Copper(I)-Amine Metallo-Organocatalyzed Synthesis of Carboand Heterocyclic Systems

Supporting Information

Benjamin Montaignac, Victor Östlund, Maxime R. Vitale, Virginie Ratovelomanana-Vidal* and Véronique Michelet*

A.	General information	1
B.	Formyl alkynes substrates	2
C.	Carbocyclization Reactions	10
D.	Copies of ¹ H and ¹³ C NMR Spectra	17

A. General information

DCE and cyclohexylamine were distilled on CaH₂. All manipulations were carried out under argon atmosphere. All signals were expressed as ppm (δ) and internally referenced to residual protio solvent signals. Coupling constants (*J*) are reported in Hz and refer to apparent peak multiplicities. High resolution mass spectra were performed at the University Pierre and Marie Curie (Paris). IR spectra were recorded on a JASCO FT/IR 6300. Melting points (m.p.) were determined on a Kofler block and were uncorrected.

B. Formyl alkynes substrates

All formyl alkynes substrates were prepared according to procedures already described in the literature.¹

dimethyl 2-(2-methyl-3-oxopropyl)-2-(prop-2-ynyl)malonate (1) :

¹**H NMR** (**CDCl**₃, **300 MHz**) δ 9.52 (d, *J* = 2.0 Hz, 1H), 3.71 (s, 6H), 2.85 (d, *J* = 2.7 Hz, 2H), 2.64-2.57 (dd, 1H), 2.55-2.48 (m, 1H), 2.04 (t, *J* = 2.7 Hz, 1H), 2.04-1.99 (m, 1H), 1.12 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, 75 MHz) δ 203.1, 170.3, 78.4, 72.0, 56.0, 52.9, 42.4, 32.9, 23.9, 15.4.

The 1 H and 13 C NMR data obtained were in agreement with that reported in the literature. 1a

diisopropyl 2-(2-methyl-3-oxopropyl)-2-(prop-2-ynyl)malonate (3) :

¹**H** NMR (300 MHz, C) δ 9.33 (d, J = 1.9 Hz, 1H), 4.99 (m, 2H), 2.95 (d, J = 2.7 Hz, 2H), 2.81 (dd, J = 14.8, 7.4 Hz, 1H), 2.49 – 2.24 (m, 1H), 2.11 (dd, J = 14.8, 4.2 Hz, 1H), 1.68 (dd, J = 3.2, 2.2 Hz, 1H), 1.05 – 0.97 (m, 9H), 0.95 (d, J = 6.3 Hz, 3H), 0.82 (d, J = 7.2 Hz, 3H).

¹³C NMR (**75** MHz, C₆D₆) δ 202.1, 169.5, 79.1, 72.1, 69.3, 69.3, 69.2, 56.3, 56.3, 42.5, 35.9, 35.7, 33.0, 24.0, 23.9, 21.3, 19.5, 15.4.

 \mbox{HRMS} calculated for $C_{16}H_{24}O_6Na:335.14651$; found : 335.14668.

IR (neat, cm⁻¹) 3295, 2978, 1725, 1276, 1197, 1102.

dibenzyl 2-(2-methyl-3-oxopropyl)-2-(prop-2-ynyl)malonate (5) :

¹**H NMR (300 MHz, C₆D₆)** δ 8,99 (d, J = 1.9 Hz, 1H), 6.99 – 6.76 (m, 18H), 4.72 (d, J = 12.4 Hz, 4H), 2.73 (d, J = 2.7 Hz, 2H), 2.63 – 2.49 (m, 1H), 2.19 – 2.05 (m, 1H), 1.98 – 1.85 (m, 1H), 1.48 – 1.40 (m, 1H), 0.50 (d, J = 7.3 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 199.6, 170.9, 170.8, 149.4, 135.3, 135.2, 128.5, 128.4, 128.3, 128.1, 110.8, 67.6, 67.5, 58.2, 56.7, 41.0, 40.2, 21.6.

HRMS calculated for $C_{24}H_{24}O_5Na:415.15160$; found : 415.15207.

IR (neat, cm⁻¹) 3297, 2980, 1725, 1289, 1202.

4,4-bis(methoxymethyl)-2-methylhept-6-ynal (7) :

¹**H NMR (CDCl₃, 300 MHz)** δ 9.43 (d, *J* = 3,6 Hz, 1H), 3.27-3.17 (m, 10H), 2.58-2.45 (m, 1H), 2.27-2.25 (d, *J* = 2.7 Hz, 2H), 1.99 (m,1H), 2.00-1.92 (m, 1H), 1.42-1.36 (dd, *J* = 14.6 Hz, *J* = 2.8 Hz, 1H), 1.07 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, **75** MHz) δ 204.7, 80.7, 74.6, 74.0, 70.5, 59.0, 58.9, 41.9, 40.4, 33.8, 22.8, 16.7.

¹ (a) J. T. Binder, B. Crone, T. T. Haug, H. Menz, S. F. Kirsch, Org. Lett., 2008, **10**, 1025; (b) B. Montaignac, M. R. Vitale, V. Michelet, V. Ratovelomanana-Vidal, *Org. Lett.*, 2010, **12**, 2582; (c) B. Montaignac, M. R. Vitale, V. Ratovelomanana-Vidal, V. Michelet, *J. Org. Chem.*, 2010, **75**, 8322; (d) B. Montaignac, M. R. Vitale, V. Ratovelomanana-Vidal, V. Michelet, *Eur. J. Org. Chem.*, **2011**, 3723

The ¹H and ¹³C NMR data obtained were in agreement with that reported in the literature.^{1a}

4,4-bis(benzyloxymethyl)-2-methylhept-6-ynal (9) :

¹**H** NMR (CDCl₃, 300 MHz) δ 9.42 (d, J = 3.5 Hz, 1H), 7.36-7.26 (m, 10H), 4.49-4.39 (m, 4H), 3.43-3.33 (m, 4H), 2.56-2.49 (m, 1H), 2.34 (d, J = 2.7 Hz, 2H), 2.03 (dd, J = 14.5 Hz, J = 9.0 Hz, 1H), 1.96 (t, J = 2.7 Hz, 1H), 1.45 (dd, J = 14.5 Hz, J = 2.9 Hz, 1H), 1.06 (d, J = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, 75 MHz) δ 204.7, 138.3, 128.3, 127.1, 80.9, 73.1, 72.0, 71.6, 70.7, 41.9, 41.8, 33.6, 22.9, 16.7.

The 1 H and 13 C NMR data obtained were in agreement with that reported in the literature. 1a

2-(2-methyl-3-oxopropyl)-2-(prop-2-ynyl)propane-1,3-diyl diacetate (11):

¹**H NMR (CDCl₃, 300 MHz)** δ 9.56 (d, *J* = 2.6 Hz, 1H), 4.09 – 3.90 (m, 4H), 2.61 – 2.43 (m, 1H), 2.29 (d, *J* = 2.7 Hz, 2H), 2.13 (dd, *J* = 14.9, 7.8 Hz, 1H), 2.09 – 2.03 (m, 7H), 1.40 (dd, *J* = 14.9, 3.7 Hz, 1H), 1.15 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 203.5, 170.5(2C), 78.9, 72.0, 65.5, 65.4, 41.6, 39.8, 32.4, 22.7, 20.8(2C), 16.4.
HRMS calculated for C₁₄H₂₀O₅Na : 291.12029 ; found : 291.12030.

IR (neat, cm⁻¹) 3296, 1741, 1226, 1040.

4,4-bis((tert-butyldiphenylsilyloxy)methyl)-2-methylhept-6-ynal (13):

¹**H** NMR (300 MHz, CDCl₃) δ 9.38 (d, J = 2.8 Hz, 1H), 7.72 – 7.42 (m, 8H), 7.38 – 7.20 (m, 12H), 3.63 – 3.36 (m, 4H), 2.40 – 2.11 (m, 1H), 2.21 (dd, J = 7.9, 2.7 Hz, 2H), 1.93 (dd, J = 14.6, 7.7 Hz, 1H), 1.78 (t, J = 2.6 Hz, 1H), 1.34 (dd, J = 14.7, 4.1 Hz, 1H), 0.97 (s, 18H), 0.92 (d, J = 7.1 Hz, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ 204.7, 135.7(8C), 133.1(4C), 129.7(4C), 127.6(8C), 81.1, 70.1, 65.3, 65.2, 43.7(2C), 41.7, 32.4, 26.9(6C), 22.0, 19.3, 16.3.

HRMS calculated for $C_{42}H_{52}O_3NaSi_2: 683.33472$; found : 683.33441.

IR (neat, cm⁻¹) 3300, 2929, 1725, 1426, 1110, 1089.

¹H NMR (300 MHz, CDCl₃) δ 9.46 (d, J = 3.3 Hz, 1H), 9.43 (d, J = 3.5 Hz, 1H), 7.68 (m, 8H), 7.54 - 7.07 (m, 22H), 5.32 (s, 2H), 4.57 - 4.27 (m, 4H), 3.79 - 3.17 (m, 2H), 3.49 (d, J = 9.0 Hz, 2H), 3.31 (d, J = 9.0 Hz, 2H), 2.59 - 2.43 (m, 2H), 2.46 - 2.25 (m, 4H), 2.14 - 1.86 (m, 4H), 1.53 - 1.34 (m, 2H), 1.07 (m, 24H).

¹³C NMR (75 MHz, CDCl₃) δ 204.8, 138.2, 135.7, 133.2, 129.6, 128.3, 127.6, 127.5, 80.9, 80.8, 72.9, 71.2, 70.8, 65.2, 64.6, 53.4, 42.8, 41.9, 41.8, 32.9, 32.5, 26.8, 23.0, 21.5, 19.3, 16.5, 16.4.
HRMS calculated for C₃₃H₄₀O₃SiNa, CH₃OH : 567.29011 ; found : 567.28996.
IR (neat, cm⁻¹) 3299, 1721, 1272, 1260, 1114, 1090.

2-methyl-4,4-bis(phenylsulfonyl)hept-6-ynal (17) :

¹**H NMR (300 MHz, CDCl₃)** δ 9.69 (d, *J* = 1.4 Hz, 1H), 8.26 – 7.91 (m, 4H), 7.79 – 7.65 (m, 2H), 7.61-7.55 (m, 4H), 3.58 – 3.29 (m, 1H), 3.25 – 2.96 (m, 3H), 2.24 – 2.08 (m, 1H), 2.01 – 1.90 (m, 1H), 1.26 (d, *J* = 7.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 202.1, 136.5, 135.0, 131.6, 131.4, 128.9, 128.8, 88.4, 75.6, 74.7, 41.5, 29.9, 22.3, 16.8.
HRMS calculated for C₁₈H₂₀O₅Na : 427.06444 ; found : 427.06431.
IR (neat, cm⁻¹) 3289, 1721, 1330, 1314, 1148.
mp 108-109°C

Dimethyl 2-(2-formylbutyl)-2-(prop-2-ynyl)malonate (19) :

¹**H NMR (300 MHz, C_6D_6)** δ 9.25 (d, J = 2.5 Hz, 1H), 3.33 (s, 3H), 3.31 (s, 3H) 3.04 – 2.79 (m, 2H), 2.66 (dd, J = 14.6, 9.1 Hz, 1H), 2.36 – 2.24 (m, 1H), 2.21 (dd, J = 14.6, 2.2 Hz, 1H), 1.74 (t, J = 2.7 Hz, 1H), 1.43 – 1.24 (m, 1H), 1.24 – 1.05 (m, 1H), 0.68 (t, J = 7.4 Hz, 3H).

¹³C NMR (**75 MHz, C₆D₆**) δ 202.2, 170.3, 170.3, 78.9, 72.3, 56.3, 52.4, 49.1, 31.1, 24.2, 23.6, 11.0.

HRMS calculated for C₁₃H₁₈O₅Na : 277.10464 ; found : 277.10488. **IR** (neat, cm⁻¹) 3289, 2962, 1737, 1434, 1280, 1260.

dimethyl 2-(2-formylhexyl)-2-(prop-2-ynyl)malonate (21) :

¹**H NMR (300 MHz, C₆D₆)** δ 9.29 (d, J = 2.7 Hz, 1H), 3.34 (s, 3H), 3.32 (s, 3H), 2.94 (dd, J = 5.1, 2.7 Hz, 2H), 2.69 (dd, J = 14.6, 9.3 Hz, 1H), 2.49 – 2.32 (m, 1H), 2.25 (d, J = 14.7 Hz, 1H), 1.43 – 1.22 (m, 2H), 1.24 – 0.97 (m, 5H), 0.83 – 0.63 (m, 3H).

¹³C NMR (**75** MHz, C₆D₆) δ 200.4, 168.4, 168.4, 77.0, 70.4, 54.4, 50.5, 45.9, 29.7, 28.5, 27.0, 22.3, 20.9, 12.0.

HRMS calculated for C₁₅H₂₂O₅Na : 305.13594 ; found : 305.13568. **IR** (**neat, cm⁻¹**) 3299, 2958, 2929, 1734, 1437, 1276, 1261, 1203.

Dimethyl 2-(2-benzyl-3-oxopropyl)-2-(prop-2-ynyl)malonate (23) :

¹**H** NMR (300 MHz, CDCl₃) δ 9.48 (d, J = 2.4 Hz, 1H), 7.32 – 6.90 (m, 5H), 3.56 (d, J = 12.8 Hz, 6H), 2.84 (dd, J = 12.2, 6.0 Hz, 1H), 2.76 – 2.56 (m, 4H), 2.47 (dd, J = 14.8, 8.9 Hz, 1H), 2.06 (dd, J = 14.9, 1.8 Hz, 1H), 1.84 (t, J = 2.7 Hz, 1H).

¹³C NMR (75 MHz, C₆D₆) δ 202.1, 170.4, 170.2, 138.2, 129.6 (2C), 128.8(2C), 126.8, 78.6, 72.3, 56.4, 52.5, 49.5, 37.1, 31.3, 24.2.
HRMS calculated for C₁₈H₂₀O₅Na : 339.12029 ; found : 339.12009.
IR (neat, cm⁻¹) 3291, , 1732, 1437, 1274, 1261, 1203.

dimethyl 2-(3-oxo-2-phenylpropyl)-2-(prop-2-ynyl)malonate (25) :

¹H NMR (300 MHz, CDCl₃) δ 9.59 (d, J = 1.3 Hz, 1H), 7.54 – 7.09 (m, 5H), 3.89 – 3.74 (m, 1H), 3.68 (s, 3H), 3.51 (s, 3H), 3.03 (dd, J = 14.8, 6.2 Hz, 1H), 2.87 (dd, J = 2.7, 1.0 Hz, 2H), 2.47 (dd, J = 14.8, 6.5 Hz, 1H), 2.04 (t, J = 2.7 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 198.4, 170.2, 170.0, 135.4, 129.2 (2C), 129.1 (2C), 127.9, 78.3, 72.1, 55.7, 54.8, 52.9, 52.7, 31.9, 24.0. HRMS calculated for C₁₇H₁₈O₅Na : 325.10464 ; found : 325.10458.

IR (neat, cm⁻¹) 3300, 2960, 1734, 1435, 1273, 1261, 1203.

2-butyl-4,4-bis(methoxymethyl)hept-6-ynal (27) :

¹**H NMR (300 MHz, C_6D_6)** δ 9.35 (d, J = 4.1 Hz, 1H), 3.25 – 3.07 (m, 4H), 3.04 (s, 3H), 3.02 (s, 3H), 2.40 – 2.24 (m, 3H), 1.92 (dd, J = 14.4, 9.9 Hz, 1H), 1.78 (t, J = 2.7 Hz, 1H), 1.43 (dd, J = 14.4, 1.8 Hz, 1H), 1.38 – 1.26 (m, 1H), 1.24 – 1.04 (m, 5H), 0.88 – 0.68 (m, 3H).

¹³C NMR (**75** MHz, C₆D₆) δ 203.0, 81.1, 74.4, 73.8, 70.7, 58.5, 58.4, 47.3, 41.6, 32.1, 31.2, 29.0, 23.0, 22.8, 13.9.

HRMS calculated for C₁₅H₂₆O₃Na : 277.17742 ; found : 277.17780. **IR** (neat, cm⁻¹) 3289, 2929, 2870, 1709, 1447, 1107.

2-benzyl-4,4-bis(methoxymethyl)hept-6-ynal (29) :

¹**H** NMR (300 MHz, C_6D_6) δ 9.43 (d, J = 3.3 Hz, 1H), 7.34 – 6.78 (m, 5H), 3.20 – 3.02 (m, 4H), 2.98 (s, 3H), 2.93 (s, 3H), 2.84 – 2.60 (m, 2H), 2.38 (dd, J = 13.0, 7.0 Hz, 1H), 2.31 – 2.12 (m, 2H), 2.04 – 1.88 (m, 1H), 1.68 (t, J = 2.7 Hz, 1H), 1.48 (dd, J = 14.5, 1.6 Hz, 1H). ¹³C NMR (75 MHz, C_6D_6) δ 202.5, 138.8, 129.4, 128.5, 126.5, 80.9, 74.6, 73.9, 70.7, 58.4, 58.4, 48.9, 41.5, 37.8, 31.7, 23.0.

 $\label{eq:HRMS} \mbox{ calculated for $C_{18}H_{24}O_3Na: 311.16177; found: 311.16183.} $$ IR (neat, cm^{-1}) 3282, 2883, 1721, 1447, 1102. $$$

4,4-bis(methoxymethyl)-2-phenylhept-6-ynal (31) :

¹H NMR (300 MHz, CDCl₃) δ 9.64 (d, J = 2.6 Hz, 1H), 7.41 – 7.11 (m, 5H), 3.93 (ddd, J = 8.3, 4.5, 2.6 Hz, 1H), 3.34 (m, 4H), 3.23 – 2.97 (m, 6H), 2.72 (ddd, J = 14.4, 8.3, 1.3 Hz, 1H), 2.50 (d, J = 2.6 Hz, 2H), 2.07 (dd, J = 14.3, 4.5 Hz, 1H), 1.97 – 1.78 (m, 1H). ¹³C NMR (75 MHz, C₆D₆) δ 198.3, 138.5, 129.2 (2C), 129.1 (2C), 127.5, 81.1, 74.9, 74.3, $\label{eq:HRMS} \mbox{ calculated for $C_{17}H_{22}O_3Na: 297.14612$; found: 297.14582$.} \mbox{ IR (neat, cm^{-1}) 3286, 2883, 1725, 1451, 1102$.}$

4,4-bis(benzyloxymethyl)-2-butylhept-6-ynal (33) :

¹**H** NMR (300 MHz, C_6D_6) δ 9.31 (d, J = 4.2 Hz, 1H), 7.42 – 6.95 (m, 10H), 4.37 – 4.16 (m, 4H), 3.47 – 3.17 (m, 4H), 2.45 – 2.19 (m, 3H), 1.92 (dd, J = 14.4, 9.9 Hz, 1H), 1.78 (t, J = 2.6 Hz, 1H), 1.44 (dd, J = 14.4, 1.8 Hz, 1H), 1.36 – 1.21 (m, 1H), 1.19 – 1.03 (m, 5H), 0.78 (t, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz, C_6D_6) δ 203.5, 138.9, 138.8, 128.6, 127.9, 81.2, 73.3, 73.2, 72.2, 71.7, 71.1, 47.5, 42.0, 32.0, 31.3, 29.2, 23.2, 23.0, 14.1.

HRMS calculated for $C_{27}H_{34}O_3Na: 429.24002$; found : 429.23937.

IR (**neat**, **cm**⁻¹) 2933, 2862, 1725, 1455, 1098.

2-benzyl-4,4-bis(benzyloxymethyl)hept-6-ynal (35) :

¹**H** NMR (400 MHz, C_6D_6) δ 9.39 (d, J = 3.6 Hz, 1H), 7.27 – 7.12 (m, 8H), 7.13 – 7.03 (m, 4H), 7.00 (ddd, J = 7.3, 3.8, 1.4 Hz, 1H), 6.95 (dd, J = 5.2, 3.1 Hz, 2H), 4.29 – 4.06 (m, 4H), 3.35 – 3.12 (m, 4H), 2.80 – 2.69 (m, 1H), 2.62 (dd, J = 13.7, 7.2 Hz, 1H), 2.34 (dd, J = 13.7, 7.4 Hz, 1H), 2.28 (dd, J = 16.8, 2.7 Hz, 1H), 2.22 (dd, J = 16.8, 2.7 Hz, 1H), 1.94 (dd, J = 14.5, 9.7 Hz, 1H), 1.67 (t, J = 2.7 Hz, 1H), 1.49 (dd, J = 14.5, 2.0 Hz, 1H).

¹³C NMR (**75** MHz, C₆D₆) δ 202.9, 138.8, 129.6, 128.7, 128.6, 127.9, 126.6, 81.0, 73.3, 72.4, 71.9, 71.1, 49.2, 41.9, 37.7, 31.7, 23.2.

HRMS calculated for C₃₀H₃₂O₃Na : 463.22437 ; found : 463.22351. **IR** (**neat**, **cm**⁻¹) 3298, 2854, 1721, 1451, 1089.

4,4-bis(benzyloxymethyl)-2-phenylhept-6-ynal (37):

¹**H** NMR (300 MHz, C_6D_6) δ 9.38 (d, J = 2.5 Hz, 1H), 7.42 – 6.73 (m, 15H), 4.17 (s, 4H), 3.69 (ddd, J = 7.7, 4.8, 2.5 Hz, 1H), 3.42 – 3.11 (m, 4H), 2.50 (dd, J = 14.4, 7.9 Hz, 1H), 2.33 (d, J = 2.6 Hz, 2H), 1.90 (dd, J = 14.4, 4.9 Hz, 1H), 1.70 (t, J = 2.6 Hz, 1H).

¹³C NMR (**75** MHz, C₆D₆) δ 198.5, 138.9, 138.3, 129.2, 129.1, 128.6, 127.7, 127.5, 81.1, 73.3, 72.4, 72.0, 71.2, 54.8, 42.1, 32.9, 23.34.

 \mbox{HRMS} calculated for $C_{29}H_{30}O_3Na:449.20872$; found : 449.20815.

IR (**neat**, **cm**⁻¹) 3294, 3029, 1721, 1455, 1090.

3-(2-ethynylphenyl)-2-methylpropanal (39) :

¹**H** NMR (300 MHz, C_6D_6) δ 9.36 (d, J = 1.2 Hz, 1H), 7.55 – 7.25 (m, 1H), 6.97 – 6.86 (m, 1H), 6.84 – 6.76 (m, 2H), 3.19 – 2.99 (m, 1H), 2.88 (s, 1H), 2.59 – 2.31 (m, 2H), 0.77 (d, J = 6.9 Hz, 3H).

¹³C NMR (**75 MHz, CDCl**₃) δ 202.4, 142.0, 133.1, 129.8, 128.7, 126.3, 122.1, 82.1, 81.8, 47.0, 34.9, 12.8.

The ¹H and ¹³C NMR data obtained were in agreement with that reported in the literature.^{1a}

3-(2-ethynylphenyl)-2-phenylpropanal (40) :

¹H NMR (300 MHz, CDCl₃) δ 9.68 (d, J = 1.4 Hz, 1H), 7.47 – 7.33 (m, 1H), 7.33 – 7.13 (m, 3H), 7.14 – 7.00 (m, 4H), 6.94 – 6.90 (m, 1H), 3.98 (td, J = 7.5, 1.2 Hz, 1H), 3.59 (dd, J = 13.7, 7.1 Hz, 1H), 3.22 (s, 1H), 3.00 (dd, J = 13.7, 7.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 199.8, 141.4, 135.7, 132.9, 130.0, 129.0, 128.9, 128.7, 127.6,

126.3, 121.6, 82.11, 81.6, 59.4, 35.0.

 \mbox{HRMS} calculated for $C_{17}\mbox{H}_{14}\mbox{ONa}$: 257.09369 ; found : 257.09392.

IR (neat, cm⁻¹) 3248, 1716, 765, 700.

2-benzyl-3-(2-ethynylphenyl)propanal (41) :

¹H NMR (400 MHz, C_6D_6) δ 9.49 (d, J = 1.8 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.14 – 6.97 (m, 7H), 6.93 – 6.88 (m, 1H), 3.04 (dd, J = 20.8, 8.1 Hz, 1H), 3.05 – 2.92 (m, 1H), 2.87 (s, 1H), 2.88 – 2.80 (m, 2H), 2.55 (dd, J = 13.7, 6.2 Hz, 1H). ¹³C NMR (100MHz, C_6D_6) δ 202.9, 142.4, 138.4, 133.5, 130.5, 129.8, 128.9, 126.9, 126.8, 122.6, 82.5, 82.4, 54.5, 35.7, 34.1. HRMS calculated for $C_{18}H_{16}ONa : 271.10934$; found : 271.10981. IR (neat, cm⁻¹) 3252, 3029, 1712, 1442, 762, 695. mp 51-52°C

4-methyl-N-(2-methyl-3-oxopropyl)-N-(prop-2-ynyl)benzenesulfonamide (45):

¹H NMR (300 MHz ,CDCl₃) δ 9.70 (d, J = 1.7 Hz, 1H), 7.63-7.71 (m, 2H), 7.32-7.30 (m, 2H), 4.13 (d, J = 2.5 Hz, 2H), 3.50 (dd, J = 14.3 Hz, J = 7.6 Hz, 1H), 3.21 (dd, J = 14.3 Hz, J = 6.8 Hz, 1H), 2.90-2.77 (m, 1H), 2.43 (s, 3H), 2.04 (t, J = 2.5 Hz, 1H), 1.19 (d, J = 7.3 Hz). ¹³C NMR (75 MHz, CDCl₃) δ 202.9, 143.9, 135.2, 129.6 (2C), 127.8 (2C), 76.3, 74.2, 47.0, 45.4, 37.7, 21.6, 11.9. HRMS calculated for C₁₄H₁₇O₃NNaS: 302.08214 ; found : 302.08221. IR (neat, cm⁻¹) 3277, 2924, 1721, 1343, 1165.

N-(2-methyl-3-oxopropyl)-N-(prop-2-ynyl)benzamide (47) :

¹**H** NMR (400 MHz, C_6D_6 , **T** = 60°C) δ 9.42 (s, 1H), 7.43 – 7.30 (m, 2H), 7.11 – 6.98 (m, 3H), 3.87 – 3.76 (m, 2H), 3.72 (dd, J = 14.0, 8.0 Hz, 1H), 3.41 (dd, J = 14.0, 5.9 Hz, 1H), 2.70 – 2.37 (m, 1H), 1.86 (t, J = 2.5 Hz, 1H), 0.79 (d, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, C₆D₆, T = 60°C) δ 201.9, 171.5, 136.6, 129.9, 128.7, 127.4, 79.5, 73.4, 47.3, 45.6, 39.1, 11.9.

 $\label{eq:HRMS} \mbox{ calculated for $C_{17}H_{14}ONa: 230.11756$; found: 230.11760.} $$ IR (neat, cm^{-1}) 3269, 1725, 1629, 1455, 1422, 1260. $$$

$\it N-(2-formylhexyl)-4-methyl-N-(prop-2-ynyl) benzenesulfonamide~(49):$

¹**H** NMR (300 MHz, CDCl₃) δ 9.66 (d, *J* = 2.7 Hz, 1H), 7.82 – 7.65 (m, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 4.28 – 3.97 (m, 2H), 3.51 (dd, *J* = 14.1, 8.7 Hz, 1H), 3.21 (dd, *J* = 14.1, 5.8 Hz, 1H), 2.79 – 2.66 (m, 1H), 2.42 (s, 3H), 2.02 (t, *J* = 2.5 Hz, 1H), 1.77 – 1.44 (m, 2H), 1.44 – 1.18 (m, 4H), 0.89 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 203.3, 143.9, 135.1, 129.6, 127.8, 76.2, 74.2, 50.5, 45.5, 37.4, 28.8, 26.8, 22.7, 21.5, 13.8.

HRMS calculated for C₁₇H₂₃O₃NSNa : 344.12909 ; found : 344.12947. **IR** (**neat**, **cm**⁻¹) 3277, 2924, 1721, 1451, 1347, 1160, 1094.

N-(4-(benzyloxy)-2-formylbutyl)-4-methyl-N-(prop-2-ynyl)benzenesulfonamide (51) :

¹H NMR (300 MHz, C_6D_6) δ 9.50 (d, J = 1.4 Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.34 – 6.98 (m, 5H), 6.76 (d, J = 8.0 Hz, 2H), 4.21 (s, 2H), 4.00 (dd, J = 18.6, 2.3 Hz, 1H), 3.82 (dd, J = 18.6, 2.5 Hz, 1H), 3.52 – 3.38 (m, 2H), 3.38 – 3.27 (m, 1H), 3.27 – 3.15 (m, 1H), 2.70 – 2.44 (m, 1H), 1.89 (s, 3H), 1.79 – 1.53 (m, 2H), 1.47 (t, J = 2.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 202.7, 144.0, 138.1, 135.2, 129.7, 128.5, 127.9, 127.8 (2C), 76.3, 74.4, 73.2, 67.3, 48.1, 45.4, 37.4, 27.6, 21.7.

 \mbox{HRMS} calculated for $C_{22}H_{25}O_4NSNa:422.13965$; found : 422.14006.

N-(2-benzyl-3-oxopropyl)-4-methyl-N-(prop-2-ynyl)benzenesulfonamide (53) :

¹H NMR (300 MHz, CDCl₃) δ 9.76 (d, J = 1.6 Hz, 1H), 7.79 – 7.46 (m, 2H), 7.46 – 6.99 (m, 7H), 4.10 (d, J = 2.4 Hz, 2H), 3.57 – 3.34 (m, 1H), 3.32 – 3.11 (m, 2H), 3.04 (dd, J = 14.2, 7.0 Hz, 1H), 2.79 (dd, J = 14.2, 7.1 Hz, 1H), 2.41 (s, 3H), 1.99 (t, J = 2.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 202.7, 143.8, 137.5, 134.6, 129.5, 128.9, 128.7, 128.5, 127.8, 126.7, 76.3, 74.2, 52.2, 45.5, 38.1, 33.4, 21.5. HRMS calculated for C₂₀H₂₁O₃NSNa : 378.11344 ; found : 378.11385. IR (neat, cm⁻¹) 3306, 2920, 1721, 1351, 1327, 1168.

4-methyl-N-(3-oxo-2-phenylpropyl)-N-(prop-2-ynyl)benzenesulfonamide (55) :

¹H NMR (**300 MHz, CDCl**₃) δ 9.63 (d, J = 1.1 Hz, 1H), 7.70 – 7.57 (m, 2H), 7.37 – 7.24 (m, 3H), 7.24 – 7.14 (m, 4H), 4.12 – 4.04 (m, 2H), 3.77 (dd, J = 14.7, 7.6 Hz, 1H), 3.68 (dd, J = 18.6, 2.4 Hz, 1H), 3.36 (dd, J = 14.7, 7.2 Hz, 1H), 2.32 (s, 3H), 1.90 (t, J = 2.5 Hz, 1H). ¹³C NMR (**75 MHz, CDCl**₃) δ 199.0, 143.9, 135.2, 133.4, 129.6, 129.5, 129.2, 128.4, 127.9, 76.7, 74.1, 58.9, 46.9, 38.3, 21.6. HRMS calculated for C₁₉H₁₉O₃NSNa : 364.09779 ; found : 364.09809.

IR (**neat**, **cm**⁻¹) 3303, 2918, 1719, 1348, 1327, 1167.

2-phenyl-3-(prop-2-ynyloxy)propanal (57) :

¹H NMR (300 MHz, CDCl₃) δ 9.76 (m, 1H), 7.51 – 7.13 (m, 5H), 4.23 – 4.13 (m, 3H), 3.95 – 3.83 (m, 2H), 2.44 (t, J = 2.4 Hz, 1H). ¹³C NMR (75 MHz, C₆D₆) δ 198.0, 134.4, 129.1, 129.0, 79.6, 74.8, 69.0, 58.7, 58.2. HRMS calculated for C₁₂H₁₂O₂Na : 211.07295 ; found : 211.07281.* IR (neat, cm⁻¹) 3293, 1723, 1267, 1095, 735, 699.

dimethyl 2-(but-3-yn-1-yl)-2-(2-methyl-3-oxopropyl)malonate (59) :

¹**H NMR (200 MHz, CDCl₃)** δ 9.50 (d, J = 1.7 Hz, 1H), 3.70 (s, 3H), 3.69 (s, 3H), 2.61 – 2.38 (m, 2H), 2.30 – 2.01 (m, 4H), 1.95 (s, 1H), 1.89 – 1.72 (m, 1H), 1.09 (d, J = 7.0 Hz, 3H).

¹³C NMR (50 MHz, C₆D₆) δ 202.9, 171.3, 171.2, 83.0, 69.1, 56.4, 52.7, 42.6, 33.7, 32.9, 15.6, 14.2.

HRMS calculated for $C_{13}H_{18}O_5Na : 277.10464$; found : 277.10514.

IR (**neat, cm**⁻¹) 3286, 2953, 1728, 1435, 1202. **mp** 38-40°C

N-(but-3-yn-1-yl)-4-methyl-N-(2-methyl-3-oxopropyl)benzenesulfonamide (61) :

¹H NMR (**300** MHz, CDCl₃) δ 9.69 (d, *J* = 1.6 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 3.48 (dd, *J* = 14.5, 7.4 Hz, 1H), 3.33 – 3.23 (m, 2H), 3.17 (dd, *J* = 14.5, 6.9 Hz, 1H), 2.95 – 2.77 (m, 1H), 2.49 – 2.38 (m, 5H), 1.98 (t, *J* = 2.7 Hz, 1H), 1.18 (d, *J* = 7.3 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 203.2, 143.9, 135.7, 130.0, 127.3, 80.9, 70.6, 49.7, 48.4, 46.1, 21.6, 19.3, 12.1.

HRMS calculated for $C_{15}H_{19}O_3NSNa:316.09779$; found : 316.09657.

IR (neat, cm⁻¹) 3286, 2933, 1721, 1334, 1156, 978, 812.

4,4-bis(benzyloxymethyl)-2-methyloct-6-ynal (63) :

¹**H** NMR (300 MHz, CDCl₃) δ 9.36 (d, J = 3.3 Hz, 1H), 7.38 – 6.92 (m, 10H), 4.46 – 4.14 (m, 4H), 3.51 – 3.16 (m, 4H), 2.55 – 2.24 (m, 3H), 2.01 (dd, J = 14.4, 8.8 Hz, 1H), 1.52 (t, J = 2.6 Hz, 3H), 1.36 (dd, J = 14.4, 2.9 Hz, 1H), 0.82 (d, J = 7.1 Hz, 3H).

¹³C NMR (**75** MHz, C₆D₆) δ 203.3, 139.0, 128.5, 127.8, 77.8, 76.0, 73.2, 72.5, 72.0, 42.2, 42.0, 33.9, 23.6, 16.5, 3.3.

 \mbox{HRMS} calculated for $C_{25}H_{30}O_3Na:401.20872$; found : 401.20935.

C. Carbocyclization Reactions

General procedure for the carbocyclization reactions

In a sealed vial under argon atmosphere were successively introduced triphenylphosphine (0.08 mmol, 0,2 eq.), copper(II) trifloromethanesulfonate (0.02 mmol, 0.05 eq.) and 0.4 mL of DCE. The resulting mixture was stirred 20 minutes at room temperature before freshly purified formyl-alkyne (0.4 mmol, 1eq.) in 0.4 mL of a freshly prepared 0,2 M solution of amine in DCE (0.08 mmol, 0.2 eq.) was added. After introduction of additional 0.2 mL of DCE, the reaction mixture was stirred at room temperature until GC or TLC analysis indicated complete conversion. The reaction mixture was then treated with 1 mL of an aqueous solution of AcOH (1/1 v/v) and then vigorously stirred 15 min at room temperature before extraction of the aqueous layer with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, concentrated under reduced pressure and the resulting crude material purified by silica gel flash chromatography to afford the desired carbocyclized aldehyde.

4,4-bis-(carbomethoxy)-1-methyl-2-methylene-cyclopentanecarbaldehyde (2):

¹**H** NMR (CDCl₃, 300 MHz) δ 9.29 (s, 1H), 5.23 (t, J = 2.1 Hz, 1H), 4.95 (t, J = 2.0 Hz, 1H), 3.75 (s, 3H), 3.74 (s, 3H), 3.07-2.92 (m, 2H), 2.95 (d, J = 14.4 Hz, 1H), 2.27 (d, J = 14.0 Hz, 1H), 1.27 (s, 3H).

¹³C NMR (CDCl₃, **75** MHz) δ 199.6, 171.7, 171.5, 149.3, 110.7, 58.0, 56.7, 53.0, 52.9, 41.0, 40.3, 21.7.

The 1 H and 13 C NMR data obtained were in agreement with that reported in the literature. 1a

diisopropyl 3-formyl-3-methyl-4-methylenecyclopentane-1,1-dicarboxylate (4):

¹**H NMR (300 MHz, C₆D₆)** δ 9.16 (s, 1H), 4.99 (m, 2H), 4.92 (t, *J* = 1.9 Hz, 1H), 4.66 (t, *J* = 2.2 Hz, 1H), 3.23 - 3.03 (m, 2H), 2.92 (d, *J* = 16.5 Hz, 1H), 2.35 (d, *J* = 14.0 Hz, 1H), 1.07 (d, *J* = 6.3 Hz, 3H), 1.04 - 0.90 (m, 12H).

¹³C NMR (**75** MHz, C₆D₆) δ 198.9, 170.8, 170.6, 150.6, 110.0, 69.1, 68.9, 58.5, 57.0, 41.4, 40.6, 21.7, 21.5.

HRMS calculated for $C_{16}H_{24}O_5Na$: 319.15160 ; found : 319.15176. **IR** (neat, cm⁻¹) 2983, 1727, 1650, 1261, 1106.

dibenzyl 3-formyl-3-methyl-4-methylenecyclopentane-1,1-dicarboxylate (6) :

¹**H NMR (300 MHz, CDCl₃)** δ 9.19 (s, 1H), 7.37 – 6.99 (m, 10H), 5.12 (t, *J* = 2.0 Hz, 1H), 5.03 (s, 4H), 4.85 (t, *J* = 2.2 Hz, 1H), 3.04 – 2.81 (m, 3H), 2.21 (d, *J* = 14.1 Hz, 1H), 1.15 (s, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ 199.6, 170.9, 170.8, 149.4, 135.3, 135.2, 128.5, 128.4, 128.3, 128.1, 110.8, 67.6, 67.5, 58.2, 56.7, 41.0, 40.2, 21.6.

HRMS calculated for $C_{24}H_{24}O_5Na: 415.15160$; found : 415.15200.

IR (neat, cm⁻¹) 2962, 1730, 1654, 1455, 1261, 1227, 1172, 1060.

$\label{eq:4.4} 4, 4-bis (methoxymethyl)-1-methyl-2-methylenecyclopentanecarbaldehyde~(8):$

¹**H** NMR (CDCl₃, 300 MHz) δ 9.32 (s, 1H), 5.12 (t, J = 2.0 Hz, 1H), 4.88 (t, J = 2.1 Hz, 1H), 3.33 (s, 3H), 3.32 (s, 3H), 3.27-3.19 (m, 4H), 2.37 (dt, J = 16.1 Hz, J = 1.5 Hz, 1H), 2.30 (d, J = 14.1 Hz, 1H), 2.22 (dt, J = 16.0 Hz, J = 2.3 Hz, 1H), 1.47 (d, J = 14.2 Hz, 1H), 1.25 (s, 3H).

¹³C NMR (CDCl₃, **75** MHz) δ 200.8, 152.5, 109.8, 76.0, 75.9, 59.2, 56.7, 45.9, 40.2, 38.8, 22.3.

The 1 H and 13 C NMR data obtained were in agreement with that reported in the literature. 1a

4,4-bis(benzyloxymethyl)-1-methyl-2-methylenecyclopentanecarbaldehyde (10):

¹H NMR (CDCl₃, 300 MHz) δ 9.24 (s, 1H), 7,31-7.22 (m, 10H) 5.05 (t, *J* = 1.9 Hz, 1H), 4.80 (t, *J* = 2.0 Hz, 1H), 4.46 (s, 2H), 4.45 (s, 4H), 3.38-3.31 (m, 4H), 2.42-2.32 (m, 2H), 2.32 (d, *J* = 14.2 Hz, 1H), 1.48 (d, *J* = 14.1 Hz, 1H), 1.17 (s, 3H).

¹³C NMR (CDCl₃, **75** MHz) δ 200.8, 152.6, 138.7, 128.4, 127.5, 109.8, 73.2, 73.5, 56.8, 46.3, 40.5, 39.0, 22.4.

The 1 H and 13 C NMR data obtained were in agreement with that reported in the literature. 1a

(3-formyl-3-methyl-4-methylenecyclopentane-1,1-diyl)bis(methylene) diacetate (12) :

¹**H NMR** (**CDCl**₃, **300 MHz**) δ 9.29 (s, 1H), 5.18 (t, *J* = 1.9 Hz, 1H), 4.97 (dd, *J* = 2.3, 1.7 Hz, 1H), 4.12 – 3.80 (m, 4H), 2.55 – 2.16 (m, 3H), 2.06 (d, *J* = 1.4 Hz, 6H), 1.43 (d, *J* = 14.3 Hz, 1H), 1.29 (s, 3H).

¹³C NMR (CDCl₃, **75** MHz,) δ 199.7, 171.0, 170.9, 150.4, 110.9, 66.7, 66.6, 56.6, 43.8, 39.9, 38.1, 22.0, 20.8 (2C).

HRMS calculated for C₁₄H₂₀O₅Na : 291.12029 ; found : 291.12015. **IR** (neat, cm⁻¹) 2949, 1739, 1724, 1654, 1225, 1036.

4, 4-bis ((tert-butyl diphenyl sily loxy) methyl) - 1-methyl - 2-methylene cyclopentane carbaldehyde (14):

¹**H NMR (300 MHz, CDCl₃)** δ 9.16 (s, 1H), 7.67-7.62 (m, 8H), 7.52 – 7.28 (m, 12H), 5.02 (t, J = 1.7 Hz, 1H), 4.76 (t, J = 1.9 Hz, 1H), 3.72 – 3.47 (m, 4H), 2.43 (d, J = 15.8 Hz, 1H), 2.30-2.23 (m, 2H), 1.46 (d, J = 14.6 Hz, 1H), 1.11 (s, 3H), 1.05 (d, J = 1.1 Hz, 18H).

¹³C NMR (**75 MHz, CDCl**₃) δ 200.5, 152.5, 135.7, 133.5, 129.6, 127.6, 109.8, 66.1, 66.0, 56.6, 48.8, 38.9, 37.9, 26.9, 22.1, 19.3.

HRMS calculated for $C_{42}H_{52}O_3NaSi_2$: 683.33472; found : 683.33442.

IR (neat, cm⁻¹) 2937, 2854, 1722, 1652, 1470, 1428, 1109, 1082, 822, 700.

Major diastereoisomer :

¹H NMR (300 MHz, CDCl₃) δ 9.22 (s, 1H), 7.78 – 7.53 (m, 4H), 7.47 – 7.27 (m, 11H), 5.09 (t, J = 1.9 Hz, 1H), 4.83 (t, J = 2.0 Hz, 1H), 4.52 (s, 2H), 3.60 (s, 2H), 3.46 (d, J = 8.7 Hz, 1H), 3.43 (d, J = 8.7 Hz, 1H), 2.50 – 2.23 (m, 3H), 1.53 (d, J = 14.2 Hz, 1H), 1.23 (s, 3H), 1.14 – 0.95 (m, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 200.5, 152.5, 138.6, 135.6, 133.5, 129.6, 128.3, 127.6, 127.4,

127.3, 109.9, 73.1, 73.0, 66.3, 56.6, 47.5, 40.0, 38.4, 26.8, 22.3, 19.4.

HRMS calculated for $C_{33}H_{40}O_3SiNa: 535.26389$; found : 535.26381.

IR (neat, cm⁻¹) 2933, 2854, 1722, 1651, 1109, 1088, 701.

Minor diastereoisomer :

¹**H NMR (300 MHz, CDCl₃)** δ 9.29 (s, 1H), 7.70 – 7.60 (m, 4H), 7.46 – 7.27 (m, 11H), 5.08 (t, *J* = 1.9 Hz, 1H), 4.84 (t, *J* = 2.0 Hz, 1H), 4.52 (s, 2H), 3.59 (d, *J* = 2.9 Hz, 2H), 3.47 (d, *J* = 8.7 Hz, 1H), 3.42 (d, *J* = 8.7 Hz, 1H), 2.55 – 2.14 (m, 3H), 1.49 (d, *J* = 14.2 Hz, 1H), 1.16 (s, 3H), 1.05 (s, 9H).

¹³C NMR (**75 MHz, CDCl**₃) δ 200.8, 152.4, 138.6, 135.6, 133.5, 129.6, 128.3, 127.6, 127.4, 109.9, 73.2, 66.1, 56.7, 47.3, 39.9, 38.5, 26.8, 22.2, 19.4.

1-methyl-2-methylene-4,4-bis(phenylsulfonyl)cyclopentanecarbaldehyde (18) :

¹**H NMR (CDCl₃, 300 MHz)** δ 9.36 (s, 1H), 8.21 – 7.93 (m, 4H), 7.73 (m, 2H), 7.62 (m, 4H), 5.17 (s, 1H), 5.00 (t, *J* = 1.8 Hz, 1H), 3.40 (d, *J* = 16.1 Hz, 1H), 3.32 – 3.24 (m, 2H), 2.52 (d, *J* = 16.2 Hz, 1H), 1.33 (s, 3H).

¹³C NMR (CDCl₃, **75** MHz) δ 199.0, 147.8, 135.9, 135.8, 134.8, 131.5, 131.3, 128.8, 128.8, 110.2, 91.0, 57.4, 38.9, 37.3, 22.1.

HRMS calculated for C₂₀H₂₀O₅NaS₂ : 427.06444 ; found : 427.06411. **IR** (**neat, cm⁻¹**) 1725, 1642, 1447, 1327, 1309, 1143, 1077. **mp** 132-133°C

dimethyl 3-ethyl-3-formyl-4-methylenecyclopentane-1,1-dicarboxylate (20) :

¹**H NMR (300 MHz, C_6D_6)** δ 9.04 (s, 1H), 4.97 (t, J = 2.0 Hz, 1H), 4.69 (t, J = 2.2 Hz, 1H), 3.39 (s, 3H), 3.30 (s, 3H), 3.20 – 3.07 (m, 2H), 2.67 (dt, J = 16.4, 2.3 Hz, 1H), 2.43 (d, J = 14.2 Hz, 1H), 1.59 – 1.21 (m, 2H), 0.58 (t, J = 7.5 Hz, 3H).

¹³C NMR (**75** MHz, C₆D₆) δ 199.0, 171.5, 171.3, 148.9, 110.0, 61.3, 57.9, 52.4, 52.2, 41.2, 36.7, 28.3, 8.6.

HRMS calculated for C₁₃H₁₈O₅Na : 277.10464 ; found : 277.10484. **IR** (neat, cm⁻¹) 2962, 1734, 1651, 1434, 1278, 1255, 1230, 1203, 1175, 1068, 900. dimethyl 3-butyl-3-formyl-4-methylenecyclopentane-1,1-dicarboxylate (22):

¹**H** NMR (300 MHz, CDCl₃) δ 9.08 (s, 1H), 4.97 (d, J = 1.8 Hz, 1H), 4.72 (t, J = 2.1 Hz, 1H), 3.41 (s, 3H), 3.29 (s, 3H), 3.26 – 3.09 (m, 2H), 2.78 – 2.60 (m, 1H), 2.50 (d, J = 14.0 Hz, 1H), 1.51 (ddd, J = 13.7, 11.2, 4.9 Hz, 1H), 1.41 – 1.21 (m, 1H), 1.16 – 0.82 (m, 4H), 0.73 (t, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 199.1, 171.7, 171.5, 149.3, 110.1, 61.1, 58.1, 52.6, 52.4,

41.3, 37.5, 35.7, 26.9, 23.3, 14.0.

HRMS calculated for $C_{15}H_{22}O_5Na : 305.13594$; found : 305.13554.

IR (neat, cm⁻¹) 2956, 2933, 1861, 1735, 1650, 1434, 1258, 1255, 1203, 1068, 893.

dimethyl 3-benzyl-3-formyl-4-methylenecyclopentane-1,1-dicarboxylate (24):

¹**H NMR** (C_6D_6 , 300 MHz) δ 9.29 (s, 1H), 7.10 – 6.93 (m, 5H), 5.00 (t, J = 2.0 Hz, 1H), 4.78 (t, J = 2.2 Hz, 1H), 3.26 (d, J = 14.1 Hz, 6H), 3.15 (dd, J = 16.4, 1.0 Hz, 1H), 2.96 (dd, J = 14.2, 8.2 Hz, 2H), 2.76 – 2.60 (m, 3H).

¹³C NMR (**75 MHz, C₆D₆**) δ 198.4, 171.7, 171.3, 148.8, 137.1, 130.3, 128.7, 127.1, 111.1, 62.1, 58.2, 52.5, 52.4, 41.7, 37.0.

HRMS calculated for C₁₈H₂₀O₅Na : 339.12029 ; found : 339.11985.

IR (neat, cm⁻¹) 2958, 1731, 1649, 1435, 1258, 1265, 1200, 1068.

dimethyl 3-formyl-4-methylene-3-phenylcyclopentane-1,1-dicarboxylate (26):

¹**H** NMR (300 MHz, C₆D₆) δ 9.23 (d, J = 1.0 Hz, 1H), 7.24 – 6.82 (m, 5H), 5.19 (t, J = 2.1 Hz, 1H), 4.72 (t, J = 2.3 Hz, 1H), 3.65 (dd, J = 13.9, 1.0 Hz, 1H), 3.37 (d, J = 1.6 Hz, 3H), 3.19 – 3.08 (m, 4H), 2.92-2.85 (m, 1H), 2.71 (d, J = 13.9 Hz, 1H). ¹³C NMR (75 MHz, C₆D₆) δ 195.7, 171.2, 171.1, 147.0, 140.3, 129.2, 128.4, 128.0, 127.9, 127.7, 127.6, 114.2, 66.3, 58.3, 52.7, 52.3, 42.8, 41.7.

 \mbox{HRMS} calculated for $C_{17}H_{18}O_5Na:325.10464$; found : 325.10431.

IR (**neat, cm**⁻¹) 2958, 1737, 1646, 1435, 1260, 1206, 1069.

1-benzyl-4,4-bis(methoxymethyl)-2-methylenecyclopentanecarbaldehyde (30) :

¹**H** NMR (300 MHz, CDCl₃) δ 9.40 (s, 1H), 7.23 – 6.98 (m, 5H), 5.17 (t, J = 1.9 Hz, 1H), 4.96 (t, J = 2.1 Hz, 1H), 3.22 (s, 3H), 3.21 (s, 3H), 3.15 – 3.03 (m, 3H), 3.02 (s, 2H), 2.78 (d, J = 13.8 Hz, 1H), 2.09 (t, J = 2.0 Hz, 2H), 2.05 (d, J = 14.4 Hz, 1H), 1.62 (d, J = 14.4 Hz, 1H).

¹³C NMR (**75 MHz, CDCl**₃) δ 200.5, 151.2, 137.2, 130.2, 128.2, 126.6, 110.6, 76.0, 75.7, 61.7, 59.2, 59.1, 46.0, 42.0, 40.6, 35.2.

HRMS calculated for $C_{18}H_{24}O_3Na: 311.16177$; found : 311.16163.

IR (neat, cm⁻¹) 2883, 1721, 1639, 1457, 1200, 1115, 1095.

mp 40-42°C

$\label{eq:4.4} 4, 4-bis (methoxymethyl)-2-methylene-1-phenylcyclopentane carbaldehyde~(32):$

¹**H NMR (300 MHz, C_6D_6)** δ 9.39 (d, J = 0.7 Hz, 1H), 7.32 – 6.86 (m, 5H), 5.21 (t, J = 2.0 Hz, 1H), 4.80 (t, J = 2.2 Hz, 1H), 3.24 – 2.98 (m, 8H), 2.95 (s, 3H), 2.42 (dt, J = 3.9, 2.1 Hz, 2H), 1.91 (d, J = 13.9 Hz, 1H).

¹³C NMR (**75 MHz, C₆D₆**) δ 196.8, 150.2, 142.1, 129.2, 128.9, 128.0, 127.3, 113.1, 76.1, 75.4, 66.4, 58.9, 58.8, 46.7, 41.2, 41.0.

HRMS calculated for $C_{17}H_{22}O_3Na: 297.14612$; found : 297.14572.

IR (neat, cm⁻¹) 2883, 1723, 1646, 1445, 1200, 1107, 1095, 963, 903.

4,4-bis(benzyloxymethyl)-1-butyl-2-methylenecyclopentanecarbaldehyde (34) :

¹H NMR (300 MHz, C₆D₆) δ 9.21 (s, 1H), 7.35 – 7.03 (m, 10H), 4.98 (t, J = 1.8 Hz, 1H), 4.76 (t, J = 2.0 Hz, 1H), 4.45 – 4.18 (m, 4H), 3.34 (s, 4H), 2.54 (d, J = 14.0 Hz, 1H), 2.38 (dt, J = 15.9, 1.8 Hz, 1H), 2.24 (d, J = 15.0 Hz, 1H), 1.69 – 1.52 (m, 1H), 1.60 (d, J = 15.0 Hz, 1H), 1.42 – 1.27 (m, 1H), 1.21 – 0.93 (m, 4H), 0.77 (t, J = 6.8 Hz, 3H). ¹³C NMR (75 MHz, C₆D₆) δ 200.1, 152.2, 139.3, 139.3, 128.5, 127.7, 109.4, 73.8, 73.6, 73.4, 73.4, 61.1, 46.3, 40.7, 36.4, 35.6, 27.2, 23.5, 14.1. HRMS calculated for C₂₇H₃₄O₃Na : 429.24002 ; found : 429.23960. IR (neat, cm⁻¹) 2929, 2858, 1721, 1648, 1453, 1361, 1203, 1115, 1097, 734, 697.

1-benzyl-4,4-bis(benzyloxymethyl)-2-methylenecyclopentanecarbaldehyde (36) :

¹**H** NMR (300 MHz, C_6D_6) δ 9.32 (s, 1H), 7.25 – 6.89 (m, 15H), 4.98 (t, J = 2.0 Hz, 1H), 4.78 (t, J = 2.0 Hz, 1H), 4.21 (s, 4H), 3.23 (s, 2H), 3.17 (s, 2H), 2.97 (d, J = 13.8 Hz, 1H), 2.67 (d, J = 13.8 Hz, 1H), 2.27 (d, J = 14.3 Hz, 1H), 2.21 – 2.13 (m, 2H), 1.78 (d, J = 14.3 Hz, 1H).

¹³C NMR (**75 MHz, C₆D₆**) δ 199.6, 152.0, 139.3, 139.2, 137.8, 130.6, 128.5, 128.5, 126.8, 110.3, 73.7, 73.4, 73.3, 73.3, 62.0, 46.6, 42.3, 41.1, 35.4.

HRMS calculated for $C_{30}H_{32}O_3Na: 463.22437$; found : 463.22372.

IR (neat, cm⁻¹) 2921, 2854, 1720, 1648, 1494, 1451, 1096, 903, 737, 699.

4,4-bis(benzyloxymethyl)-2-methylene-1-phenylcyclopentanecarbaldehyde (38):

¹**H NMR (300 MHz, CDCl₃)** δ 9.41 (s, 1H), 7.44 – 6.92 (m, 15H), 5.22 (t, *J* = 2.0 Hz, 1H), 4.81 (t, *J* = 2.1 Hz, 1H), 4.38-4.28 (m, 2H), 4.19 (d, *J* = 1.6 Hz, 2H), 3.37 (s, 2H), 3.32-3.22 (m, 2H), 3.13 (d, *J* = 13.9 Hz, 1H), 2.57 – 2.31 (m, 2H), 1.95 (d, *J* = 13.9 Hz, 1H).

¹³C NMR (**75 MHz**, C₆D₆) δ 196.7, 150.0, 142.1, 139.4, 139.2, 129.2, 128.5, 127.9, 127.6, 127.3, 113.3, 73.7, 73.4, 73.2, 73.1, 66.5, 46.8, 41.4, 41.2.

HRMS calculated for $C_{29}H_{30}O_3Na: 449.20872$; found : 449.20828.

IR (neat, cm⁻¹) 2853, 1721, 1650, 1452, 1452, 1362, 1096, 1076, 737, 698.

2-methyl-1-methylene-2,3-dihydro-1H-indene-2-carbaldehyde (42) :

¹H NMR (300 MHz, C₆D₆) δ 8.94 (s, 1H), 7.05 – 6.92 (m, 2H), 6.88 – 6.70 (m, 2H), 5.23 (s, 1H), 4.58 (s, 1H), 3.01 (d, J = 16.8 Hz, 1H), 2.13 (d, J = 16.8 Hz, 1H), 0.92 (s, 3H). ¹³C NMR (75 MHz, C₆D₆) δ 198.7, 152.3, 144.1, 139.9, 129.8, 127.6, 125.9, 121.7, 106.0, 57.8, 39.1, 21.3.

The 1 H and 13 C NMR data obtained were in agreement with that reported in the literature. 1a

1-methylene-2-phenyl-2,3-dihydro-1H-indene-2-carbaldehyde (43) :

¹H NMR (300 MHz, C_6D_6) δ 9.47 (s, 1H), 7.29 – 7.22 (m, 1H), 7.17 – 6.84 (m, 9H), 5.64 (s, 1H), 4.77 (s, 1H), 4.09 (d, J = 16.8, 1H), 2.70 (d, J = 16.8 Hz, 1H). ¹³C NMR (75 MHz, C_6D_6) δ 194.7, 149.0, 143.1, 141.7, 138.6, 129.4, 128.8, 126.9, 126.7, 125.1, 120.8, 108.6, 66.9, 40.3. HRMS calculated for $C_{14}H_{17}O_3NNaS : 257.09369$; found : 257.09390.

IR (neat, cm⁻¹) 2920, 1718, 1634, 904.

mp 108-109°C

2-benzyl-1-methylene-2,3-dihydro-1H-indene-2-carbaldehyde (44) :

¹**H NMR (300 MHz, C_6D_6)** δ 9.28 (s, 1H), 7.26 – 7.17 (m, 1H), 7.11 – 6.81 (m, 8H), 5.53 (s, 1H), 4.87 (s, 1H), 3.21 (d, *J* = 14.0 Hz, 1H), 3.11 (d, *J* = 17.0 Hz, 1H), 2.73 (d, *J* = 14.0 Hz, 1H), 2.70 (d, *J* = 17.0 Hz, 1H).

¹³C NMR (**75 MHz**, C₆D₆) δ 198.3, 150.7, 144.1, 139.4, 137.6, 130.4, 129.6, 128.6, 127.2, 126.9, 125.6, 121.4, 106.7, 62.9, 40.8, 35.7.

HRMS calculated for C₁₈H₁₆ONa : 271.10934 ; found : 271.10975. **IR** (neat, cm⁻¹) 3027, 2921, 1721, 1629, 884.

3-methyl-4-methylene-1-tosylpyrrolidine-3-carbaldehyde (46) :

¹**H NMR (CDCl₃, 200 MHz)** δ 9.29 (s, 1H), 7,31-7.22 (m, 2H), 7.38-7.34 (m, 2H), 5.21 (t, *J* = 1.8 Hz, 1H), 5.01 (t, *J* = 2.3 Hz, 1H), 3.88-3.84 (m, 2H), 3.80 (d, *J* = 9.9 Hz, 1H), 3.03 (d, *J* = 10.0 Hz, 1H), 2.04 (s, 3H), 1.24 (s, 3H).

¹³C NMR (CDCl₃, **75** MHz) δ 197.8, 145.7, 144.5, 132.7, 130.2 (2C), 128.3 (2C), 111.1, 57.2, 54.4, 52.5, 21.9, 19.0.

HRMS calculated for C₁₄H₁₇O₃NNaS : 302.08214 ; found : 302.08223. IR (neat, cm⁻¹) 2925, 1727, 1658, 1339, 1161, 1093, 1042. mp 82-83°C

$\label{eq:linear} 1-benzoyl-3-methyl-4-methylenepyrrolidine-3-carbaldehyde \ (48):$

¹H NMR (400 MHz, C₆D₆, 60°C) δ 8.99 (s, 1H), 7.46 (s, 2H), 7.28 – 6.98 (m, 5H), 4.73 (s, 1H), 4.62 (s, 1H), 4.26 – 3.80 (m, 3H), 3.02 (d, J = 9.7 Hz, 1H), 0.82 (s, 3H). ¹³C NMR (101 MHz, C₆D₆, 60°C) δ 197.0, 169.3, 146.9, 137.4, 129.9, 128.4, 127.8, 109.2, 56.9, 54.1, 51.6, 17.5. HRMS calculated for C₁₄H₁₅O₂NNa : 252.09950 ; found : 252.09970.

IR (neat, cm⁻¹) 2929, 1729, 1626, 1572, 1447, 1417, 1248, 907.

3-butyl-4-methylene-1-tosylpyrrolidine-3-carbaldehyde (50):

¹**H NMR (300 MHz, CDCl₃)** δ 9.22 (s, 1H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 5.22 (s, 1H), 5.03 (t, *J* = 1.8 Hz, 1H), 3.95 – 3.67 (m, 3H), 3.09 (d, *J* = 10.0 Hz, 1H), 2.44 (s, 3H), 1.88 – 1.69 (m, 1H), 1.59 – 1.43 (m, 1H), 1.37 – 1.16 (m, 2H), 1.16 – 0.99 (m, 2H), 0.85 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 197.6, 144.3, 144.0, 132.3, 129.7, 127.9, 110.7, 60.7, 52.2, 51.3, 33.2, 26.6, 22.9, 21.5, 13.7.

HRMS calculated for C₁₇H₂₃O₃NSNa : 344.12909 ; found : 344.12930. **IR** (**neat**, **cm**⁻¹) 2931, 1726, 1658, 1346, 1163, 1093.

3-(2-(benzyloxy)ethyl)-4-methylene-1-tosylpyrrolidine-3-carbaldehyde (52) :

¹H NMR (300 MHz, CDCl₃) δ 9.14 (s, 2H), 7.55 (d, J = 8.3 Hz, 4H), 7.33 – 6.93 (m, 17H), 5.05 (s, 2H), 4.90 (s, 2H), 4.22 (s, 4H), 3.78 – 3.49 (m, 6H), 3.41 – 3.27 (m, 2H), 3.27 – 3.13 (m, 2H), 3.05 (d, J = 10.1 Hz, 2H), 2.28 (s, 6H), 2.23 – 2.05 (m, 2H), 1.74 – 1.54 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 196.9, 144.3, 144.0, 137.7, 132.2, 129.7, 128.4, 128.0, 127.8, 127.7, 110.9, 73.2, 66.2, 59.1, 51.9, 51.7, 34.3, 21.6. HRMS calculated for C₂₂H₂₅O₄NSNa : 422.13965 ; found : 422.13984. IR (neat, cm⁻¹) 2854, 1731, 1652, 1337, 1163, 1109, 1094, 920. mp 94-95°C

3-benzyl-4-methylene-1-tosylpyrrolidine-3-carbaldehyde (54) :

¹**H NMR (300 MHz, CDCl₃)** δ 9.30 (s, 1H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.34 – 7.04 (m, 5H), 7.01 – 6.87 (m, 2H), 5.21 (s, 1H), 5.04 (s, 1H), 3.79 – 3.57 (m, 2H), 3.46 (d, *J* = 10.2 Hz, 1H), 3.17 (d, *J* = 10.2 Hz, 1H), 3.15 (d, *J* = 14.0 Hz, 1H), 2.76 (d, *J* = 14.0 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (**75 MHz, CDCl**₃) δ 197.3, 144.1, 144.0, 135.6, 131.9, 129.8, 129.7, 128.5, 127.9, 127.0, 111.4, 61.33, 52.3, 51.3, 39.3, 21.5.

HRMS calculated for $C_{20}H_{21}O_3NSNa: 378.11344$; found: 378.11393.

IR (neat, cm⁻¹) 1725, 1660, 1334, 1161, 1095, 1045, 916.

mp 116-117°C

4-methylene-3-phenyl-1-tosylpyrrolidine-3-carbaldehyde (56) :

¹H NMR (300 MHz, CDCl₃) δ 9.37 (s, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.34 – 7.17 (m, 5H), 7.11 – 7.02 (m, 2H), 5.46 (s, 1H), 5.18 – 4.91 (m, 1H), 4.15 (d, J = 9.9 Hz, 1H), 4.03 – 3.73 (m, 2H), 3.21 (d, J = 9.9 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 194.3, 144.0, 143.0, 136.6, 132.3, 129.8, 129.3, 128.2, 128.0, 127.5, 113.9, 65.9, 54.8, 52.7, 21.6.

HRMS calculated for C₁₉H₁₉O₃NSNa : 364.09779 ; found : 364.09811. IR (neat, cm⁻¹) 3053, 2920, 1718, 1657, 1339, 1167, 1094, 1036, 906.

mp 117-118°C

4-methylene-3-phenyltetrahydrofuran-3-carbaldehyde (58) :

¹**H** NMR (300 MHz, C_6D_6) δ 9.27 (d, J = 1.1 Hz, 1H), 7.11 – 6.93 (m, 6H), 4.90 (t, J = 1.9 Hz, 1H), 4.79 (d, J = 8.9 Hz, 1H), 4.70 (t, J = 2.3 Hz, 1H), 4.18 (dt, J = 13.2, 1.9 Hz, 1H), 4.06 (dt, J = 13.2, 2.2 Hz, 1H), 3.58 (d, J = 8.9 Hz, 1H).

¹³C NMR (75 MHz, C₆D₆) δ 194.5, 147.6, 137.6, 129.1, 129.0, 127.7, 110.1, 75.2, 72.3, 67.2.

 $\label{eq:HRMS} \mbox{ calculated for $C_{12}H_{12}O_2Na: 211.07295$; found: 211.07291.} \\ IR (neat, cm^{-1}) 2858, 1724, 1658, 1264, 1069, 924. \\ \end{tabular}$

D. Copies of ¹H and ¹³C NMR Spectra

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

нЦ |∥ 19 MeO₂C CO₂Me Chemical Formula: C₁₃H₁₈O₅ Molecular Weight: 254,27902

27 Chemical Formula: C₁₅H₂₆O₃ Molecular Weight: 254,36514

S47

Chemical Formula: C₁₂H₁₂O Molecular Weight: 172,22308

Chemical Formula: C₁₇H₁₄O Molecular Weight: 234,29246

Chemical Formula: C₁₈H₁₆O Molecular Weight: 248,31904

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Chemical Formula: C₁₇H₂₃NO₃S Molecular Weight: 321,43442

 $H = \bigcup_{T_S}^{OBn} 51$ Chemical Formula: C₂₂H₂₆NO₄S Molecular Weight: 399,50320

110 100 δ (ppm) 90 80

70

60 50 40

30

20

0

-10

10

170

160 150 140 130 120

190 180

220 210 200

нЦ 59 MeO₂C `CO₂Me Chemical Formula: C₁₃H₁₈O₅ Molecular Weight: 254,27902

Chemical Formula: C₁₅H₁₉NO₃S Molecular Weight: 293,38126

