39	---	50.2	50.4	49.1	50.2	48.1	47.6	46.1	49.3	50.2
40	---	53.9	127.3	25.2	74.3	25.5	65.7	29.7	27.1	53.8

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

41	---	53.9	124.6	29.8	---	25.9	70.2	46.7	137.3	53.8
42	---	50.2	---	61.7	---	24.8	70.2	137.0	125.1	50.2
43	---	45.9	---	---	---	31.7	70.7	128.1	127.6	45.5
44	---	---	---	---	---	62.0	31.5	120.7	126.8	---
45	---	---	---	---	---	---	19.2	---	---	---
46	---	---	---	---	--	---	13.8	---	---	

Table 5S. Antibacterial activity MIC ($\mu \mathrm{g} / \mathrm{mL}$) of 1-9 against Gram-(+) strains including methicillin-resistant /MRSA/ and methicillin-susceptible /MSSA/ ones.

Bacteria strain	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
S. aureus NCTC 4163	0.008	0.5	1	1	0.5	0.5	2	0.5	0.008
S. aureus ATCC 25923	0.016	1	2	2	2	1	2	1	0.016
S. aureus ATCC 6538	0.008	0.5	1	1	1	1	2	0.5	0.008
S. aureus ATCC 29213	0.008	0.5	1	1	2	1	2	0.5	0.008
S. epidermidis ATCC 12228	0.008	0.125	0.25	0.25	0.25	0.25	1	0.25	0.008
E. coli ATCC 10538	8	128	256	256	256	256	>256	>256	16
E. coli ATCC 25922	8	64	256	128	128	128	>256	>256	16
E. coli NCTC 8196	4	64	256	256	256	256	>256	>256	8
P. aeruginosa ATCC 15442	16	128	>256	256	>256	>256	>256	>256	32
P. aeruginosa NCTC 6749	32	64	256	256	>256	>256	>256	>256	32
P. aeruginosa ATCC 27853	16	64	256	256	256	>256	>256	>256	32
MSSA 440/11	0.016	1	2	1	1	1	0.25	0.5	0.03
MSSA 441/11	0.016	1	2	1	2	1	0.5	1	0.03
MSSA 442/11	0.016	0.5	2	1	1	0.5	0.25	1	0.03
MSSA 443/11	0.016	0.5	2	2	2	1	0.5	1	0.03
MSSA 444/11	0.016	1	4	2	4	1	0.5	1	0.03
MSSA 445/11	0.016	1	2	1	2	1	0.5	1	0.03
MSSA 446/11	0.016	1	4	2	2	1	0.5	1	0.03
MSSA 447/11	0.016	0.5	4	1	1	1	0.5	1	0.03
MSSA 448/11	0.008	0.5	2	1	2	1	0.5	0.5	0.016
MSSA 449/11	0.008	0.5	2	1	1	0.5	0.25	0.5	0.016
MRSA 389/10	0.008	0.5	0.5	0.5	1	0.5	1	0.25	0.008
MRSA 390/10	0.008	0.5	1	1	2	1	2	0.5	0.008
MRSA 391/10	0.008	0.5	1	1	2	1	2	0.5	0.008
MRSA 392/10	0.008	1	1	1	2	1	2	0.5	0.016
MRSA 393/10	0.008	0.5	0.5	0.5	2	1	2	1	0.008
MRSA 394/10	0.008	0.5	0.5	1	2	1	2	1	0.008
MRSA 399/10	0.008	0.5	0.5	1	1	1	2	0.5	0.008
MRSA 450/11	0.008	0.5	2	1	2	1	2	1	0.008
MRSA 451/11	0.008	0.5	1	0.5	2	1	2	1	0.008
MRSA 452/11	0.008	0.5	2	0.5	2	1	2	1	0.008

Figure 1S. ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{1}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$ after addition of water drop.

Figure 2S. ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC spectrum of $\mathbf{1}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$ after addition of water drop.

Figure 3S. ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectrum of $\mathbf{2}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$ after addition of water drop.

Figure $\mathbf{4 S} .{ }^{1} \mathrm{H}_{-}{ }^{15} \mathrm{~N}$ HSQC spectrum of $\mathbf{2}$ in DMSO- d_{6} after addition of water drop.

Figure 5S. ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1}$ in DMSO- d_{6} after addition of water drop.

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC 1-DMSO- $\mathrm{d}_{6}+\mathrm{H}_{2} \mathrm{O}$

Aoquisfmon Tme (seci	(0.1769, 0.0068)	commemt	$5 \mathrm{~mm} \mathrm{TB1} \mathrm{1} \mathrm{1/31P-BS-D} \mathrm{2-GRD} 257401001$		
Da30	23 Nov 2011 177:47.44			ES51pdata112	
Fivo Name			RE-DNSOAAOODOO		
Prequency (MeHz)	(800.31, 180.96)	Nuelens	(14, 13C)	Number	
Orram	spost	Oftimai Pamif Couns	(2048, 3565	Oumer	toot
Pains connt	(2048, 1024)	Pulse Sequence	tmbecapip ${ }^{\text {a }}$ dat	Somens	DMSO
Speacrum Typo	HMBC	Swoep wiotin (taz)	(115880.42, 3917		
Temperaure cowome	25.500	TuTo	нmвсяр		

AN.OO0001E.051.001.2n.esp

Figure $\mathbf{6 S}$. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1}$ in DMSO- d_{6} after addition of water drop in the range ${ }^{1} \mathrm{H}(1.4-2.2)-{ }^{13} \mathrm{C}(164-188) \mathrm{ppm}$.

Figure 7S. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1}$ in CDCl_{3}.

Figure 8S. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1}$ in CDCl_{3} in the range ${ }^{1} \mathrm{H}(11.5-14.5)-{ }^{13} \mathrm{C}(103-195) \mathrm{ppm}$.

Figure 9S. ${ }^{1} \mathrm{H}-{ }_{-}^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1}$ in CDCl_{3} in the range ${ }^{1} \mathrm{H}(1.5-2.4)-{ }^{13} \mathrm{C}(166-198) \mathrm{ppm}$.

Figure 10S. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of 5 in CDCl_{3}.
${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC $5-\mathrm{CDCl}_{3}$

Figure 11S. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of 5 in CDCl_{3} in the range ${ }^{1} \mathrm{H}(1.75-2.2)-{ }^{13} \mathrm{C}(168-190) \mathrm{ppm}$.

