Supporting Information

Synthesis and SAR of *o*-sulfonamido-arylhydrazide as LLdiaminopimelate aminotransferase (LL-DAP-AT) inhibitors

Chenguang Fan and John C. Vederas*

Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton,

T6G 2G2, Canada.

Table of Contents

Cloning, expression and purification of LL-DAP-AT	S2
General chemistry methods	S2
Full experimental procedures and characterization data for analogues (2-17)	
and intermediates (2a-17a)	S3-S20
Characterization of compound 9-PLP adduct	S21
Inhibitor testing assay	S22-S23

Cloning, expression and purification of LL-DAP-AT

The DNA encoding LL-DAP-AT from *Arabidopsis thaliana* fused to a C-terminal histidine-tag (His₆) was obtained from BioBasic Inc. (Ontario, Canada) and the codon usage was optimized for expression in *E. coli*. The cloning, expression and purification of LL-DAP-AT with a C-terminal His₆ has been described previously.¹ The enzyme was stored at -80 °C in 200 mM NaCl, 20 mM Hepes-KOH (pH 7.6), 3 mM DTT.

General Chemistry Methods

All chemicals and solvents used in this study were purchased from Sigma-Aldrich, AB Chem, Inc. and Alfa Aesar. Infrared spectra were obtained using Nicolet Magna 750 FTIR Spectrometer and Nic-Plan FTIR Microscope. Agilent/Varian Inova 400 MHz, Agilent/Varian Mercury 400 MHz, and Agilent/Varian VNMRS 500 MHz two-channel spectrometers and Agilent/Varian Inova 500 MHz four-channel spectrometer were used to acquire ¹H and ¹³C NMR spectra. Chloroform-D, CD₃OD and DMSO-*d*₆ were used as NMR solvents. Spin multiples are listed as s (singlet), d (double), t (triplet), q (quartet), m (multiplet), and br (broad) and coupling constant (*J*) values were estimated in hertz (Hz). Low-resolution mass spectra were obtained using Agilent Technologies 1100MSD (Single Quadrupole, positive and negative ion ESI, Santa Clara, CA, USA). High-resolution mass spectra were obtained using Applied BioSystems Mariner BioSpectrometry Workstation (orthogonal acceleration Time-of-Flight, positive and negative ion ESI and APCI, Foster City, CA, USA).

S2

General Procedure for the Preparation of Analogues

Synthesis of sulfonamide - carboxylic acid intermediate:

One equivalents of a proper amino acid and 2.5 equivalents of sodium carbonate were mixed with distilled water in a 0.4 M amino acid concentration. The mixture was heated in an oil-bath to ~60 °C. The proper sulfonyl chloride (1.25 equ.) was slowly added into the hot mixture during the course of 15 min. The mixture was then heated to 85 °C for a further 3 h. Norite (~20 mg) may applied if the mixture was in dark red or brown colour. The hot mixture was filtered through a pre-heated funnel. The hot filtrate was slowly poured with vigorous swirling into a 50 mL Erlenmeyer flask, which contained of 6 N hydrochloride acid (1 mL). After solid formation upon cooling, the solid was filtered and washed with of 1 N hydrochloride acid (2 mL). The product was used in next step without any further purification.

Synthesis of sulfonamide – hydrazide analogues:

One equivalents of a proper sulfonamide – carboxylic acid intermediate and 1.2 equivalents of carbonyl diimidazole were dissolved in dry DMF (substrate concentration in 0.075 M). The mixture was stirred for 4 hours. Hydrazine monohydrate (2 equ.) was dissolved in dry DMF (0.15 M). The activated sulfonamide – carboxylic acid intermediate was added in the hydrazine solution slowly. The reaction was allowed to stir for 16 h at room temperature. The solvent was then removed in *vacuo*, and the residue was purified by column chromatograph to yield a proper sulfonamido–hydrazide analogue.

3-(Phenylsulfonamido)propanoic acid (**2a**): white solid; 72% yield; IR (Microscope): 3273, 3066, 3150 – 2830 (br), 1701, 1447, 1435, 1413, 1168 cm⁻¹; ¹H NMR (500 MHz, CD₃OD): δ = 7.85 (m, 2H), 7.63 (m, 1H), 7.56 (m, 2H), 3.10 (t, *J* = 7.0 Hz, 2 H), 2.44 (t, *J* = 7.0 Hz, 2 H); ¹³C NMR (125 MHz, CD₃OD): δ = 174.8, 141.8, 133.7, 130.3, 128.0, 39.9, 35.4; ESI-HRMS *m/z* calcd for C₉H₁₀NO₄S: 228.0336 [M-H]⁻, found: 228.0333.

N-(3-Hydrazinyl-3-oxopropyl)benzenesulfonamide (**2**): white solid; 32% yield; IR (KBr pellet): 3417, 3302, 3246, 3194, 3096, 3057, 2914, 2859, 1643, 1534, 1445 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ = 7.85 (m, 2H), 7.57 (m, 3H), 3.11 (t, *J* = 6.8 Hz, 2H), 2.33 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ = 171.1, 140.3, 132.3, 128.8, 126.6, 39.0, 34.0; ESI-HRMS *m*/*z* calcd for C₉H₁₃N₃NaO₃S: 266.0568 [M+Na]⁺, found: 266.0570.

(*S*)-1-(Phenylsulfonyl)pyrrolidine-2-carbohydrazide (**3**): white solid; 25% yield over two steps; IR (KBr pellet): 3600 - 3120 (br), 3061, 2953, 2926, 2874, 1659, 1512, 1479, 1446 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): $\delta = 7.85$ (m, 2H), 7.66 (m, 3H), 4.10 (dd, J = 4.0, 8.4 Hz, 1H), 3.55 (m, 1H), 3.23 (td, J = 7.2, 10.0 Hz, 1H), 1.84 (m, 3H), 1.56 (m, 1H); ¹³C NMR (100 MHz, CD₃OD): $\delta = 173.0$, 137.6, 134.2, 130.2, 128.5, 62.1, 50.3, 31.4, 25.1; ESI-HRMS *m/z* calcd for C₁₁H₁₆N₃O₃S: 270.0907 [M+H]⁺, found: 270.0908; [α]_D²³ = -130.23 (c 0.19, CH₃OH).

(*R*)-1-(Phenylsulfonyl)pyrrolidine-2-carbohydrazide (4): white solid; 28 % yield over two steps; IR (KBr pellet): 3600 – 3050 (br), 3061, 2976, 2921, 2874, 1660, 1515, 1480, 1446 cm⁻¹; 1H NMR (500 MHz, CD₃OD): δ = 7.88 (m, 2H), 7.68 (m, 1H), 7.60 (m, 2H), 4.11 (dd, *J* = 4.0, 9.0), 3.55 (ddd, *J* = 4.5, 7.0, 10.0 Hz, 1H), 3.23 (td, *J* = 7.0, 10.0 Hz, 1H), 1.84 (m, 3H), 1.54 (m, 1H); ¹³C NMR (125 MHz, CD₃OD): δ = 173.4, 137.9, 134.6, 130.6, 128.9, 62.6, 50.7, 32.0, 25.5; ESI-HRMS *m*/*z* calcd for C₁₁H₁₅N₃NaO₃S: 292.0726 [M+Na]⁺, found: 292.0726; [α]_D²³ = 144.46 (c 0.165, CH₃OH).

2-(Phenylsulfonamido)benzoic acid (**5a**): light brown solid; 68 % yield; IR (microscope): 3179, 3100, 3200 – 2850 (br), 2885, 1680, 1600, 1582, 1492, 1448, 1431 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.87 (m, 1H), 7.80 (m, 2H), 7.63 (m, 1H), 7.53 (m, 4H), 7.10 (m, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.4, 140.5, 139.3, 135.2, 134.3, 132.2, 130.2, 127.5, 124.1, 119.2, 117.5; ESI-HRMS *m*/*z* calcd for C₁₃H₁₁NO₄S: 276.0336 [M-H]⁻, found: 276.0336.

N-(2-(Hydrazinecarbonyl)phenyl)benzenesulfonamide (**5**): white solid; 76 % yield; IR (CH₂Cl₂ cast): 3327, 3400 – 2900 (br), 3064, 1631, 1598, 1518, 1494, 1447 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.78 (m, 2H), 7.65 (m, 1H), 7.51 (m, 1H), 7.39 (m, 4H), 7.07 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 179.2, 139.5, 138.6, 133.2, 129.3, 129.2, 127.4, 126.9, 124.3, 122.0, 120.5; ESI-HRMS *m*/*z* calcd for C₁₃H₁₃N₃NaO₃S: 314.0570 [M+Na]⁺, found: 314.0571.

4-Chloro-2-(phenylsulfonamido)benzoic acid (**6a**): light brown solid; 85 % yield; IR (microscope): 3179, 3106, 3060, 3200 – 2700 (br),1672, 1597, 1566, 1488, 1449, 1433 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 7.88$ (d, J = 8.5 Hz, 1H), 7.82 (m, 2H), 7.66 (m, 1H), 7.58 (m, 2H), 7.45 (d, J = 1.5 Hz, 1H), 7.16 (dd, J = 1.5, 8.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 168.9$, 141.3, 138.6, 138.5, 133.7, 133.2, 129.6, 126.7, 123.1, 117.7, 116.0; ESI-HRMS *m*/*z* calcd for C₁₃H₉CINO₄S: 309.9946 [M-H]⁻, found: 309.9945.

N-(5-Chloro-2-(hydrazinecarbonyl)phenyl)benzenesulfonamide (**6**): light yellow solid; 58 % yield; IR (CH₂Cl₂ cast): 3328, 3400 – 2900 (br), 3066, 1633, 1593, 1520, 1492, 1447 cm⁻¹; ¹H NMR (500 MHz, CD₃OD): δ = 7.75 (m, 2H), 7.60 (m, 1H), 7.56 (m, 1H), 7.46 (m, 3H), 7.08 (m, 1H); ¹³C NMR (125 MHz, CD₃OD): δ = 168.6, 140.8, 140.2, 139.1, 134.5, 130.3, 130.2, 128.3, 125.2, 122.3, 121.0; ESI-HRMS *m/z* calcd for C₁₃H₁₂ClN₃NaO₃S: 348.0180 [M+Na]⁺, found: 348.0180.

4-Methoxy-2-(phenylsulfonamido)benzoic acid (**7a**): light grey solid; 88 % yield; IR (microscope): 3170, 2975, 3200 – 2700 (br), 1637, 1615, 1570, 1510, 1441 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): δ = 7.83 (m, 3H), 7.65 (m, 1H), 7.57 (m, 2H), 6.97 (d, J = 2.5 Hz, 1H), 7.67 (dd, J = 2.5, 9.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6): δ = 169.7, 163.6, 141.8, 138.4, 133.7, 133.5, 129.6, 126.8, 108.9, 108.6, 103.1, 55.6; ESI-HRMS *m/z* calcd for C₁₄H₁₂NO₅S: 306.0442 [M-H]⁻, found: 306.0439.

N-(2-(Hydrazinecarbonyl)-5-methoxyphenyl)benzenesulfonamide (7): white solid; 74 % yield; IR (CH₂Cl₂ cast): 3328, 3400 – 2900 (br), 3065, 3009, 2968, 2843, 1611, 1578, 1503, 1464, 1447 cm⁻¹; ¹H NMR (500 MHz, CD₃OD): $\delta = 7.75$ (m, 2H), 7.53 (m, 1H), 7.45 (m, 3H), 7.13 (d, J = 2.5 Hz, 1H), 6.60 (dd, J = 2.5, 9.0 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD): $\delta = 169.7$, 164.1, 141.6, 140.4, 134.3, 130.3, 130.2, 128.4, 114.0, 110.7, 107.2, 56.1; ESI-HRMS *m*/*z* calcd for C₁₄H₁₅N₃NaO₄S: 344.0675 [M+Na]⁺, found: 344.0680.

4,5-Dimethoxy-2-(phenylsulfonamido)benzoic acid (**8a**): grey solid; 70 % yield; IR (microscope): 3160, 3078, 3030, 2976, 2941, 2843, 3300 – 2700 (br), 1662, 1610, 1587, 1520, 1448, 1417 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 7.74 (m, 2H), 7.61 (m, 1H), 7.52 (m, 2H), 7.26 (s, 1H), 7.11 (s, 1H), 3.79 (s, 3H), 3.68 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 169.9, 153.8, 145.0, 138.8, 135.4, 134.0, 129.9, 127.3, 113.2, 109.2, 103.2, 56.2, 56.0; ESI-HRMS *m*/*z* calcd for C₁₅H₁₄NO₆S: 336.0547 [M-H]⁻, found: 336.0549.

N-(2-(Hydrazinecarbonyl)-4,5-dimethoxyphenyl)benzenesulfonamide (**8**): white solid; 37 % yield; IR (CHCl₃ cast): 3335, 3400 – 3250 (br), 3022, 2917, 2849, 1606, 1515, 1465, 1448 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.73 (m, 2H), 7.52 (m, 1H), 7.41 (m, 2H), 7.25 (s, 1H), 6.77 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 168.8, 152.6, 145.8, 139.0, 133.1, 132.9, 128.8, 127.3, 112.9, 108.7, 106.5, 56.3, 56.2; ESI-HRMS *m/z* calcd for C₁₅H₁₇N₃NaO₅S: 374.0781 [M+Na]⁺, found: 374.0781.

4-Fluoro-2-(phenylsulfonamido)benzoic acid (**9a**): light yellow solid; 76 % yield; IR (microscope): 3490, 3101, 3300 – 2750 (br), 1670, 1613, 1592, 1506, 1448, 1430 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 7.97 (dd, *J* = 6.5, 9.0 Hz, 1H), 7.86 (m, 2H), 7.67 (m, 1H), 7.58 (m, 2H), 7.24 (dd, *J* = 2.5, 11.0 Hz, 1H), 6.97 (m, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 169.5, 165.4 (d, *J* = 250.4 Hz), 142.5 (d, *J* = 11.9 Hz), 138.7, 134.9 (d, *J* = 10.9 Hz), 134.3, 130.2, 127.3, 113.6 (d, *J* = 2.9 Hz), 111.0 (d, *J* = 21.6 Hz), 105.4 (d, *J* = 27.0 Hz); ¹⁹F NMR (380 MHz, DMSO-*d*₆): δ = -102.2 (ddd, *J* = 7.2, 7.2, 12.1 Hz); ESI-HRMS *m/z* calcd for C₁₃H₉FNO₄S: 294.0242 [M-H]⁻, found: 294.0245.

N-(5-Fluoro-2-(hydrazinecarbonyl)phenyl)benzenesulfonamide (**9**): light yellow solid; 58 % yield; IR (CH₂Cl₂ cast): 3334, 3400 – 3250 (br), 3093, 3027, 1631, 1596, 1502, 1448, 1423 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.85 (m, 2H), 7.56 (m, 1H), 7.46 (m, 2H), 7.41 (m, 2H), 6.75 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 168.5, 165.0 (d, *J* = 252.3 Hz), 141.2 (d, *J* = 11.8 Hz), 139.1, 133.3, 129.2, 128.7 (d, *J* = 10.3 Hz), 127.2, 115.2 (d, *J* = 3.0 Hz), 110.7 (d, *J* = 22.4 Hz), 107.8 (d, *J* = 26.4 Hz); ¹⁹F NMR (380 MHz, CDCCl₃):

 δ = -103.0 (ddd, J = 7.6, 7.6, 11.0 Hz); ESI-HRMS *m*/*z* calcd for C₁₃H₁₂FN₃NaO₃S: 332.0476 [M+Na]⁺, found: 332.0475.

4,5-Difluoro-2-(phenylsulfonamido)benzoic acid (**10a**): light brown solid; 89 % yield; ; IR (microscope): 3161, 3087, 3400 – 2750 (br), 1686, 1604, 1522, 1481, 1449, 1401 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 7.84$ (dd, J = 9.0, 11.0 Hz, 1H), 7.80 (m, 2H), 7.64 (m, 1H), 7.55 (m, 2H), 7.45 (dd, J = 7.0, 12.5 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 168.4$ (d, J = 1.0 Hz), 153.0 (dd, J = 13.6, 252.0 Hz), 145.6 (dd, J = 12.9, 243.0 Hz), 138.6, 137.7 (dd, J = 2.5, 9.7 Hz), 134.3, 130.1, 127.3, 120.5 (dd, J = 2.1, 19.2 Hz), 115.1 (dd, J = 3.3, 4.7 Hz), 108.8 (d, J = 21.9 Hz); ¹⁹F NMR (380 MHz, DMSO- d_6): $\delta = -127.4$ (ddd, J = 9.9, 12.2, 23.2 Hz), -142.9 (ddd, J = 7.2, 11.0, 23.2 Hz); ESI-HRMS *m/z* calcd for C₁₃H₈F₂NO₄S: 312.0148 [M-H]⁻, found: 312.0151.

N-(4,5-Difluoro-2-(hydrazinecarbonyl)phenyl)benzenesulfonamide (**10**): light yellow solid; 48 % yield; IR (microscope): 3345, 3400 – 3250 (br), 3065, 1606, 1509,1448, 1392

cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.80$ (m, 2H), 7.58 (m, 2H), 7.47 (m, 2H), 7.22 (dd, J = 8.5, 10.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 167.4$, 152.6 (dd, J = 13.1, 254.6 Hz), 146.4 (dd, J = 13.0, 247.3 Hz), 138.8, 135.9 (dd, J = 2.8, 9.3 Hz), 133.4, 129.2, 127.2, 116.4, 115.5 (d, J = 17.8 Hz), 111.5 (d, J = 21.5 Hz); ¹⁹F NMR (380 MHz, CDCl₃): $\delta = -127.3$ (ddd, J = 9.5, 11.8, 20.7 Hz), -140.7 (ddd, J = 7.6, 9.9, 22.8 Hz); ESI-HRMS *m/z* calcd for C₁₃H₁₁F₂N₃NaO₃S: 350.0382 [M+Na]⁺, found: 350.0381.

4-Methyl-2-(phenylsulfonamido)benzoic acid (**11a**): light grey solid; 93 % yield; IR (CHCl₃ cast): 3178, 3071, 3100 – 2750 (br), 2871, 1644, 1568, 1479, 1447 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 7.79 (m, 2H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.62 (m, 1H), 7.54 (m, 2H), 7.33 (m, 1H), 6.92 (m, 1H), 2.28 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.2, 145.6, 140.3, 139.0, 134.0, 131.9, 130.0, 127.3, 124.7, 119.2, 114.4, 21.9; ESI-HRMS *m/z* calcd for C₁₄H₁₃NNaO₄S: 314.0457 [M+Na]⁺, found: 314.0459.

N-(2-(Hydrazinecarbonyl)-5-methylphenyl)benzenesulfonamide (**11**): light yellow solid; 55 % yield; IR (CHCl₃ cast): 3328, 3400 – 3250 (br), 3059, 3028, 2918, 1630, 1523, 1447 cm⁻¹; ¹H NMR (500 MHz, CD₃OD): δ = 7.71 (d, *J* = 7.5 Hz, 2H), 7.54 (m, 1H), 7.43 (m, 3H), 7.37 (d, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CD₃OD): δ = 169.6, 144.4, 140.6, 139.7, 134.1, 130.1, 128.7, 128.3, 125.9, 123.4, 120.1, 21.6; ESI-HRMS *m/z* calcd for C₁₄H₁₅N₃NaO₃S: 328.0726 [M+Na]⁺, found: 328.0722.

2-(Phenylsulfonamido)-4-(trifluoromethyl)benzoic acid (**12a**): light orange solid; 94 % yield; IR (CHCl₃ cast): 3184, 3300 – 2750 (br), 3105, 3066, 1683, 1584, 1540, 1511, 1449, 1420 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 8.05$ (d, J = 8.0 Hz, 1H), 7.79 (m, 2H), 7.67 (d, J = 1.5 Hz, 1H), 7.62 (m, 1H), 7.55 (m, 2H), 7.39 (dd, J = 1.5, 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 168.8$, 141.3, 139.3, 133.5 (d, J = 84.4 Hz), 133.5 (d, J = 32.0 Hz), 130.0, 127.7, 127.2, 125.0, 122.2 (d, J = 9.2), 119.6 (d, J = 3.1 Hz), 115.2 (m); ¹⁹F NMR (380 MHz, DMSO-*d*₆): $\delta = -62.3$; ESI-HRMS *m/z* calcd for C₁₄H₉F₃NO₄S: 344.0210 [M-H]⁻, found: 344.0240.

N-(2-(Hydrazinecarbonyl)-5-(trifluoromethyl)phenyl)benzenesulfonamide (**12**): light yellow solid; 36 % yield; IR (CHCl₃ cast): 3331, 3400 – 3250 (br), 3069, 1647, 1610, 1521, 1449, 1422 cm⁻¹; ¹H NMR (500 MHz, CD₃OD): $\delta = 7.84$ (d, J = 1.5 Hz, 1H), 7.74 (m, 2H), 7.64 (d, J = 8.5 Hz, 1H), 7.57 (m, 1H), 7.47 (m, 2H), 7.37 (dd, J = 1.5, 8.5, 1H); ¹³C NMR (125 MHz, CD₃OD): $\delta = 168.1$, 139.9 (d, J = 23 Hz), 134.6 (q, J = 32.8 Hz), 134.6, 130.4, 129.9, 128.3, 126.4, 125.8, 123.6, 121.7 (q, J = 3.5 Hz), 119.4 (q, J = 3.8Hz); ¹⁹F NMR (380 MHz, CD₃OD): $\delta = -65.0$; ESI-HRMS *m/z* calcd for C₁₄H₁₂F₃N₃NaO₃S: 382.0444 [M+Na]⁺, found: 382.0440.

2-(4-Chlorophenylsulfonamido)-4-fluorobenzoic acid (**13a**): yellow solid; 37 % yield; IR (CHCl₃ cast): 3099, 3300 – 2750 (br), 1662, 1608, 1588, 1501, 1476, 1443, 1424 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 7.98 (dd, *J* = 6.5, 9.0 Hz, 1H), 7.87 (m, 2H), 7.66 (m, 2H), 7.23 (dd, *J* = 3.0, 11.0 Hz, 1H), 7.00 (ddd, *J* = 3.0, 8.5, 9.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 168.9, 164.9 (d, *J* = 250.8 Hz), 141.7 (d, *J* = 11.8 Hz), 138.7, 137.2, 134.5 (d, J = 11.0 Hz), 129.8 (d, J = 8.0 Hz), 128.8, 113.6 (d, J = 2.3 Hz), 110.7 (d, J = 21.3 Hz), 105.2 (d, J = 27.0 Hz); ¹⁹F NMR (380 MHz, DMSO- d_6): δ = -102.2 (q, J = 8.7 Hz); ESI-HRMS m/z calcd for C₁₃H₈CIFNO₄S: 327.9852 [M-H]⁻, found: 327.9849.

4-Chloro-*N*-(5-fluoro-2-(hydrazinecarbonyl)phenyl)benzenesulfonamide (**13**): light yellow solid; 40 % yield; IR (CHCl₃ cast): 3327, 3400 – 3250 (br), 3093, 2924, 1639, 1594, 1505, 1478, 1423 cm⁻¹; ¹H NMR (500 MHz, CD₃OD): $\delta = 7.74$ (m, 2H), 7.55 (dd, J = 6.0, 9.0 Hz, 1H), 7.49 (m, 2H), 7.35 (dd, J = 3.0, 11.0 Hz, 1H), 6.84 (ddd, J = 2.5,8.0, 8.5 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD): $\delta = 168.7, 165.9$ (d, J = 250.3 Hz), 141.7 (d, J = 11.4 Hz), 140.8, 139.0, 131.2 (d, J = 10.3 Hz), 130.5 (d, J = 3.9 Hz), 130.0, 118.6 (d, J = 3.1 Hz), 112.1 (d, J = 21.9 Hz), 109.3 (d, J = 26.5 Hz); ¹⁹F NMR (380 MHz, CD₃OD): $\delta = -107.2$ (ddd, J = 7.6, 7.6, 9.9 Hz); ESI-HRMS *m/z* calcd for C₁₃H₁₁CIFN₃NaO₃S: 366.0086 [M+Na]⁺, found: 366.0086.

4-Fluoro-2-(4-methoxyphenylsulfonamido)benzoic acid (**14a**): yellow solid; 63 % yield; IR (CHCl₃ cast): 3099, 3300 – 2750 (br), 2954, 2923, 2852, 1690, 1672, 1612, 1595, 1500, 1462, 1429 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 7.97$ (dd, J = 6.5, 9.0 Hz, 1H), 7.79 (m, 2H), 7.23 (dd, J = 2.5, 11.0 Hz, 1H), 7.09 (m, 2H), 6.96 (ddd, J = 2.5, 8.0, 9.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 169.0$, 164.9 (d, J = 250.4 Hz), 163.1, 142.3 (d, J = 12.0 Hz), 134.4 (d, J = 11.1 Hz), 129.6, 129.2, 114.8, 112.9, 110.2 (d, J =21.8 Hz), 104.6 (d, J = 27.0 Hz), 55.7; ¹⁹F NMR (380 MHz, DMSO-*d*₆): $\delta = -102.2$ (ddd, J = 7.6, 7.6, 11.0 Hz); ESI-HRMS *m/z* calcd for C₁₄H₁₁FNO₅S: 324.0347 [M-H]⁻, found: 324.0346.

N-(5-Fluoro-2-(hydrazinecarbonyl)phenyl)-4-methoxybenzenesulfonamide (14): light yellow solid; 58 % yield; IR (CHCl₃ cast): 3330, 3400 – 3250 (br), 3099, 3022, 2973, 2946, 2843, 1633, 1596, 1499, 1463, 1440, 1422 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): $\delta =$

7.79 (m, 2H), 7.54 (dd, J = 6.0, 8.8 Hz, 1H), 7.33 (dd, J = 2.8, 10.8 Hz, 1H), 6.96 (m, 2H), 6.81 (ddd, J = 2.4, 8.0, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD): $\delta = 167.5$, 164.5 (d, J = 249.0 Hz), 163.6, 140.7 (d, J = 11.5 Hz), 130.1, 129.7 (d, J = 10.1 Hz), 129.1, 116.9 (d, J = 3.1 Hz), 114.0, 110.3 (d, J = 22.3 Hz), 107.6 (d, J = 26.5 Hz); ¹⁹F NMR (380 MHz, CD₃OD): $\delta = -107.6$ (ddd, J = 7.6, 7.6, 11.4 Hz); ESI-HRMS *m/z* calcd for C₁₄H₁₄FN₃NaO₄S: 362.0581 [M+Na]⁺, found: 362.0578.

4-Fluoro-2-(4-fluorophenylsulfonamido)benzoic acid (**15a**): yellow solid; 53 % yield; IR (microscope): 3169, 3106, 3071, 3300 – 2750 (br), 1653, 1611, 1592, 1508, 1498, 1445, 1422 cm⁻¹; ¹H NMR (600 MHz, CD₃OD): δ = 8.02 (dd, *J* = 6.6, 9.0 Hz, 1H), 7.89 (m, 2H), 7.39 (dd, *J* = 2.4, 10.8 Hz, 1H), 7.25 (m, 2H), 6.84 (ddd, *J* = 2.4, 8.4, 9.0 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD): δ = 170.6, 167.2 (d, *J* = 251.8 Hz), 166.9 (d, *J* = 253.0 Hz), 144.0 (d, *J* = 12.0 Hz), 136.4 (d, *J* = 3.0 Hz), 135.6 (d, *J* = 10.8 Hz), 131.4 (d, *J* = 9.8 Hz), 117.5 (d, *J* = 23.0 Hz), 114.4 (d, *J* = 2.9 Hz), 111.6 (d, *J* = 22.3 Hz), 107.0 (d, *J* = 27.4 Hz); ¹⁹F NMR (380 MHz, CD₃OD): δ = -103.9 (ddd, *J* = 7.2, 7.2, 11.2 Hz), -106.4 (ddd, *J* = 4.9, 8.7, 13.7 Hz); ESI-HRMS *m*/*z* calcd for C₁₃H₈F₂NO₄S: 312.0148 [M-H]⁻, found: 312.0153.

4-Fluoro-*N*-(5-fluoro-2-(hydrazinecarbonyl)phenyl)benzenesulfonamide (**15**): white solid; 43 % yield; IR (CHCl₃ cast): 3331, 3400 – 3250 (br), 3106, 1637, 1593, 1496, 1423 cm⁻¹; ¹H NMR (500 MHz, CD₃OD): δ = 7.83 (m, 2H), 7.56 (dd, *J* = 8.0, 11.0 Hz, 1H), 7.36 (dd, *J* = 3.5, 13.5 Hz, 1H), 7.22 (m, 2H), 6.85 (ddd, *J* = 3.0, 10.0, 11.0 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD): δ = 168.7, 166.8 (d, *J* = 252.5 Hz), 165.8 (d, *J* = 249.4 Hz), 141.8 (d, *J* = 11.4 Hz), 136.4 (d, *J* = 3.0 Hz), 131.3 (d, *J* = 9.8 Hz), 131.2 (d, *J* = 10.3 Hz), 118.7 (d, *J* = 2.6 Hz), 117.4 (d, *J* = 23.0 Hz), 112.1 (d, *J* = 22.0 Hz), 109.4 (d, *J* = 26.4 Hz); ¹⁹F NMR (380 MHz, CD₃OD): δ = -106.7 (ddd, *J* = 4.9, 8.4, 13.3 Hz), -107.3 (ddd, *J* = 7.2, 7.2, 11.0 Hz); ESI-HRMS *m/z* calcd for C₁₃H₁₂F₂N₃O₃S: 328.0562 [M+H]⁺, found: 328.0561.

4-Fluoro-2-(4-methylphenylsulfonamido)benzoic acid (**16a**): yellow solid; 34 % yield; IR (microscope): 3192, 3103, 3300 – 2750 (br), 2925, 2864, 1681, 1611, 1593, 1504, 1436,

1397 cm⁻¹; ¹H NMR (500 MHz, CD₃OD): $\delta = 8.00$ (dd, J = 6.5, 9.0 Hz, 1H), 7.71 (d, J = 8.5 Hz, 2H), 7.37 (dd, J = 2.5, 11.0 Hz, 1H), 7.31 (d, J = 8.5 Hz, 2H), 6.80 (ddd, J = 2.5, 8.0, 9.0 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD): $\delta = 170.6$, 167.2 (d, J = 251.4 Hz), 146.0, 144.3 (d, J = 12.1 Hz), 137.3, 135.6 (d, J = 10.8 Hz), 130.9, 128.4, 114.0 (d, J = 2.8 Hz), 111.2 (d, J = 22.3 Hz), 106.7 (d, J = 27.4 Hz), 21.5; ¹⁹F NMR (380 MHz, CD₃OD): $\delta = -104.2$ (ddd, J = 7.2, 7.2, 12.2 Hz); ESI-HRMS *m/z* calcd for C₁₄H₁₁FNO₄S: 308.0398 [M-H]⁻, found: 308.0404.

N-(5-Fluoro-2-(hydrazinecarbonyl)phenyl)-4-methylbenzenesulfonamide (**16**): yellow solid; 77 % yield; IR (CHCl₃ cast): 3329, 3400 – 3250 (br), 3094, 2926, 1636, 1596, 1503, 1423 cm⁻¹; ¹H NMR (500 MHz, CD₃OD): δ = 7.64 (m, 2H), 7.54 (dd, *J* = 6.5, 9.0 Hz, 1H), 7.34 (dd, *J* = 2.5, 11.0 Hz, 1H), 7.28 (m, 2H), 6.81 (ddd, *J* = 2.5, 8.0, 9.0 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD): δ = 168.8, 165.8 (d, *J* = 250.0 Hz), 145.8, 142.1 (d, *J* = 11.4 Hz), 137.3, 131.1 (d, *J* = 10.3 Hz), 130.8, 128.3, 118.2 (d, *J* = 2.9 Hz), 111.7 (d, *J* = 22.3 Hz), 109.0 (d, *J* = 26.5 Hz), 21.5; ¹⁹F NMR (380 MHz, CD₃OD): δ = -107.4 (ddd, *J* = 7.2, 7.2, 9.9 Hz); ESI-HRMS *m/z* calcd for C₁₄H₁₅FN₃O₃S: 324.0813 [M+H]⁺, found: 324.0813.

4-Fluoro-2-(methylsulfonamido)benzoic acid (**17a**): grey solid; 41 % yield; IR (CHCl₃ cast): 3220, 3109, 3300 – 2750 (br), 2931, 2851, 1660, 1623, 1588, 1506, 1430, 1416 cm⁻¹; ¹H NMR (500 MHz, CD₃OD): $\delta = 8.16$ (dd, J = 6.5, 9.0 Hz, 1H), 7.44 (dd, J = 2.5, 11.0 Hz, 1H), 6.89 (ddd, J = 2.4, 8.0, 8.8 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD): $\delta = 170.6$, 167.5 (d, J = 251.1 Hz), 144.7 (d, J = 12.0 Hz), 135.8 (d, J = 11.0 Hz), 113.5 (d, J = 2.5 Hz), 110.8 (d, J = 22.4 Hz), 105.8 (d, J = 27.8 Hz), 40.2; ¹⁹F NMR (380 MHz, CD₃OD): $\delta = -103.9$ (ddd, J = 7.6, 7.6, 11.4 Hz); ESI-HRMS *m/z* calcd for C₈H₇FNO₄S: 232.0085 [M-H]⁻, found: 232.0085.

N-(5-Fluoro-2-(hydrazinecarbonyl)phenyl)methanesulfonamide (**17**): white solid; 88 % yield; IR (CHCl₃ cast): 3300, 3400 – 3250 (br), 3093, 3026, 2932, 1641, 1595, 1506, 1426 cm⁻¹; ¹H NMR (500 MHz, CD₃OD): δ = 7.71 (dd, *J* = 6.0, 8.5 Hz, 1H), 7.41 (dd, *J* = 2.5, 11.0 Hz, 1H), 6.90 (ddd, *J* = 2.5, 8.0, 9.0 Hz, 1H), 3.06 (s, 3H); ¹³C NMR (125 MHz, CD₃OD): δ = 169.1, 166.2 (d, *J* = 248.9 Hz), 142.5 (d, *J* = 11.3 Hz), 131.4 (d, *J* = 10.3 Hz), 117.5 (d, *J* = 3.1 Hz), 111.2 (d, *J* = 22.3 Hz), 107.6 (d, *J* = 27.1 Hz), 40.0; ¹⁹F

NMR (380 MHz, CD₃OD): δ = -107.2 (ddd, *J* = 7.2, 7.2, 11.0 Hz); ESI-HRMS *m*/*z* calcd for C₈H₁₀FN₃NaO₃S: 270.0319 [M+Na]⁺, found: 270.0319.

(*E*)-(4-((2-(4-Fluoro-2-(phenylsulfonamido)benzoyl)hydrazono)methyl)-5-hydroxy-6methylpyridin-3-yl)methyl dihydrogen phosphate (**19**): Compound **9** (7.1 mg, 2.3×10⁻⁵ mol) and PLP (5.7 mg, 2.3 ×10⁻⁵ mol) were mixed in 1 mL of CD₃OD and 1 mL of D₂O. The yellow solution was analyzed by ¹H and ¹³C NMR. The mixture was dried in *vacuo*, then IR and HRMS data of solid material were collected. Yellow solid; IR (CHCl₃ cast): 3500 – 2500 (br), 3062, 2918, 1651, 1605, 1511, 1480, 1447, 1427 cm⁻¹; ¹H NMR (500 MHz, D₂O): $\delta = 8.54$ (s, 1H), 7.95 (s, 1H), 7.71 (m, 3H), 7.56 (m, 1H), 7.49 (m, 2H), 7.14 (m, 1H), 6.91 (m, 1H), 5.00 (d, *J* = 5 Hz, 2H), 2.47 (s, 3H); ¹³C NMR (125 MHz, D₂O): $\delta = 166.8$, 165.7, 164.8, 153.5 (d, *J* = 4.9 Hz), 149.1, 147.7, 142.2 (m), 139.6, 136.6 (m), 134.3, 132.5 (d, *J* = 10.8 Hz), 131.6 (d, *J* = 6.1 Hz), 130.4, 127.5 (d, *J* = 5.1 Hz), 123.4 (d, *J* = 2.8 Hz), 120.7 (d, *J* = 3.1 Hz), 112.4 (m), 62.9 (d, *J* = 3.0 Hz), 18.1; ¹⁹F NMR (380 MHz, D₂O): $\delta = -105.0$ (m); ESI-HRMS *m*/*z* calcd for C₂₁H₁₉FN₄O₈PS: 537.0651 [M-H]⁻, found: 537.0652.

Determination of IC₅₀

Aliquot buffer solution: 420 mg of 2-oxoglutarate and 480 mg of racemic DAP (commercial) were dissolved in 280 mL of 100 mM HEPES-KOH, pH 7.6. 9 mL of this solution was used to dissolve 9 mg of 2-aminobenzaldehyde (OAB) and 850 μ L of this stock was added into 8 assay cells (1mL). The final concentration of each component in the stock solution is: 2-OG (10 mM); OAB (8.3 mM); LL-DAP (assuming 25% of total DAP: 2.3 mM). Upon dilution to 1 mL in the assay cells, the final concentrations are: 2-OG (8.5 mM); OAB (7 mM); LL-DAP (2.0 mM).

Preparation of inhibitor working stock: 4 μ mol of inhibitor was dissolved in 1 mL of DMSO, which resulted 4 μ mol/mL in concentration. The serial dilution gave 2 μ mol/mL, 1 μ mol/mL, 0.5 μ mol/mL, 0.25 μ mol/mL, 0.125 μ mol/mL, 0.0625 μ mol/mL, and 0.03125 μ mol/mL solutions. In the final assay cell, the inhibitor concentrations were 100 μ M, 50 μ M, 25 μ M, 12.5 μ M, 6.25 μ M, 3.125 μ M and 1.5625 μ M, respectively.

Addition of inhibitor: $50 \ \mu$ L of each concentration of inhibitor solutions was added into cell 2 to 8. And 50 μ L of pure DMSO was added into cell 1 and 9, which are control and negative control. The Varian Cary 100 Bio UV-Visible spectrophotometer was used to measure the absorbance at 440 nm. Under the program of Enzyme Kinetics the absorbance for all the cells were then multi-zeroed.

Addition of enzyme: A 0.043 mg/mL solution of LL-DAP-AT in 100 mM HEPES-KOH pH 7.6 was prepared and 100 uL of this was added to each cell, except the negative

control (cell 9). The final concentration of the enzyme was 0.0043 mg/mL. The absorbance was recorded for 120 min with 20 sec/cycle. The initial rate of increase of the absorbance is proportional to the rate of reaction. By comparing the initial slope of each absorbance curve of the inhibitor assay cell to the control cell, the percentage inhibition was determined and the IC_{50} value was calculated based on this data.

Reference

N. Watanabe, M. M. Cherney, M. J. van Belkum, S. L. Marcus, M. D. Flegel, M. D. Clay, M. K. Deyholos, J. C. Vederas and M. N. James, *J Mol Biol*, 2007, 371, 685.