Influence of a Fluorine Substituent on the Physicochemical Properties and Chemical Reactivity of Fluorinated Amino Acids. 1. The Conformers of 3-Fluoroalanine. A Theoretical Study

Ionel Humelnicu^{*,#} Ernst-Ulrich Würthwein,* Günter Haufe*

Organisch Chemisches Institut, Universität Münster, Corrensstr. 40, D-48149 Münster, Germany Email: <u>wurthwe@uni-muenster.de</u>, <u>haufe@uni-muenster.de</u>

[#] present address: "Al. I. Cuza" University of Iasi, The Faculty of Chemistry, Theoretical and Physical Chemistry Department, 11, Carol-I, 700506 Iasi, Romania Email: <u>ionel@uaic.ro</u>

Table of Contents

Alanine and 3-fluoroalanine conformers in the gas phase	3
Dipole moments, NBO charges, structural parameters, Tables S-1 to S-4	
Alanine and 3-fluoroalanine conformers in water	6
Dipole moments, NBO charges, structural parameters, Tables S-5 to S-8	
Alanine and 3-fluoroalanine zwitterionic conformers in water	8
Dipole moments, NBO charges, structural parameters, Tables S-9 to S-14	
Protonated Alanine and 3-fluoroalanine conformers in the gas phase	11
Dipole moments, NBO charges, structural parameters, Tables S-15 to S-20	
Protonated Alanine and 3-fluoroalanine conformers in water	12
Dipole moments, NBO charges, structural parameters, Tables S-21 to S-22	
Alanine anion conformers in the gas phase and in water	13
Dipole moments, NBO charges, structural parameters, Tables S-23 to S-28	
3-Fluoroalanine anion conformers in the gas phase and in water	14
Dipole moments, NBO charges, structural parameters, Tables S-29 to S-30	
Alanine and 3-fluoroalanine conformers, Total energies, relative energies,	
dipole moments and two point energies in the gas phase, Table S-31	15
Alanine and 3-fluoroalanine conformers, total energies, relative energies,	
dipole moments and two point energies in water, Table S-32	16

-	
\mathbf{n}	
_	

Figure S-1. 3-Fluoroalanine conformers 1Fa-4Fa in the gas phase	18
Figure S-2. Atomic charges for 3-fluoroalanine conformers in the gas phase	
and in water	19
Figures S-3 and S-4. Alanine zwitterions	22
Figures S-5 and S-6. Protonated alanine and 3-fluoroalanine conformers	23
Figure S-7. Hydrogen bridges in 3-fluoroalanine conformers in the gas phase	24
Figure S-8. 3-Fluoroalanine anion conformers in the gas phase	25
Calculated structures (xyz-coordinates and NBO charges	
Alanines, Gas Phase	26
Alanines, CPCM	27
3-Fluoroalanines gas phase	29
3-Fluoroalanines, CPCM	37
Alanine Zwitterion, CPCM	46
3-Fluoroalanines, Zwitterions CPCM	47
Alanines, protonated gas phase	49
Alanine Protonated-CPCM	50
3-Fluoroalanines, protonated, gas phase	52
3-Fluoroalanine, protonated CPCM	56
Alanine Anions gas phase	60
Alanine Anions CPCM	61
3-Fluoroalanines, Anions, gas phase	61
3-Fluoroalanine Anion-CPCM	64

Table S-1. Dipole moments and NBO charges of alanine conformers **1-4** in the gas phase [B3LYP 6-311++G(d,p)].

Conformer	Dipole [D]	C1	C2	C3	H4	Ν	O6	07	H8	H9	H10	H11	H12	H13
1	1.305	0.793	-0.119	-0.573	0.199	-0.831	-0.607	-0.693	0.478	0.357	0.358	0.210	0.216	0.212
2	5.582	0.789	-0.128	-0.580	0.204	-0.880	-0.591	-0.686	0.499	0.372	0.370	0.205	0.200	0.231
3	1.632	0.791	-0.116	-0.574	0.201	-0.831	-0.602	-0.704	0.484	0.356	0.358	0.210	0.216	0.210
4	3.319	0.782	-0.128	-0.576	0.208	-0.830	-0.574	-0.679	0.469	0.359	0.361	0.191	0.219	0.198

Table S-2. Structural parameters for alanine conformers 1-4 in the gas phase [6-311++G(d,p)].

Confor	Confor Energies mer [kool/mol]						Angle [°]	Dihedral	angles [°]				
mer	[kcal/mol]		5,8	6,9	7,9	6,10	7,10	7,8	5,9	5,10	9,5,10	9,5,2,1	5,2,1,6*
4		RHF	-	2.857	-	2.692	-	0.946	0.999	1.000	106.77	-60.12	-14.47
I	0.00	B3LYP	-	2.934	-	2.687	-	0.969	1.015	1.016	106.42	-61.13	-18.62
•		RHF	2.053	-	-	-	-	0.949	1.000	0.998	107.85	-86.72	161.35
2	1.28	B3LYP	1.918	-	-	-	-	0.983	1.014	1.013	107.89	-96.02	167.88
•	4.00	RHF	-	-	3.097	-	2.566	0.946	0.999	0.999	108.07	-61.95	135.88
3	1.00	B3LYP	-	-	3.106	-	2.576	0.969	1.014	1.015	107.55	-60.36	135.68
4		RHF	-	2.859	-	2.648	-	0.942	1.000	1.001	106.57	-60.41	-17.38
4	5.47	B3LYP	-	2.920	-	2.653	-	0.965	1.015	1.016	106.19	-60.76	-20.17

* atom numbers according to Fig. 3

Table S-3a. Selected bond lengths, intramolecular atom distances (Å) and dipole moments (D) of
twenty 3-fluoroalanine conformers 1Fa-4Fc [B3LYP 6-311++G(d,p)].

Conformer										
Parameter	1Fa	1Fb-1	1Fb-2	1Fb-3	1Fc	2Fa-1	2Fa-2	2Fa-3	2Fb	2Fc
Dipole [D]	2.424	2.015	2.000	2.537	1.932	5.602	3.215	4.189	3.752	6.047
C-F	1.405	1.405	1.402	1.393	1.399	1.406	1.423	1.408	1.403	1.394
O-H	0.969	0.970	0.970	0.969	0.970	0.982	0.970	0.970	0.982	0.978
N-H9	1.014	1.013	1.014	1.013	1.013	1.012	1.014	1.008	1.013	1.013
N-H10	1.015	1.014	1.015	1.015	1.016	1.016	1.015	1.009	1.016	1.016
N…H-O	-	-	-	-	-	1.921	-	2.228	1.930	1.994
C=O···H-O	2.306	2.300	2.307	2.307	2.308	-	-	-	-	2.308
N-H9···O-H	-	-	-	-	-	-	-	-	-	-
N-H10…O-H	-	-	-	-	-	-	-	-	-	-
N-H9····O=C	2.701	-	-	3.138	3.342	-	3.134	-	-	-
N-H10····O=C	2.876	2.381	2.423	2.514	2.570	-	-	-	-	-
C-F···H9-N	3.775	2.619	2.485	3.703	-	3.493	-	-	2.888	-
C-F···H10-N	2.539	-	-	3.583	-	2.345	2.591	2.461	2.983	-
C-F…H-O	-	-	-	-	3.870	-	1.918	-	-	-
C-F···H11	-	-	-	-	2.665	-	-	-	-	2.439

Table S-3a:

Conformer	3Fa	3Eh-1	3Eb-2	3Fh-3	3Eb-4	3Eb-5	3Ec	4Fa	4Eb	4Ec
Parameter	51 a	51.6-1	51 6-2	51.6-5	51 6-4	51 6-5	51.0	τια	410	-110
Dipole [D]	1.874	2.354	2.225	2.871	2.962	3.288	2.882	4.248	2.022	3.641
C-F	1.406	1.406	1.401	1.395	1.393	1.393	1.399	1.399	1.393	1.422
O-H	0.969	0.969	0.969	0.970	0.969	0.969	0.969	0.965	0.965	0.971
N-H9	1.013	1.015	1.014	1.014	1.013	1.013	1.013	1.014	1.014	1.011
N-H10	1.014	1.014	1.015	1.015	1.015	1.014	1.014	1.016	1.016	1.016
N…H-O	-	-	-	-	-	-	-	-	-	-
C=O···H-O	2.294	2.302	2.304	2.303	2.306	2.288	2.306	-	-	-
N-H9…O-H	2.629	-	-	2.898	-	2.691	-	-	-	-
N-H10…O-H	2.763	2.429	2.417	-	2.603	2.694	2.657	-	-	-
N-H9····O=C	-	-	-	-	3.532	-	3.409	2.704	3.170	3.469
N-H10…O=C	-	-	-	3.142	-	-	-	2.788	2.494	2.179
C-F···H9-N	3.760	2.489	2.550	-	-	3.781	-	3.792	3.746	-
C-F···H10-N	2.510	-	-	-	-	3.427	-	2.568	3.592	-
C-F···H-O	-	-	-	-	-	-	-	-	-	1.896
C-F···H11	-	-	-	-	-	-	2.677	-	-	2.586

Table S-3b. Dipole moments and NBO charges of 3-fluoroalanine conformers 1Fa-4Fc in the gasphase [B3LYP 6-311++G(d,p)].

Conf.	Dipole [D]	C1	C2	C3	Fa (H4)*	N5	O6	07	H8	H9	H10	H11	Fb (H12)*	Fc (H13)*
1Fa	2,424	0,795	-0,159	0,091	-0,401	-0,833	-0,593	-0,697	0,486	0,364	0,366	0,224	0,176	0,179
1Fb-1	2,015	0,807	-0.154	0.093	0.173	-0.847	-0.591	-0.690	0.488	0.367	0.376	0.203	-0.402	0.178
1Fb-2	2,000	0,803	-0,154	0,086	0,164	-0,837	-0,591	-0,685	0,486	0,366	0,369	0,218	-0,399	0,174
1Fb-3	2,537	0,789	-0,158	0,100	0,165	-0,828	-0,596	-0,689	0,482	0,360	0,365	0,227	-0,388	0,171
1Fc	1,932	0,794	-0,152	0,099	0,167	-0,833	-0,608	-0,673	0,480	0,362	0,367	0,216	0,175	-0,395
2Fa-1	5,602	0,793	-0,171	0,081	-0,401	-0,880	-0,588	-0,676	0,501	0,374	0,381	0,228	0,161	0,197
2Fa-2	3,215	0,777	-0,169	0,078	-0,414	-0,830	-0,570	-0,686	0,487	0,369	0,360	0,230	0,189	0,178
2Fa-3	4,189	0,785	-0,173	0,093	-0,404	-0,879	-0,579	-0,668	0,474	0,367	0,380	0,232	0,173	0,189
2Fb	3,752	0,788	-0,169	0,084	0,161	-0,872	-0,584	-0,677	0,501	0,382	0,366	0,227	-0,402	0,194
2Fc	6,047	0,787	-0,172	0,086	0,177	-0,870	-0,566	-0,681	0,497	0,374	0,365	0,231	0,157	-0,386
3Fa	1,874	0,794	-0,159	0,093	-0,402	-0,835	-0,604	-0,687	0,487	0,363	0,366	0,227	0,175	0,183
3Fb-1	2,354	0,811	-0,151	0,093	0,176	-0,844	-0,594	-0,690	0,488	0,367	0,368	0,199	-0,404	0,181
3Fb-2	2,225	0,804	-0,152	0,086	0,163	-0,835	-0,587	-0,693	0,489	0,366	0,362	0,223	-0,399	0,175
3Fb-3	2,871	0,786	-0,153	0,097	0,170	-0,815	-0,603	-0,688	0,484	0,364	0,355	0,221	-0,390	0,171
3Fb-4	2,962	0,786	-0,152	0,098	0,168	-0,822	-0,586	-0,704	0,487	0,362	0,360	0,225	-0,387	0,166
3Fb-5	3,288	0,787	-0,159	0,098	0,157	-0,824	-0,602	-0,689	0,487	0,363	0,354	0,231	-0,388	0,185
3Fc	2,882	0,792	-0,150	0,095	0,168	-0,829	-0,586	-0,704	0,487	0,366	0,361	0,219	0,174	-0,394
4Fa	4,248	0,784	-0,169	0,090	-0,395	-0,832	-0,558	-0,674	0,467	0,366	0,369	0,213	0,185	0,153
4Fb	2,022	0,778	-0,164	0,097	0,174	-0,827	-0,565	-0,673	0,472	0,360	0,368	0,206	-0,388	0,160
4Fc	3,641	0,795	-0,169	0,086	0,179	-0,855	-0,578	-0,675	0,493	0,363	0,390	0,206	0,179	-0,414

	ĮŪ	-311++	G(u,p)].									
Conformer	l evel				Bond ler	ngths [Å]				Angle [°]	Dih	edral angle	es [°]
		3,F	5,8	6,9	6,10	F,(9)10	7,8	5,9	5,10	9,5,10	F,3,2,5	9,5,2,1	5,2,1,6
1Fa	RHF	1.373	-	2.684	2.832	2.544	0.946	0.999	1.000	106.91	64.78	-53.70	1.94
Πa	B3LYP	1.405	-	2.701	2.876	2.539	0.969	1.014	1.015	106.60	64.22	-51.74	1.07
1Fh-1	RHF	1.372	-	-	2.403	(2.550)	0.946	0.998	0.999	109.61	-61.57	-166.81	22.14
11.0-1	B3LYP	1.405	-	-	2.381	(2.619)	0.970	1.013	1.014	109.69	-63.22	-163.56	20.33
1Eb_2	RHF	1.369	-	-	2.459	(2.517)	0.946	0.998	0.999	109.49	-59.60	170.68	-27.61
11-0-2	B3LYP	1.402	-	-	2.423	(2.485)	0.970	1.014	1.015	109.48	-57.76	165.73	-24.71
1Eb.2	RHF	1.361	-	3.018	2.567	-	0.946	0.999	1.000	107.41	-69.14	-73.13	-14.01
11.0-5	B3LYP	1.393	-	3.138	2.515	-	0.969	1.013	1.015	107.24	-70.26	-78.96	-16.37
1Ec	RHF	1.368	-	3.287	2.559	-	0.947	0.999	1.001	107.98	177.82	-76.73	-43.60
IFC	B3LYP	1.399	-	3.342	2.570	-	0.970	1.013	1.016	107.71	178.94	-77.33	-45.04
2Eo.1	RHF	1.373	2.034	-	-	2.381	0.949	0.998	1.001	108.46	52.61	-145.94	-168.64
259-1	B3LYP	1.406	1.921	-	-	2.345	0.982	1.012	1.016	108.60	49.68	-141.10	-171.19
2Eo 2	RHF	1.385	-	-	-	2.542	0.944	0.999	0.999	108.74	61.54	-56.65	104.446
2Fd-2	B3LYP	1.423	-	-	-	2.591	0.970	1.014	1.015	108.18	64.03	55.55	95.92
2Eo 2	RHF	1.376	2.321	-	-	2.465	0.942	0.996	0.997	112.57	60.35	-59.83	167.44
259-3	B3LYP	1.408	2.228	-	-	2.461	0.970	1.008	1.009	114.75	58.14	-65.29	171.84
056	RHF	1.371	2.071	-	-	-	0.949	0.998	1.002	107.34	-57.81	-156.83	-157.61
260	B3LYP	1.403	1.930	-	-	-	0.983	1.013	1.016	107.16	-60.36	-149.55	-164.89
050	RHF	1.362	2.147	-	-	-	0.947	0.999	1.001	108.28	-157.55	-161.41	-143.61
ZFC	B3LYP	1.394	1.994	-	-	-	0.978	1.013	1.016	108.07	-152.47	-156.26	-153.91
			6,8	7,9	7,10								
05-	RHF	1.374	2.269	2.616	2.747	2.512	0.946	0.998	0.999	107.69	62.11	-57.78	-179.46
зга	B3LYP	1.406	2.294	2.629	2.763	2.511	0.969	1.013	1.014	107.37	61.72	-53.85	178.38
0Eh 1	RHF	1.375	2.280	-	2.470	(2.452)	0.946	0.999	0.999	108.48	-62.83	177.29	-130.66
350-1	B3LYP	1.406	2.302	-	2.429	(2.498)	0.969	1.015	1.014	108.38	-63.59	-179.03	-136.06
054 0	RHF	1.369	2.283	-	2.491	(2.602)	0.946	0.999	1.000	108.61	-60.17	-175.01	134.78
360-2	B3LYP	1.401	2.304	-	2.417	2.550	0.969	1.014	1.015	108.43	-58.69	178.19	146.49
054 0	RHF	1.364	2.278	2.673	-	-	0.946	0.998	1.000	108.82	-67.04	-63.94	-116.81
3FD-3	B3LYP	1.395	2.303	2.897	-	-	0.970	1.014	1.015	108.69	-68.77	-67.18	-96.51
25h 4	RHF	1.361	2.282	-	2.568	-	0.946	0.998	0.999	108.94	-69.77	-69.82	125.61
360-4	B3LYP	1.393	2.306	-	2.603	-	0.969	1.013	1.015	108.59	-70.14	-68.80	120.43
	RHF	1.364	2.278	2.672	3.225	-	0.946	0.998	1.000	108.82	-67.04	-63.93	-116.81
350-5	B3LYP	1.393	2.288	2.692	2.694	-	0.969	1.013	1.014	107.42	-67.99	-64.48	-172.41
25-	RHF	1.368	2.283	-	2.636	-	0.946	0.998	0.999	108.63	177.79	-70.57	112.61
3FC	B3LYP	1.399	2.306	-	2.657	-	0.969	1.013	1.015	108.25	179.43	-69.97	109.98
			F,8	6,9	6,10								
	RHF	1.366	-	2.708	2.735	2.555	0.941	0.999	1.001	106.63	65.64	-55.49	-4.93
4Fa	B3LYP	1.399	-	2.704	2.788	2.568	0.965	1.014	1.016	106.24	66.25	-53.43	-3.04
	RHF	1.361	-	3.086	2.518	-	0.942	0.999	1.001	107.43	-72.89	-73.95	-24.32
4Fb	B3LYP	1.393	-	3.170	2,494	-	0.956	1.014	1.016	107.17	-73.49	-77.44	-25.23
	BHF	1.381	2,021	2,950	2.471	-	0.944	0.998	1.001	106.38	-172 81	-78 18	-1.07
4Fc	B3I VD	1 400	1 806	3 460	2 170	_	0.071	1 011	1.016	108.81	-172 71	-130 /5	12.28
	DOLIF	1.422	1.090	3.409	2.179	-	0.9/1	1.011	1.010	100.01	-1/0./1	-130.43	12.20

Table S-4. Structural parameters^{a,b,c} for 3-fluoroalanine conformers in the gas phase [6-311++G(d,p)].

^{a)} atom numbers according to Fig. 3, ^{b)} distance F,8 is 1.896 Å in **4Fc**, 1.918 Å in **2Fa-2** and > 3.9 Å in all other conformers

Table S-5. Dipole moments and NBO charges of alanine conformers 1_{aq} - 4_{aq} in water, [B3LYP, 6-311++G(d,p)] CPCM model

Conf.	Dipole [D]	C1	C2	C3	H4	N5	O6	07	H8	H9	H10	H11	H12	H13
1_{aq}	2.110	0,814	-0,125	-0,575	0,201	-0,870	-0,670	-0,711	0,535	0,379	0,373	0,224	0,213	0,213
2_{aq}	7.545	0,812	-0,137	-0,585	0,204	-0,898	-0,671	-0,709	0,520	0,403	0,390	0,242	0,210	0,220
3 _{aq}	2.686	0,814	-0,121	-0,576	0,203	-0,870	-0,674	-0,710	0,537	0,380	0,374	0,219	0,214	0,211
4_{aq}	4.823	0,809	-0,130	-0,577	0,205	-0,867	-0,662	-0,711	0,537	0,380	0,375	0,217	0,215	0,210

Table S-6. Optimized bond lengths, bond angles and dihedral angles for selected alanine conformers **1-4** in water [B3LYP level with 6-311++G(d,p)]. CPCM model

0	Rel.	_			Bond ler	ngths [Å]				Angle [°]	Dihedra	al angles [°]
Conformer	Energy	5,8	6,9	7,9	6,10	7,10	7,8	5,9	5,10	9,5,10	9,5,2,1	5,2,1,6*
1 _{aq}	0.00	-	2.914	-	2.716	-	0.993	1.021	1.021	106.53	-58.78	-19.84
2 _{aq}	1.69	1.862	-	-	-	-	0.996	1.020	1.019	107.53	-99.23	169.72
3 _{aq}	0.73	-	-	3.018	-	2.598	0.993	1.021	1.020	106.98	-57.07	140.27
4 _{aq}	2.56	-	3.042	-	2.685	-	0.989	1.021	1.021	106.75	-59.76	-35.18

* atom numbers according to Fig. 3

Table S-7. Dipole moments and NBO charges of 3-fluoroalanine conformers $1Fa_{aq}$ - $4Fc_{aq}$ in water
obtained with CPCM model [B3LYP 6-311++G(d,p)].

Conform.	Dipole [D]	C1	C2	C3	Fa (H4)*	N5	O6	07	H8	H9	H10	H11	Fb (H12)*	Fc (H13)*
1Fa _{aq}	3,886	0,815	-0,171	0,087	-0,426	-0,870	-0,655	-0,709	0,539	0,385	0,379	0,254	0,185	0,188
1Fb-1 _{aq}	3,302	0,824	-0,163	0,087	0,179	-0,879	-0,648	-0,705	0,542	0,383	0,386	0,227	-0,423	0,189
1Fb-2 _{aq}	2,907	0,820	-0,165	0,079	0,176	-0,869	-0,646	-0,704	0,541	0,384	0,379	0,241	-0,422	0,186
1Fb-3 _{aq}	3,749	0,811	-0,165	0,089	0,177	-0,867	-0,652	-0,707	0,540	0,384	0,378	0,244	-0,419	0,187
1Fc _{aq}	2,814	0,811	-0,158	0,091	0,177	-0,864	-0,665	-0,697	0,537	0,389	0,381	0,231	0,185	-0,419
2Fa-1 _{aq}	7,904	0,813	-0,183	0,079	-0,423	-0,896	-0,660	-0,699	0,523	0,406	0,396	0,267	0,185	0,193
$2Fa-2_{aq}^{a)}$	5,521	0,812	-0,179	0,088	-0,425	-0,885	-0,657	-0,694	0,526	0,394	0,386	0,259	0,186	0,190
$2Fa-3_{aq}^{a}$	5,550	0,812	-0,180	0,088	-0,425	-0,885	-0,657	-0,694	0,526	0,394	0,386	0,260	0,186	0,190
2Fb _{aq}	5,306	0,816	-0,178	0,081	0,178	-0,894	-0,659	-0,699	0,523	0,406	0,395	0,257	-0,420	0,193
2Fc _{aq}	8,634	0,813	-0,177	0,080	0,181	-0,889	-0,652	-0,701	0,524	0,404	0,393	0,257	0,182	-0,416
3Fa _{aq}	3,007	0,815	-0,170	0,088	-0,426	-0,871	-0,669	-0,698	0,540	0,385	0,380	0,254	0,185	0,188
3Fb-1 _{aq}	3,567	0,828	-0,161	0,088	0,179	-0,879	-0,657	-0,701	0,543	0,382	0,386	0,227	-0,424	0,190
3Fb-2 _{aq}	2,932	0,820	-0,161	0,081	0,176	-0,871	-0,660	-0,694	0,542	0,384	0,378	0,240	-0,421	0,185
3Fb-3 _{aq}	4,366	0,810	-0,160	0,088	0,180	-0,858	-0,661	-0,702	0,538	0,386	0,379	0,236	-0,421	0,183
3Fb-4 _{aq}	4,468	0,809	-0,157	0,087	0,181	-0,862	-0,653	-0,710	0,541	0,386	0,379	0,233	-0,418	0,183
3Fb-5 _{aq}	4,885	0,812	-0,165	0,091	0,176	-0,868	-0,667	-0,697	0,541	0,385	0,378	0,246	-0,420	0,188
3Fc _{aq}	4,144	0,811	-0,157	0,088	0,180	-0,861	-0,657	-0,711	0,541	0,391	0,381	0,231	0,184	-0,420
4Fa _{aq}	6,837	0,809	-0,176	0,086	-0,423	-0,868	-0,645	-0,709	0,538	0,386	0,382	0,248	0,189	0,184
4Fb _{aq}	3,461	0,804	-0,168	0,088	0,181	-0,865	-0,646	-0,704	0,541	0,385	0,380	0,235	-0,416	0,183
4Fc _{aq}	5,132	0,807	-0,166	0,091	0,179	-0,864	-0,655	-0,700	0,540	0,390	0,382	0,229	0,187	-0,419

* according to Figure 3C; ^{a)} upon optimization conformer **2Fa-2**_{aq} gives conformer **2Fa-3**_{aq}

Conformer	E _{rel}				Bond len	gths [Å]				Angle [°]	Di	hedral ang	les [°]
Comormer	[kcal/mol]	3,F	5,8	6,9	6,10	F,(9)10	7,8	5,9	5,10	9,5,10	F,3,2,5	9,5,2,1	5,2,1,6*
1Fa _{aq}	0.00	1.420	-	2.856	2.736	2.664	0.994	1.020	1.020	106.65	64.95	-61.33	-6.18
1Fb-1 _{aq}	1.44	1.418	-	-	2.492	-	0.995	1.020	1.020	106.94	-62.12	-167.21	12.40
1Fb-2 _{aq}	1.32	1.415	-	-	2.683	(2.593)	0.994	1.020	1.022	107.54	-59.42	-177.37	-15.79
1Fb-3 _{aq}	1.13	1.412	-	2.921	2.679	-	0.994	1.020	1.021	106.90	-66.62	-65.59	-8.19
1Fc _{aq}	1.17	1.415	-	3.328	2.652	-	0.995	1.021	1.021	107.40	178.62	-71.70	-49.30
2Fa-1 _{aq}	0.50	1.418	1.888	-	-	2.516	0.994	1.019	1.021	108.28	58.02	-140.87	-170.87
2Fa-2 _{aq} ^{a)}	3.97	1.420	2.392	-	-	2.621	0.982	1.020	1.021	109.75	63.81	-61.68	172.66
2Fa-3 _{aq} a)	3.97	1.420	2.389	-	-	2.620	0.982	1.020	1.021	109.78	63.60	-62.20	173.68
$2Fb_{aq}$	1.05	1.413	1.883	-	-	-	0.995	1.019	1.022	108.04	-64.39	-142.34	-168.92
2Fc _{aq}	2.67	1.412	1.954	-	-	-	0.989	1.020	1.023	108.09	-161.94	-151.76	-160.73
			6,8	7,9	7,10								
3Fa _{aq}	0.82	1.420	2.327	2.724	2.656	2.636	0.994	1.019	1.020	106.92	63.63	-59.95	175.30
3Fb-1 _{aq}	2.19	1.417	2.334	-	2.417	(2.522)	0.995	1.021	1.020	106.30	-63.29	-175.32	-144.91
3Fb-2 _{aq}	2.23	1.413	2.331	-	2.570	(2.625)	0.995	1.020	1.022	107.29	-61.09	-174.75	161.89
3Fb-3 _{aq}	2.00	1.413	2.337	2.892	-	-	0.995	1.021	1.023	107.63	-67.10	-67.63	-97.09
$3Fb-4_{aq}$	2.14	1.412	2.343	-	2.658	-	0.995	1.021	1.021	107.65	-68.49	-63.32	116.81
3Fb-5 _{aq}	2.03	1.411	2.333	2.859	2.665	-	0.994	1.020	1.021	107.18	-67.10	-63.16	164.28
3Fc _{aq}	1.47	1.415	2.340	-	2.676	-	0.994	1.020	1.021	107.70	178.91	-67.89	111.37
			4,8	6,9	6,10								
4Fa _{aq}	3.07	1.415	-	2.934	2.660	2.647	0.990	1.020	1.020	106.77	64.02	-62.60	-22.60
4Fb _{aq}	3.83	1.409	-	3.117	2.616	-	0.991	1.021	1.021	107.21	-68.14	-67.05	-33.29
4Fc _{aq}	3.21	1.412	2.583	3.761	2.585	-	0.989	1.021	1.020	107.29	-173.18	-161.33	-17.40

Table S-8. Bond lengths, bond angles and dihedral angles of 3-fluoroalanine conformers $1Fa_{aq}$ - $4Fc_{aq}$ in water obtained with the CPCM model [B3LYP 6-311++G(d,p)].

* atom numbers according to Fig. 3; ^{a)} upon optimization conformer **2Fa-2**_{aq} gives conformer **2Fa-3**_{aq}

Bo	ond lengths [Å]		Bond angles	s [°]	Dih	edral angles	[°]
Atom*)	zw Al aq	zw Ar aq	Atom*)	zw Al aq	zw Ar _{aq}	Atom*)	zw Al aq	zw Ar aq
1,2	1.559	1.555	2,1,6	115.963	115.487	8,5,2,1	-25.859	41.318
2,5	1.511	1.511	2,1,7	115.735	116.055	10,5,2,1	90.585	163.673
1,6	1.247	1.249	5,2,1	107.524	107.843	5,2,1,6	-171.134	163.043
1,7	1.259	1.257	6,1,7	128.266	128.437	5,2,1,7	10.840	-18.513
5,8	1.035	1.033	8,5,2	106.559	108.486	8,5,1,6	170.603	-170.678
5,9	1.029	1.030	8,5,9	110.319	106.426	8,5,1,7	-16.016	22.725
5,10	1.030	1.030	8,5,10	106.668	109.938	11,2,1,7	-102,079	-134.331
2,11	1.096	1.093	9,5,2	112.924	110.956	10,5,1,7	86.499	134.529
7,8	2.013	2.187	10,5,2	112.294	113.270	9,5,2,1	-147.130	-75.254
7,10(9)	3.012	(2.880)	11,2,1	106.887	109.800	Ha,3,2,5	61.641	60.673
Ha,3	1.094	1.094	3,2,1	114.986	111.643	Ha,3,2,11	178.309	178.293
Hb,3	1.093	1.094	Ha,3,2	111.122	111.179	Ha,3,5,10	22.124	92.318
Hc,3	1.089	1.090	Hb,3,2	111.282	111.269	Ha,3,2,1	-60.647	-58.896
Ha,10(8)	2.467	(2.717)	Hc,3,2	108.926	108.933	Hb,3,2,5	-59.748	-60.763
Hb,9(10)	2.856	(2.470)				Hb,3,2,11	56.921	56.858
Hc,11	2.499	2.507				Hb,3,5,10	-86.787	-16.579
Hc,6	2.674	2.858				Hb,3,5,9	19.990	97.756
						Hb,3,2,1	177.965	179.668
						Hc,3,2,11	-62.684	-62.380
						Hc,3,2,1	58.360	60.430
						Hc,3,1,6	12.464	-9.149

Table S-9. Structural parameters for alanine zwitterionic forms in water [CPCM, B3LYP 6-311++G(d,p)].

*⁾ The atomic numbering scheme is given in Fig. 3, with H8 at the amino group also in Fig. 11.

Table S-10. Dipole moments, NBO charges of alanine zwitterionic forms zwAr_{aq} and zwAl_{aq} in water, [B3LYP, 6-311++G(d,p)] CPCM model

Conform.	Dipole [D]	C1	C2	C3	H4	N5	O6	07	H8 (N)_zw	H9	H10	H11	H12	H13
zwAr _{aq}	14,237	0,765	-0,115	-0,596	0,212	-0,700	-0,798	-0,817	0,460	0,457	0,448	0,238	0,213	0,232
zwAl _{aq}	14,064	0,769	-0,119	-0,597	0,209	-0,703	-0,793	-0,818	0,465	0,453	0,446	0,242	0,212	0,235

Bond ler	ngths [Å]	Bond a	ngles [°]	Dihedral a	ngles [°]
Atom*)		Atom*)		Atom*)	
1,2	1.566	2,1,6	115.658	8,5,2,1	-19.852
2,3	1.51	2,1,7	115.009	9,5,2,1	-140.208
2,5	1.505	5,2,1	107.978	10,5,2,1	96.411
1,6	1.244	6,1,7	129.212	5,2,1,6	-171.725
1,7	1.253	8,5,2	105.427	5,2,1,7	10.379
5,8	1.039	9,5,2	113.125	8,5,1,7	-10.772
5,9	1.030	10,5,2	112.519	11,2,1,6	72.911
5,10	1.031	8,5,9	110.094	10,5,1,7	90.422
7,8	1.959	8,5,10	106.987	F,3,2,5	60.394
2,11	1.098	3,2,1	114.357	F,3,2,11	178.042
F,3	1.416	11,2,1	107.383	F,3,5,10	27.586
F,10	2.457	F,3,2	109.109	F,3,2,1	-62.263
12,3	1.093	12,3,2	112.440	12,3,2,5	-57.854
13,3	1.089	F,3,12	106.761	12,3,2,11	59.795
13,6	2.636	13,3,2	109.679	12,3,5,9	27.634
				12,3,2,1	179.489
				13,3,2,11	-63.869
				13,3,2,1	55.825
				13316	9 638

Table S-11. Structural parameters for the 3-fluoroalanine zwitterionic form **zwAFa**_{aq} position in aqueous media [CPCM, B3LYP 6-311++G(d,p)].

*⁾ The atomic numbering scheme is given in Fig. 3, with H8 at amino group, and Fig 9.

Table S-12. Structural parameters for the 3-fluoroalanine zwitterionic forms zwAF	bl _{aq} a	ind
zwAFbr _{aq} position in water [CPCM, B3LYP 6-311++G(d,p)].	_	

	Bond lengths	[Å]		Bond angles	[°]	D	ihedral angles	[°]
Atom*)	zw AFbl _{aq}	zw AFbr _{aq}	Atom*)	zw AFbl _{aq}	zw AFbr _{aq}	Atom*)	zw AFbl _{aq}	zw AFbr _{aq}
1,2	1.566	1.565	2,1,6	115.655	114.964	8,5,2,1	-149.610	158.731
2,5	1.504	1.504	2,1,7	115.040	115.559	9,5,2,1	-28.597	-80.649
1,6	1.246	1.247	5,2,1	108.328	108.848	10,5,2,1	87.900	36.042
1,7	1.254	1.253	6,1,7	129.278	129.464	5,2,1,6	-167.877	168.248
5,8	1.030	1.031	8,5,2	112.887	113.131	5,2,1,7	13.838	-12.950
5,9	1.036	1.031	9,5,2	106.461	110.716	9,5,1,7	-15.848	-81.998
5,10	1.032	1.034	10,5,2	112.518	108.617	11,2,1,6	77.511	50.724
7,9	2.044	2.92	8,5,9	110.183	107.406	10,5,1,7	87.182	22.873
7,10		1.166	8,5,10	107.951	110.199	4,3,2,5	56.763	56.539
2,11	1.097	1.094	3,2,1	113.161	110.253	4,3,2,11	174.271	174.810
4,3	1.094	1.094	11,2,1	107.589	110.071	4,3,5,10	16.651	-24.512
4,10	2.436	2.753	4,3,2	112.308	112.375	4,3,2,1	-65.499	-63.541
F,3	1.417	1.415	F,3,2	109.411	109.486	F,3,2,5	-61.607	-61.920
F,10	2.984	-	F,3,4	106.766	106.764	F,3,2,11	55.901	56.351
F,8	2.860	2.476	13,3,2	109.917	109.721	F,3,5,10	-90.162	-131.309
13,3	1.088	1.089				F,3,5,8	16.888	-21.803
13,6	2.605	2.759				F,3,2,1	176.131	178.000
						13,3,2,11	-62.502	-61.844
						13,3,2,1	57.728	59.804
						13,3,1,6	13.897	-6.193

*⁾ The atomic numbering scheme is given in Fig. 3, with H8 at amino group, and Fig 9 (for left and right structures).

	Bond lengths	[Å]		Bond angles	[°]	Di	hedral angles	[°]
Atom*)	zwAFcl aq	zw AFcr _{aq}	Atom*)		zw AFcr _{aq}	Atom*)	zw AFclaq	zw AFcr _{aq}
1,2	1.561	1.561	2,1,6	116.040	116.330	8,5,2,1	-149.946	161.184
2,5	1.504	1.503	2,1,7	114.972	114.641	9,5,2,1	-29.047	-77.966
1,6	1.245	1.246	5,2,1	107.684	107.410	10,5,2,1	87.079	38.531
1,7	1.257	1.257	6,1,7	128.963	129.016	5,2,1,6	-162.692	152.327
5,8	1.031	1.032	8,5,2	113.108	114.096	5,2,1,7	18.924	-28.881
5,9	1.037	1.032	9,5,2	105.809	110.480	9,5,1,7	-11.889	-94.437
5,10	1.032	1.036	10,5,2	112.823	107.863	10,5,1,7	90.923	11.023
7,9	2.014	2.992	8,5,9	110.337	107.198	11,2,1,6	83.232	34.276
7,10	3.032	2.128	8,5,10	108.009	110.093	4,3,2,5	93.160	66.123
2,11	1.097	1.093	3,2,1	115.787	112.079	4,3,2,11	-150.764	-176.348
4,3	1.091	1.094	11,2,1	107.626	111.353	4,3,5,10	42.691	-14.679
4,10	2.877	2.726	4,3,2	112.169	111.556	4,3,2,1	-29.747	-51.778
12,3	1.094	1.095	12,3,2	111.173	110.926	12,3,2,5	-30.759	-56.897
12,10	2.515	-	F,3,2	108.938	109.035	12,3,2,11	85.317	60.632
12,8	2.691	2.368	F,3,4	107.333	107.773	12,3,5,8	41.673	-15.143
F,3	1.405	1.400	F,3,12	106.780	107.397	12,3,5,10	-65.704	-124.711
F,11	2.436	2.632	12,3,4	111.173	110.009	12,3,2,1	-153.666	-174.808
F,6	3.153	3.131				F,3,2,5	-148.160	-174.964
						F,3,2,11	-32.084	-57.435
						F,3,2,1	88.933	67.125
						F,3,1,6	44.923	-13.618

Table S-13. Structural parameters for the 3-fluoroalanine zwitterionic forms zwAFclaq and	l
$\mathbf{zwAFcr}_{\mathbf{aq}}$ in water [CPCM, B3LYP 6-311++G(d,p)].	

*) The atomic numbering scheme is given in Fig. 3 with H8 at amino group and Fig 9 (for left right structures).

Table S-14	Dipole moments	and NBO charge	es of 3-fluoroalanine	e zwitterionic forms	zwAFa aq to
	zwAFcr aq in wa	ater, [B3LYP, 6-3	311++G(d,p)] CPCN	M model	_

Conformer	Dipole [D]	C1	C2	C3	Fa (H4)*	N5	O6	07	H8 (-N)_zw	H9	H10	H11	Fb (H12)*	Fc (H13)*
zwAFa _{aq}	14,203	0,774	-0,169	0,067	-0,418	-0,708	-0,805	-0,783	0,467	0,458	0,452	0,267	0,189	0,208
zwAFblaq	11,672	0,773	-0,163	0,067	0,186	-0,704	-0,800	-0,783	0,468	0,459	0,452	0,257	-0,418	0,208
$zwAFbr_{aq}$	11,872	0,767	-0,160	0,066	0,188	-0,702	-0,799	-0,785	0,464	0,462	0,454	0,253	-0,416	0,206
	14,766	0,770	-0,162	0,076	0,192	-0,703	-0,809	-0,780	0,470	0,459	0,452	0,261	0,183	-0,407
	15,559	0,761	-0,150	0,077	0,186	-0,703	-0,811	-0,779	0,466	0,465	0,455	0,248	0,185	-0,399

Table S-15. Structural parameters for protonated alanine conformers in the gas phase.

Confor	E _{rel}			В	ond lengt	hs [Å]				Angle [°]	[Dihedral angles [°]		
Conior	[kcal/mol]	6(7),9[10]*	6,8	1,6	1,7	7,8	5,9	5,10	5,14	6,1,7	14,5,2,1	9,5,1,6(7)*	10,5,1,6(7)*	
p1	0.00	1.911	2.381	1.208	1.319	0.973	1.041	1.024	1.022	126.803	-128.113	-6.068	93.221	
р3	2.58	2.222	2.386	1.190	1.352	0.973	1.026	1.025	1.024	126.139	-168.470	-29.089	77.442	
p4	8.94	1.854	-	1.204	1.321	0.967	1.046	1.022	1.023	122.498	-102.726	-94.064	5.671	

* The notation (7) is used for conformer **p3** and [10] for conformer **p4** (Figure 11).

Table S-16. Dipole moments and NBO charges of protonated alanine conformers **p1**, **p3** and **p4** in the gas phase [6-311++G(d,p)].

Conform.	Dipole [D]	C1	C2	C3	H4	N5	O6	07	H8	H9	H10	H11	H12	H13	H14 (-N+)
p1	4,950	0,798	-0,104	-0,604	0,225	-0,696	-0,584	-0,639	0,516	0,466	0,438	0,250	0,231	0,262	0,441
р3	7,136	0,781	-0,102	-0,607	0,224	-0,681	-0,506	-0,716	0,523	0,458	0,440	0,250	0,227	0,271	0,440
p4	7,277	0,794	-0,119	-0,606	0,235	-0,699	-0,555	-0,610	0,494	0,442	0,468	0,239	0,235	0,244	0,439

 Table S-17. Relative Energies and structural parameters for protonated alanine conformers in water (CPCM-Model)

	rel. Enerav				Bon	d lengths [Å]				
Conformer	[kcal/mol]	6(7),9*	6(7),10*	6,8	1,6	1,7	7,8	5,9	5,10	5,14
p1 _{aq}	0.00	2.578	2.647	2.369	1.211	1.324	0.998	1.034	1.034	1.033
p3 _{aq}	1.47	2.478	2.578	2.377	1.207	1.330	0.999	1.033	1.034	1.034
p4 _{aq}	4.03	2.831	2.444	-	1.209	1.327	0.995	1.034	1.034	1.034
			Angle [°]			D	ihedral angles	[°]		
		9,6(7),10*	6,1,7	9,5,10		14,5,2,1	9,5,1,6(7)*	10,5,1,6(7)*		
p1 _{aq}		37.029	125.722	106.844		-175.476	-53.684	53.125		
p3 _{aq}		38.348	125.547	107.147		-176.081	-50.953	56.322		
p4 _{aq}		35.808	121.243	107.012		176.076	-77.804	29.155		

* The notation (7) is used for conformer **p3** (Figure 11).

Table S-18. Dipole moments and NBO charges of protonated alanine conformers $p1_{aq}$, $p3_{aq}$ and $p4_{aq}$ in water

Conf.	Dipole [D]	C1	C2	C3	H4	N5	O6	07	H8	H9	H10	H11	H12	H13	H14 (-N+)
p1 _{aq}	6,512	0,813	-0,114	-0,596	0,220	-0,695	-0,635	-0,686	0,553	0,470	0,463	0,272	0,226	0,242	0,466
p3 _{aq}	9,250	0,816	-0,113	-0,595	0,220	-0,698	-0,625	-0,703	0,559	0,471	0,463	0,273	0,225	0,242	0,466
p4 _{aq}	10,017	0,809	-0,122	-0,597	0,224	-0,696	-0,626	-0,682	0,551	0,470	0,466	0,268	0,230	0,238	0,466

Table S-19. Structural parameters and relative energy (kcal/mol) for protonated 3-fluoroalanine conformers in the gas phase

Oraforman	Relative			Bor	nd lengths [Å]			Angle [°]		Dihedra	l angles [°]	
Conformer	energy	1,6	1,7	6(7),9	6(7),10	5,9	5,10	5,14	6,1,7	9,5,2,1	10,5,2,1	9,5,1,6(7)	10,5,1,6(7)
p1Fa	0.00	1.204	1.319	1.979	-	1.038	1.029	1.022	127.469	-19.738	95.938	-11.108	91.146
p1Fb	0.37	1.204	1.321	3.035	2.102	1.024	1.034	1.028	127.618	-90.478	27.219	-85.864	17.580
p1Fc	7.02	1.209	1.313	3.110	1.915	1.024	1.044	1.024	127.490	-99.369	17.626	-95.301	5.816
p3Fa	2.59	1.190	1.347	(2.136)	(2.908)	1.027	1.029	1.024	126.852	-36.803	81.320	-19.390	87.345
p3Fb	2.94	1.191	1.346	(2.571)	(2.487)	1.024	1.025	1.028	127.014	-66.236	53.242	-52.758	54.138
p3Fc	9.97	1.188	1.355	(2.957)	(2.202)	1.025	1.029	1.026	126.773	-70.188	48.068	-95.754	10.872
p4Fa	10.71	1.202	1.320	1.866	-	1.044	1.028	1.022	122.717	-15.440	99.521	-9.202	91.089
p4Fb	10.09	1.201	1.323	3.033	2.013	1.024	1.037	1.027	123.080	-90.068	27.190	-91.305	11.949
p4Fc	12.20	1.207	1.311	-	1.795	1.024	1.054	1.023	123.629	-10.188	106.279	-4.324	93.456

* The notation (7) is used for fluorine conformers correspond to **p3** (Figure 11).

Table S-20. Dipole moments and NBO charges of protonated 3-fluoroalanine conformers in the gas phase

Conf.	Dipole, D	C1	C2	C3	Fa (H4)*	N5	O6	07	H8	H9	H10	H11	Fb (H12)*	Fc (H13)*	H14 (N+)
p1Fa	5,155	0,797	-0,146	0,069	-0,377	-0,696	-0,570	-0,643	0,520	0,468	0,453	0,264	0,194	0,225	0,442
p1Fb	3,047	0,787	-0,142	0,073	0,192	-0,690	-0,567	-0,641	0,518	0,446	0,462	0,258	-0,373	0,221	0,454
p1Fc	6,814	0,792	-0,140	0,085	0,189	-0,696	-0,584	-0,619	0,516	0,447	0,469	0,259	0,184	-0,341	0,439
p3Fa	7,093	0,785	-0,145	0,068	-0,379	-0,689	-0,504	-0,710	0,527	0,463	0,456	0,264	0,192	0,232	0,442
p3Fb	5,858	0,777	-0,141	0,073	0,190	-0,682	-0,504	-0,703	0,524	0,452	0,447	0,260	-0,377	0,228	0,456
p3Fc	9,476	0,770	-0,134	0,082	0,188	-0,683	-0,478	-0,722	0,525	0,450	0,461	0,258	0,183	-0,340	0,441
p4Fa	7,216	0,796	-0,160	0,067	-0,368	-0,700	-0,545	-0,606	0,492	0,472	0,451	0,259	0,201	0,199	0,443
p4Fb	4,528	0,783	-0,155	0,070	0,200	-0,693	-0,541	-0,610	0,495	0,446	0,467	0,245	-0,369	0,210	0,454
p4Fc	8,018	0,796	-0,158	0,070	0,195	-0,702	-0,558	-0,606	0,512	0,473	0,438	0,257	0,201	-0,364	0,446

* according to Figure 3C

Table S-21. Relative energy (kcal/mol) and structural parameters for protonated 3-fluoroalanine conformers in water (CPCM-model)

Conf	Relative			Bon	d lengths [Å]			Angle [°]		Dihedra	l angles [°]	
Com.	energy	1,6	1,7	6(7),9	6(7),10	5,9	5,10	5,14	6,1,7	9,5,2,1	10,5,2,1	9,5,1,6(7)	10,5,1,6(7)
p1Fa _{aq}	0.00	1.208	1.322	2.514	2.716	1.034	1.035	1.035	126.406	-53.403	66.020	-46.776	59.983
$p1Fb_{aq}$	0.70	1.208	1.322	2.578	2.672	1.034	1.035	1.034	126.476	-57.922	61.781	-50.153	56.876
p1Fc _{aq}	3.37	1.210	1.321	2.613	2.595	1.035	1.036	1.035	126.165	-57.323	61.798	-58.953	47.652
p3Fa _{aq}	1.29	1.205	1.326	(2.464)	(2.619)	1.034	1.034	1.035	126.259	-55.991	64.291	-48.147	59.174
$p3Fb_{aq}$	2.02	1.206	1.326	(2.475)	(2.625)	1.034	1.035	1.035	126.295	-59.381	61.114	-45.515	61.964
p3Fc _{aq}	4.47	1.205	1.329	(2.722)	(2.451)	1.035	1.035	1.036	126.095	-57.941	62.160	-76.367	30.776
p4Fa _{aq}	4.52	1.207	1.326	2.704	2.513	1.035	1.035	1.035	121.660	-59.860	59.545	-68.050	38.942
$p4Fb_{aq}$	5.20	1.207	1.324	2.883	2.435	1.035	1.035	1.035	121.912	-66.652	52.968	-80.800	26.326
p4Fc _{aq}	6.53	1.208	1.323	2.863	2.428	1.036	1.036	1.036	121.753	-65.663	53.442	-80.916	25.949

* The notation (7) is used for 3-fluoroalanine cation corresponding to conformer **p3** (Figure 12).

Table S-22. Dipole moments and NBO charges of protonated 3-fluoroalanine conformers in water

Conf.	Dipole [D]	C1	C2	C3	Fa (H4)*	N5	O6	07	H8	H9	H10	H11	Fb (H12)*	Fc (H13)*	H14- (N+)
p1Fa _{aq}	7,692	0,815	-0,159	0,068	-0,404	-0,698	-0,624	-0,684	0,557	0,475	0,468	0,297	0,202	0,215	0,471
$p1Fb_{aq}$	4,074	0,813	-0,154	0,070	0,197	-0,697	-0,620	-0,683	0,558	0,475	0,468	0,286	-0,400	0,215	0,471
p1Fc _{aq}	8,620	0,810	-0,151	0,077	0,197	-0,696	-0,628	-0,677	0,554	0,477	0,472	0,285	0,197	-0,386	0,470
p3Fa _{aq}	9,921	0,817	-0,159	0,070	-0,404	-0,700	-0,616	-0,698	0,562	0,475	0,469	0,297	0,202	0,215	0,471
$p3Fb_{aq}$	8,348	0,816	-0,154	0,071	0,197	-0,699	-0,614	-0,696	0,562	0,475	0,468	0,287	-0,400	0,215	0,471
p3Fc _{aq}	12,306	0,808	-0,146	0,078	0,196	-0,699	-0,606	-0,703	0,561	0,477	0,471	0,280	0,199	-0,388	0,473
p4Fa _{aq}	11,377	0,809	-0,167	0,067	-0,399	-0,698	-0,614	-0,679	0,552	0,475	0,471	0,294	0,206	0,211	0,472
$p4Fb_{aq}$	6,659	0,805	-0,161	0,069	0,201	-0,699	-0,611	-0,673	0,554	0,475	0,471	0,281	-0,395	0,211	0,472
p4Fc _{ag}	11,462	0.805	-0,157	0,076	0,198	-0.698	-0.620	-0.672	0.554	0,478	0,472	0.278	0,202	-0.389	0,473

Table S-23. Structural parameters for the alanine anion conformers in the gas phase

Conformer	rel. energy				Bond ler	ngths [Å]				Ang	le [°]	Dihedral	angles [°]
	[kcal/mol]	1,6	1,7	5,9	5,10	6,11	6,13	7,9	7,10	9,5,10	6,1,7	10,5,1,7	9,5,1,7
a1r	0.00	1.253	1.258	1.017	1.023	2,550	2.833	3.048	2.206	103.451	129.050	11.781	-90.133
a1I	0.26	1.253	1.257	1.023	1.019	2.703	2.567	2.140	3.080	103.711	128.919	82.024	-14.116

 Table S-24. Dipole moments and NBO charges of alanine anion conformers in the gas phase

Conf.	Dipole [D]	C1	C2	C3	H4	N5	O6	07	H9	H10	H11	H12	H13
a1r	4,576	0,743	-0,122	-0,572	0,186	-0,881	-0,789	-0,804	0,331	0,367	0,165	0,176	0,200
a1l	4,944	0,747	-0,124	-0,581	0,175	-0,879	-0,792	-0,801	0,374	0,321	0,167	0,172	0,220

 Table S-25. Structural parameters for the alanine anion conformer all in water (CPCM-model)

Conf.				Bon	d lengths	[Å]			Angl	e [°]	Dihedral	angles [°]
	1,6	1,7	5,9	5,10	6,11	6,13	7,10	7,9	9,5,10	6,1,7	10,5,1,7	9,5,1,7
a1l _{aq}	1.264	1.261	1.021	1.021	2.508	2.943	2.564	2.998	105.277	125.612	22.447	-82.789

Table S-26. Dipole moments and NBO charges of alanine anion conformer all in water

Conf.	Dipole [D]	C1	C2	C3	H4	N5	O6	07	H9	H10	H11	H12	H13
a1l _{aq}	6,861	0,759	-0,121	-0,575	0,194	-0,885	-0,852	-0,846	0,367	0,365	0,192	0,199	0,203

Table S-27. Relative energy [kcal/mol], optimized bond lengths, bond angles and dihedral angles for 3-fluoroalanine anion conformers [B3LYP 6-311++G(d,p)] in the gas phase

0	Relative			Bone	d length	s [Å]			Angle [Å]		Dihedral ar	ngles [Å]	
Conformer	energy	F,9	F,10	5,9	5,10	6,13	7,9	7,10	9,5,10	5,2,1,7	9,5,2,1	10,5,2,1	10,5,1,7
a1Fa	1.96	-	2.361	1.022	1.018	2.468	2.182	3.090	103.708	10.599	-22.921	86.487	87.019
a1Fbl	0.15	-	2.514	1.021	1.015	2.647	2.085	3.488	109.909	-13.756	18.412	137.828	106.395
a1Fcl	5.58	-	-	1.021	1.018	-	2.154	-	108.655	-42.899	33.353	151.423	94.935
a1Fbr	0.00	3.047	-	1.013	1.021	2.460	3.469	2.065	109.347	18.228	-139.487	-20.961	-4.749
a1Fcr	3.84	-	-	1.016	1.022	-	-	2.282	105.072	-47.951	-76.078	35.342	-7.542

Table S-28. Dipole moments and NBO charges of 3-fluoroalanine anion conformers in the gas phase

Conf.	Dipole [D]	C1	C2	C3	Fa (H4)*	N5	O6	07	H9	H10	H11	Fb (H12)*	Fc (H13)*
a1Fa	5,530	0,753	-0,167	0,083	-0,433	-0,879	-0,787	-0,788	0,375	0,339	0,182	0,135	0,188
a1Fbl	5.429	0.758	-0.165	0.080	0.147	-0.879	-0.778	-0.780	0.379	0.332	0.178	-0.446	0.175
a1Fcl	7.048	0.756	-0.157	0.087	0.163	-0.862	0.754	0.806	0.378	0.316	0.176	0.121	-0.418
a1Fbr	4,981	0,761	-0,167	0,086	0,152	-0,883	-0,781	-0,781	0,331	0,383	0,167	-0,448	0,178
a1Fcr	5,613	0,741	-0,155	0,096	0,161	-0,875	-0,764	-0,809	0,340	0,367	0,177	0,140	-0,420

								L		· - (-, r	,, == ==	
	E _{rel}		Bond lengths [Å]				Angle [°] Dihedral ang			angles [°	"]	
Conformer	[kcal/ mol]	7,9	7,10	F,10(9)	6,13	5,9	5,10	9,5,10	5,2,1,7	9,5,2,1	10,5,2,1	10,5,1,7
a1Fa _{aq}	0.00	2.819	2.640	2.679	2.646	1.020	1.021	105.126	-6.847	-61.151	53.118	43.116
a1Fbl _{aq}	0.28	2.380	-	2.524	2.792	1020	1.020	107.992	-24.462	46.800	165.605	134.916
a1Fcl _{aq}	0.79	2.574	-	-	-	1.021	1.022	107.550	-57.278	59.552	178.082	127.382
a1Fbr _{aq}	0.56	-	2.250	(2.781)	2.534	1.019	1.018	107.946	16.804	-152.657	7 -34.438	-18.161
a1Fcr _{aq}	0.75	3.346	2.549	-	-	1.020	1.021	106.466	-53.653	-72.290	43.829	-5.229

Table S-29. Relative energy [kcal/mol], optimized bond lengths, bond angles and dihedral angles for 3-fluoroalanine anion conformers in water [B3LYP 6-311++G(d,p), CPCM model]

Table S-30. Dipole moments and NBO charges of 3-fluoroalanine anion conformers in water

Conf.	Dipole [D]	C1	C2	C3	Fa (H4)*	N5	O6	07	H9	H10	H11	Fb (H12)*	Fc (H13)*
a1Fal _{aq}	7,744	0,761	-0,177	0,088	-0,441	-0,882	-0,844	-0,828	0,374	0,370	0,225	0,171	0,182
a1Fbl _{aq}	8,407	0,767	-0,163	0,078	0,169	-0,886	-0,833	-0,823	0,376	0,369	0,205	-0,438	0,179
a1Fcl _{aq}	10.879	0.768	-0.155	0.076	0.172	-0.875	-0.830	-0.837	0.374	0.372	0.200	0.168	-0.433
a1Fbr _{aq}	7,393	0,771	-0,167	0,088	0,167	-0,895	-0,832	-0,823	0,371	0,382	0,199	-0,443	0,182
a1Fcr _{aq}	8,288	0,757	-0,157	0,090	0,170	-0,880	-0,834	-0,841	0,379	0,373	0,203	0,171	-0,431

 Table S-31. Total energies [au], relative energies [kcal/mol], dipole moments [D] at the B3LYP/6-311++G(d,P)//B3LYP/6-311++G(d,p) MP2/6-311++G(d,P)//B3LYP/6-311++G(d,p) level of theory including zero point energies (ZPE) of alanine and 3-fluoroalanine in the gas phase

 Alarine

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Neutrais 1 -323,85606 0,00 1,3053 -323,74849 0,00 -322,96501 0,00 0,00 1,22 3 -323,85438 1,07 1,6309 -323,74669 1,13 -322,96533 0,93 1,00 4 -323,84696 5,72 3,3195 -323,73981 5,44 -322,96555 5,75 5,47 Protonated
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c cccc} \hline Compound \\ 311++G(d,p) \\ \hline E_{rel} \\ \hline Moment \\ 311++G(d,p) + ZPE \\ \hline (ZPE \\ ZPE \\ ZPE \\ ZPE \\ \hline (ZPE \\ ZPE \\ ZPE \\ \hline (ZPE \\ ZPE \\ ZPE \\ ZPE \\ \hline (ZPE \\ ZPE \\ ZPE \\ ZPE \\ \hline (ZPE \\ ZPE \\ ZPE \\ ZPE \\ \hline (ZPE \\ ZPE \\ ZPE \\ ZPE \\ \hline (ZPE \\ ZPE \\ ZPE \\ ZPE \\ \hline (ZPE \\ ZPE \\ ZPE \\ ZPE \\ \hline (ZPE \\ ZPE \\ ZP$
Neutrals 1Fa -42312022 0,34 2,4242 -423,01954 -0,08 -422,02942 0,00 0,00 Fb-1 -423,11832 1,53 2,0152 -423,01783 1,00 -422,02695 1,55 1,43 1Fb-2 -423,11832 1,53 2,0002 -423,01771 1,07 -422,02695 1,55 1,55 1Fb-3 -423,11651 2,67 2,5371 -423,01622 2,00 -422,02497 2,80 2,55 1Fc -423,11826 1,57 1,9318 -423,01622 2,00 -422,02738 1,28 1,31 2Fa-1 -423,12076 0,00 5,6016 -423,01942 0,00 -422,02809 0,83 1,25 2Fa-2 -423,11244 5,22 3,2156 -423,01147 4,98 -422,02041 5,65 5,83 2Fa-3 -423,12065 0,07 3,7516 -423,01944 -0,01 -422,02808 0,84 1,18 2Fc -423,11343 4,60 6,0474 -4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1Fa -42312022 0,34 2,4242 -423,01954 -0,08 -422,02942 0,00 0,00 Fb-1 -423,11832 1,53 2,0152 -423,01783 1,00 -422,02695 1,55 1,43 1Fb-2 -423,11832 1,53 2,0002 -423,01771 1,07 -422,02695 1,55 1,55 1Fb-3 -423,11651 2,67 2,5371 -423,01622 2,00 -422,02497 2,80 2,55 1Fc -423,11826 1,57 1,9318 -423,01753 1,19 -422,02738 1,28 1,31 2Fa-1 -423,12076 0,00 5,6016 -423,01942 0,00 -422,02809 0,83 1,25 2Fa-2 -423,11244 5,22 3,2156 -423,01942 0,00 -422,02809 0,83 1,25 2Fa-3 -423,11244 5,22 3,2156 -423,01147 4,98 -422,02041 5,65 5,83 2Fa-3 -423,11244 5,22 3,2156 -423,01944 -0,01 -422,02808 0,84 1,18 2Fc -423,11343
Fb-1 -423,11832 1,53 2,0152 -423,01783 1,00 -422,02695 1,55 1,43 1Fb-2 -423,11832 1,53 2,0002 -423,01771 1,07 -422,02695 1,55 1,50 1Fb-3 -423,11651 2,67 2,5371 -423,01622 2,00 -422,02497 2,80 2,55 1Fc -423,12076 0,00 5,6016 -423,01942 0,00 -422,02809 0,83 1,25 2Fa-1 -423,11244 5,22 3,2156 -423,01147 4,98 -422,02041 5,65 5,83 2Fa-3 -423,11244 5,22 3,2156 -423,01147 4,98 -422,02041 5,65 5,83 2Fa-3 -423,11244 5,22 3,2156 -423,01147 4,98 -422,02041 5,65 5,83 2Fb -423,112065 0,07 3,7516 -423,01944 -0,01 -422,02808 0,84 1,18 2Fc -423,11343 4,60 6,0474 -423,01243 4,38 -422,02766 1,10 1,18 3Fb-1 -423,11880
1Fb-2 -423,11832 1,53 2,0002 -423,01771 1,07 -422,02695 1,55 1,50 1Fb-3 -423,11651 2,67 2,5371 -423,01622 2,00 -422,02497 2,80 2,55 1Fc -423,11826 1,57 1,9318 -423,01753 1,19 -422,02738 1,28 1,31 2Fa-1 -423,12076 0,00 5,6016 -423,01942 0,00 -422,02809 0,83 1,25 2Fa-2 -423,11244 5,22 3,2156 -423,01147 4,98 -422,02041 5,65 5,83 2Fa-3 -423,12065 0,07 3,7516 -423,01944 -0,01 -422,02808 0,84 1,18 2Fc -423,11343 4,60 6,0474 -423,01243 4,38 -422,02124 5,13 5,33 3Fa -423,11880 1,23 1,8736 -423,01800 0,89 -422,02766 1,10 1,18 3Fb-1 -423,11789 1,80 2,3546 -423,01734 1,30 -422,02709 1,47 1,36 3Fb-2 -423,11663
1Fb-3 -423,11651 2,67 2,5371 -423,01622 2,00 -422,02497 2,80 2,58 1Fc -423,11826 1,57 1,9318 -423,01753 1,19 -422,02738 1,28 1,31 2Fa-1 -423,12076 0,00 5,6016 -423,01942 0,00 -422,02809 0,83 1,25 2Fa-2 -423,11244 5,22 3,2156 -423,01147 4,98 -422,02041 5,65 5,83 2Fa-3 -423,11179 5,62 4,1893 -423,01181 4,77 -422,02808 0,84 1,18 2Fb -423,12065 0,07 3,7516 -423,01243 4,38 -422,02808 0,84 1,18 2Fc -423,11343 4,60 6,0474 -423,01243 4,38 -422,02766 1,10 1,18 3Fa -423,11880 1,23 1,8736 -423,01800 0,89 -422,02766 1,10 1,18 3Fb-1 -423,11789 1,80 2,3546 -423,01734 1,30 -422,02709 1,47 1,38 3Fb-2 -423,11663
1Fc -423,11826 1,57 1,9318 -423,01753 1,19 -422,02738 1,28 1,31 2Fa-1 -423,12076 0,00 5,6016 -423,01942 0,00 -422,02809 0,83 1,25 2Fa-2 -423,11244 5,22 3,2156 -423,01147 4,98 -422,02041 5,65 5,83 2Fa-3 -423,11179 5,62 4,1893 -423,01181 4,77 -422,01897 6,56 6,12 2Fb -423,12065 0,07 3,7516 -423,01944 -0,01 -422,02808 0,84 1,18 2Fc -423,11343 4,60 6,0474 -423,01243 4,38 -422,02124 5,13 5,33 3Fa -423,11880 1,23 1,8736 -423,01800 0,89 -422,02766 1,10 1,18 3Fb-1 -423,11789 1,80 2,3546 -423,01734 1,30 -422,02709 1,47 1,38 3Fb-2 -423,11663 2,59 2,2253 -423,01606 2,11 -422,02564 2,37 2,30 3Fb-3 -423,11499
2Fa-1 -423,12076 0,00 5,6016 -423,01942 0,00 -422,02809 0,83 1,25 2Fa-2 -423,11244 5,22 3,2156 -423,01147 4,98 -422,02041 5,65 5,83 2Fa-3 -423,11179 5,62 4,1893 -423,01181 4,77 -422,02808 0,84 1,18 2Fb -423,12065 0,07 3,7516 -423,01944 -0,01 -422,02808 0,84 1,18 2Fc -423,11343 4,60 6,0474 -423,01243 4,38 -422,02124 5,13 5,33 3Fa -423,11880 1,23 1,8736 -423,01800 0,89 -422,02766 1,10 1,18 3Fb-1 -423,11789 1,80 2,3546 -423,01734 1,30 -422,02709 1,47 1,38 3Fb-2 -423,11663 2,59 2,2253 -423,01606 2,11 -422,02564 2,37 2,30 3Fb-3 -423,11499 3,62 2,8714 -423,01454 3,06 -422,02369 3,59 3,45
2Fa-2 -423,11244 5,22 3,2156 -423,01147 4,98 -422,02041 5,65 5,83 2Fa-3 -423,11179 5,62 4,1893 -423,01181 4,77 -422,01897 6,56 6,12 2Fb -423,12065 0,07 3,7516 -423,01944 -0,01 -422,02808 0,84 1,18 2Fc -423,11343 4,60 6,0474 -423,01243 4,38 -422,02124 5,13 5,33 3Fa -423,11880 1,23 1,8736 -423,01800 0,89 -422,02766 1,10 1,18 3Fb-1 -423,11789 1,80 2,3546 -423,01734 1,30 -422,02709 1,47 1,38 3Fb-2 -423,11663 2,59 2,2253 -423,01606 2,11 -422,02564 2,37 2,30 3Fb-3 -423,11499 3,62 2,8714 -423,01454 3,06 -422,02369 3,59 3,45
2Fa-3 -423,11179 5,62 4,1893 -423,01181 4,77 -422,01897 6,56 6,12 2Fb -423,12065 0,07 3,7516 -423,01944 -0,01 -422,02808 0,84 1,18 2Fc -423,11343 4,60 6,0474 -423,01243 4,38 -422,02124 5,13 5,33 3Fa -423,11880 1,23 1,8736 -423,01800 0,89 -422,02766 1,10 1,18 3Fb-1 -423,11789 1,80 2,3546 -423,01734 1,30 -422,02709 1,47 1,38 3Fb-2 -423,11663 2,59 2,2253 -423,01606 2,11 -422,02564 2,37 2,30 3Fb-3 -423,11499 3,62 2,8714 -423,01454 3,06 -422,02369 3,59 3,45
2Fb -423,12065 0,07 3,7516 -423,01944 -0,01 -422,02808 0,84 1,18 2Fc -423,11343 4,60 6,0474 -423,01243 4,38 -422,02124 5,13 5,33 3Fa -423,11880 1,23 1,8736 -423,01800 0,89 -422,02766 1,10 1,18 3Fb-1 -423,11789 1,80 2,3546 -423,01734 1,30 -422,02709 1,47 1,38 3Fb-2 -423,11663 2,59 2,2253 -423,01606 2,11 -422,02564 2,37 2,30 3Fb-3 -423,11499 3,62 2,8714 -423,01454 3,06 -422,02369 3,59 3,45
2FC -423,11343 4,60 6,0474 -423,01243 4,38 -422,02124 5,13 5,33 3Fa -423,11880 1,23 1,8736 -423,01800 0,89 -422,02766 1,10 1,18 3Fb-1 -423,11789 1,80 2,3546 -423,01734 1,30 -422,02709 1,47 1,38 3Fb-2 -423,11663 2,59 2,2253 -423,01606 2,11 -422,02564 2,37 2,30 3Fb-3 -423,11499 3,62 2,8714 -423,01454 3,06 -422,02369 3,59 3,45
3Fa -423,11880 1,23 1,8736 -423,01800 0,89 -422,02766 1,10 1,10 3Fb-1 -423,11789 1,80 2,3546 -423,01734 1,30 -422,02709 1,47 1,38 3Fb-2 -423,11663 2,59 2,2253 -423,01606 2,11 -422,02564 2,37 2,30 3Fb-3 -423,11499 3,62 2,8714 -423,01454 3,06 -422,02369 3,59 3,45
3Fb-1 -423,11789 1,80 2,3346 -423,01734 1,30 -422,02709 1,47 1,36 3Fb-2 -423,11663 2,59 2,2253 -423,01606 2,11 -422,02564 2,37 2,30 3Fb-3 -423,11499 3,62 2,8714 -423,01454 3,06 -422,02369 3,59 3,45
3Fb-2 -423,11663 2,59 2,2253 -423,01606 2,11 -422,02564 2,37 2,30 3Fb-3 -423,11499 3,62 2,8714 -423,01454 3,06 -422,02369 3,59 3,45
JFD-3 -423,11499 3,02 2,8714 -423,01454 3,06 -422,02369 3,59 3,45
3FD-4 -423,11430 3,09 2,9021 -423,01420 3,27 -422,02337 3,07 3,47 3Eb 5 402,11445 3,06 3,0991 402,01404 3,27 402,02272 4,21 4,07
3 D-3 -423,11443 3,90 3,2001 -423,01404 3,37 -422,02272 4,21 4,04 3 E c 423,11705 2,32 2,8810 423,01633 1,04 422,02646 1,86 1,86
AE_2 A22 10874 7 54 4 2475 423 00854 6 82 422 01772 7 34 7 04
AFb 423,10074 7,34 4,2473 -423,00034 0,63 -422,01772 7,34 7,04
4 fr = -423,10703 - 0.01 - 2.0220 - 423,00703 - 7.77 - 422,01346 - 0.73 - 0.02 -
Protonated
n1Ea -423 46903 0.00 5 1552 -423 35389 0.00 -422 38023 0.00 0.00
n1Fb $-423,46816,0.55,3.0475,-423,35310,0.50,-422,37956,0.42,0.37$
n1Fc -423 45758 7 19 6 8146 -423 34284 6 93 -422 36863 7 28 7 02
n3Fa -423 46349 3 48 7 0928 -423 34853 3 37 -422 37592 2 71 2 50
p3Fb -423 46267 3 99 5 8578 -423 34773 3 87 -422 37534 3 07 2 94
p3Fc -423 45024 11 80 9 4762 -423 33550 11 54 -422 36393 10 23 9 97
p4Fa -423,45212 10.62 7,2159 -423,33777 10.12 -422,36237 11.21 10.7
p4Fb -423,45273 10.23 4,5279 -423,33823 9.82 -422,36351 10.49 10.0
p4Fc -423,45082 11,43 8,0177 -423,33622 11,09 -422,36025 12,54 12,2

Anionic								
a1Fa	-422,57564	2,18	5,5304	-422,48814	2,40	-421,47701	1,75	1,96
a1Fbl	-422,57872	0,25	5,4288	-422,49151	0,28	-421,47960	0,12	0,15
a1Fbr	-422,57912	0,00	4,9813	-422,49196	0,00	-421,47979	0,00	0,00
a1Fcr	-422,57148	4,79	5,6128	-422,48404	4,97	-421,47395	3,66	3,84
a1Fcl	-422,56905	6,32	7,0480	-422,48192	6,30	-421,47086	5,60	5,58

Table S-32. Total energies [au], relative energies [kcal/mol], Dipole moments [D] at the B3LYP/6-311++G(d,P)//B3LYP/6-311++G(d,p) MP2/6-311++G(d,P)//B3LYP/6-311++G(d,p) level of theory including zero point energies (ZPE) of alanine and 3-fluoroalanine in water

Alanine									
Conformer	B3LYP/6-	E.	Dipole	B3LYP-	SCS-MP2/6-	E.	Solvatation		
Comonner	311++G(d,p)	∟rel	Moment	Solvatation	311++G(d,p)-CPCM	∟rel	CPCM-MP2		
Neutrals									
1 _{aq}	-323,87753	0,00	2,1083	-15,89	-322,98559	0,00	-17,34		
2 _{aq}	-323,87691	0,38	7,5667	-16,54	-322,98289	1,69	-18,54		
3 _{aq}	-323,87627	0,79	2,6991	-16,58	-322,98443	0,73	-18,04		
4 _{aq}	-323,87375	2,37	4,8241	-21,63	-322,98152	2,56	-24,06		
Zwitterions									
zw Ar _{aq}	-323,87803	0,00	14,3185	-51,71	-322,98339	0,00	-52,00		
zwAlag	-323,87787	0,10	14,0642	-45,35	-322,98249	0,57	-50,15		
Protonated									
p1 _{aq}	-324,32911	0,00	6,5125	-78,34	-323,44073	0,00	-80,35		
p3 _{aq}	-324,32716	1,23	9,2505	-82,06	-323,43839	1,47	-84,43		
p4 _{aq}	-324,32313	3,76	10,0172	-87,34	-323,43431	4,03	-90,72		
Anionic									
all _{aq}	-323,41060	0,00	6,8609	-72,45	-322,51311	0,00	-75,96		
3-Fluoroala	3-Fluoroalanines								
Conformar	B3LYP/6-	E	Dipole	B3LYP-	SCS-MP2/6-	E I	CPCM-MP2-		
Comormer	311++G(d,p)	∟rel	Moment	Solvatation	311++G(d,p)-CPCM	Lrei	Solvatation		
Neutrals									
1Fa _{aq}	-423.14523	0,00	3.8860	-18,99	-422,05312	0,00	-21,04		
1Fb-1 _{aq}	-423.14293	1,44	3.3023	-19,11	-422,05064	1,55	-21,08		
1Fb-2 _{aq}	-423.14313	1,32	2.9074	-19,38	-422,05078	1,46	-21,40		
1Fb-3 _{aq}	-423.14344	1,13	3.7518	-20,39	-422,05095	1,36	-22,45		
1Fc _{aq}	-423.14337	1,17	2.8087	-18,72	-422,05140	1,07	-20,64		
2Fa-1 _{aq}	-423.14444	0,50	7.9027	-19,18	-422,05018	1,84	-21,60		
2Fa-2 _{aq}	-423.13891	3.97	5.5499	-22,35	-422,04540	4,84	-25,24		
2Fa-3 _{aq}	-423.13890	3.97	5.3058	-22,41	-422,04536	4,86	-25,31		
2Fb _{aq}	-423.14356	1,05	5.2982	-17,45	-422,04937	2,35	-19,81		
2Fc _{aq}	-423.14099	2,67	8.6342	-22,37	-422,04709	3,78	-25,52		
3Fa _{aq}	-423.14392	0,82	3.0076	-19,01	-422,05150	1,01	-20,91		
3Fb-1 _{aq}	-423.14174	2.19	3.5673	-18,14	-422,04964	2,18	-19,88		
3Fb-2 _{aq}	-423.14169	2.23	2.9321	-19,05	-422,04930	2,40	-20,96		
3Fb-3 _{aq}	-423.14205	2.00	4.3665	-20,46	-422,04984	2,06	-22,51		
3Fb-4 _{aq}	-423.14183	2.14	4.4683	-20,89	-422,04972	2,13	-22,94		
3Fb-5 _{aq}	-423.14201	2,02	4.8946	-21,04	-422,04925	2,43	-23,11		
3Fc _{aq}	-423.14289	1,47	4.1446	-19,68	-422,05097	1,34	-21,61		
4Fa _{aq}	-423.14034	3,07	6.8371	-26,47	-422,04798	3,22	-29,85		
4Fb _{aq}	-423.13911	3,84	3.4606	-25,54	-422,04644	4,19	-28,52		
					400 04704	0.00	00.47		

16

Zwitterions							
zwAFa _{aq}	-423,14434	0,00	14,2031	-46,95	-422,04876	0,08	-52,50
zwAFblag	-423,14416	0,12	11,6721	-43,19	-422,04860	0,18	-48,09
	-423,13844	3,70	14,7659	-51,65	-422,04296	3,72	-57,70
zwAFcraq	-423,13811	3,91	15,5597	-54,40	-422,04366	3,28	-60,68
zwAFbraq	-423,14392	0,27	11,8722	-43,95	-422,04889	0,00	-48,77
Protonated							
p1Fa _{aq}	-423,59169	0,00	7,6919	-83,63	-422,50360	0,00	-86,48
p1Fb _{aq}	-423,59085	0,53	4,0745	-81,99	-422,50248	0,70	-84,58
p1Fc _{aq}	-423,58637	3,34	8,6202	-87,56	-422,49823	3,37	-90,88
p3Fa _{aq}	-423,58994	1,10	9,9214	-86,76	-422,50154	1,29	-89,85
p3Fb _{aq}	-423,58898	1,70	8,3484	-85,37	-422,50039	2,02	-88,24
p3Fc _{aq}	-423,58437	4,60	12,3062	-92,52	-422,49647	4,47	-96,35
p4Fa _{aq}	-423,58483	4,30	11,3776	-94,49	-422,49640	4,52	-99,06
p4Fb _{aq}	-423,58409	4,77	6,6589	-90,76	-422,49532	5,20	-94,70
p4Fc _{aq}	-423,58161	6,33	11,4618	-94,27	-422,49319	6,53	-98,72
Anionic							
a1Fa _{aq}	-422,68163	0,00	7,7444	-72,72	-421,58356	0,00	-76,63
a1Fbl _{aq}	-422,68143	0,12	8,4074	-70,38	-421,58311	0,28	-73,97
a1Fbr _{aq}	-422,68145	0,11	7,3933	-69,06	-421,58267	0,56	-72,51
a1Fcr _{aq}	-422,68005	0,99	8,2887	-74,15	-421,58236	0,75	-78,17
a1Fcl _{aq}	-422,67994	1,06	10,8685	-78,55	-421,58230	0,79	-83,05

Figure S-1. Twenty 3-fluoroalanine conformers **1Fa-4Fc** (basic types **1-4** of alanine) and relative energies [kcal/mol] of (SCS-MP2/B3LYP 6-311++G(d,p). The (*S*)-enantiomer is drawn.

1Fb-3

2Fa-1

2Fa-3

3Fb-2

Figure S-2. Variation of Mulliken atomic charges for 3-fluoroalanine conformers 1Fa-4Fc in the gas phase and in aqueous solution.

Figure S-3. B3LYP 6-311++G(d,p) optimized of two forms of alanine zwitterions in gas phase (upper part) and aqueous solution (CPCM) (lower part). Intramolecular proton transfer from NH_3^+ to COO^- group in the gas phase and imaginary frequencies for this.

Figure S-4. Stable structures for the alanine zwitterion in aqueous solution, relative energy and rotation barrier (kcal/mol): a) **zwAr**_{aq}; b) **zwAl**_{aq}.

Figure S-5. Conformers of protonated alanine with relative energies [kcal/mol].

Figure S-6. Nine conformers of protonated 3-fluoroalanine with relative energies [kcal/mol].

Figure S-7. Hydrogen bridges and structural parameters of NH₃⁺ group for optimized protonate alanine conformers in gaseous phase [B3LYP/6-311++G(d,p) levels].

Figure S-8 3-Fluoroalanine anion conformers and relative energies [kcal/mol] in the gas phase.

Calculated Structures (energy [a.u.], xyz coordinates and NBO charges)

Alanines, Gas Phase

1	-323.8560796								
	х	у	Z	NBO					
1	-1.5255	1.4205	0.6032	0.3577					
7	-1.5479	1.0175	-0.3294	-0.8305					
6	-0.6655	0.1370	0.3984	-0.1195					
6	0.7812	-0.1725	-0.0020	0.7932					
8	1.1453	-1.1317	0.6311	-0.6068					
6	-1.2032	1.2703	0.4906	-0.5725					
1	-1.2407	-1.7471	-0.9646	0.3567					
8	1.6392	0.7837	-0.4369	-0.6932					
1	2.5254	0.5407	-0.1281	0.4779					
1	-0.6427	0.4922	-1.4331	0.2100					
1	-0.5773	2.1612	0.4196	0.2117					
1	-1.2366	0.9526	1.5372	0.1989					
1	-2.2180	1.5179	0.1765	0.2164					

2	-323.8560)35		
	Х	у	Z	NBO
8	1.4613	-1.1887	0.0847	-0.5913
6	0.8645	-0.1446	0.0572	0.7894
6	-0.6447	-0.0285	0.3771	-0.1306
7	-1.1220	1.3201	0.0139	-0.8796
6	-1.4328	-1.1812	-0.2481	-0.5862
8	1.4557	1.0265	-0.2175	-0.6853
1	-1.5717	1.3220	-0.8966	0.3650
1	-1.7870	1.6842	0.6856	0.3734
1	-0.6988	-0.1110	1.4681	0.2139
1	-1.4256	-1.1054	-1.3402	0.1988
1	-2.4706	-1.1643	0.0935	0.1996
1	-0.9851	-2.1378	0.0220	0.2334
1	0.7353	1.6947	-0.1848	0.4996

3	-323.854377	9		
	х	У	z	NBO
8	-1.7002	-0.6606	-0.7015	-0.6015
6	-0.8260	-0.0667	-0.1210	0.7911
6	0.6693	-0.1656	-0.4306	-0.1160
7	1.3822	1.1092	-0.4654	-0.8311
6	1.3353	-1.1125	0.5771	-0.5742
8	-1.0828	0.7695	0.9191	-0.7039
1	1.3089	1.5895	0.4260	0.3577
1	1.0057	1.7262	-1.1775	0.3560
1	0.7244	-0.6125	-1.4257	0.2104
1	0.8379	-2.0850	0.5928	0.2095

1	1.3004	-0.6908	1.5853	0.2016
1	2.3805	-1.2528	0.2968	0.2163
1	-2.040438	0.758792	1.066532	0.48427

4 -323.8	-323.8469574								
	х	у	Z	NBO					
1	-1.5316	-1.4203	0.5451	0.3611					
7	-1.5413	-0.9918	-0.3766	-0.8297					
6	-0.6434	0.1510	-0.3963	-0.1279					
6	0.8029	-0.1944	0.0137	0.7819					
8	1.1088	-1.1695	0.6406	-0.5739					
6	-1.1851	1.2557	0.5273	-0.5759					
1	-1.2273	-1.7073	-1.0247	0.3585					
8	1.7579	0.7033	-0.3574	-0.6791					
1	1.3706	1.4187	-0.8769	0.4688					
1	-0.6195	0.5348	-1.4245	0.1913					
1	-0.5630	2.1541	0.5085	0.1979					
1	-1.2248	0.8977	1.5598	0.2076					
1	-2.1959	1.5211	0.2154	0.2194					

Alanines, CPCM

1 _a	1 _{aq} -323.8775264								
	х	у	Z	NBO					
1	-1.5573	-1.4115	0.6049	0.3727					
7	-1.5466	-1.0207	-0.3388	-0.8705					
6	-0.6643	0.1376	-0.3980	-0.1251					
6	0.7849	-0.1653	-0.0030	0.8138					
8	1.1445	-1.1297	0.6412	-0.6698					
6	-1.2035	1.2685	0.4937	-0.5753					
1	-1.2063	-1.7597	-0.9555	0.3788					
8	1.6314	0.7779	-0.4419	-0.7107					
1	2.5512	0.5582	-0.1376	0.5349					
1	-0.6349	0.4951	-1.4346	0.2244					
1	-0.5704	2.1557	0.4372	0.2126					
1	-1.2539	0.9438	1.5377	0.2013					
1	-2.2114	1.5328	0.1684	0.2130					

2_a	2 _{aq} -323.8769267					
	х	у	z	NBO		
8	1.4995	-1.1664	0.1023	-0.6706		
6	0.8570	-0.1368	0.0590	0.8117		
6	-0.6453	-0.0424	0.3783	-0.1374		
7	-1.1147	1.3076	0.0321	-0.8982		
6	-1.4321	-1.1882	-0.2647	-0.5852		

Electronic Supplementar	y Material (ESI)) for Organic &	Biomolecular	Chemistry
This journal is © The Roy	al Society of C	hemistry 2012		-

8	1.4243	1.0311	-0.2415	-0.7088
1	-1.6029	1.3240	-0.8650	0.3901
1	-1.7506	1.6770	0.7380	0.4029
1	-0.6963	-0.1441	1.4717	0.2422
1	-1.4225	-1.0995	-1.3556	0.2035
1	-2.4696	-1.1608	0.0749	0.2103
1	-1.0015	-2.1539	0.0044	0.2198
1	0.6781	1.6913	-0.2154	0.5198

3	3 _{aq} -323.8762695					
	х	у	z	NBO		
8	-1.6760	-0.7517	-0.6352	-0.6738		
6	-0.8241	-0.0585	-0.1122	0.8136		
6	0.6720	-0.1667	-0.4221	-0.1207		
7	1.3994	1.1000	-0.4645	-0.8695		
6	1.3199	-1.1181	0.5954	-0.5763		
8	-1.1053	0.8606	0.8196	-0.7105		
1	1.3644	1.5686	0.4417	0.3735		
1	0.9792	1.7351	-1.1447	0.3796		
1	0.7253	-0.6240	-1.4161	0.2194		
1	0.8056	-2.0817	0.6207	0.2109		
1	1.2949	-0.6855	1.5999	0.2031		
1	2.3624	-1.2850	0.3172	0.2136		
1	-2.0838	0.8611	0.9904	0.5371		

4 _a	4 _{aq} -323.8737476					
	х	у	Z	NBO		
1	-1.5497	-1.4675	0.4067	0.3747		
7	-1.5061	-0.9890	-0.4948	-0.8673		
6	-0.6362	0.1773	-0.4057	-0.1303		
6	0.7958	-0.1577	0.0403	0.8087		
8	1.0624	-1.0298	0.8391	-0.6621		
6	-1.2216	1.2009	0.5816	-0.5767		
1	-1.1351	-1.6619	-1.1676	0.3800		
8	1.7906	0.5949	-0.4623	-0.7114		
1	1.4782	1.2222	-1.1610	0.5367		
1	-0.5803	0.6354	-1.4021	0.2172		
1	-0.6007	2.0979	0.6479	0.2100		
1	-1.3025	0.7620	1.5802	0.2050		
1	-2.2195	1.4910	0.2478	0.2155		

3-Fluoroalanines Gasphase

1Fa -423.1202222				
	х	у	z	NBO
1	1.0605	1.6583	0.7257	0.3660
7	0.8165	1.6731	-0.2601	-0.8327
6	0.2836	0.3842	-0.6561	-0.1592
6	-1.0585	0.0267	0.0035	0.7949
8	-1.6634	0.7290	0.7695	-0.5931
6	1.3213	-0.7085	-0.4285	0.0912
1	0.1192	2.4007	-0.3750	0.3645
8	-1.5160	-1.1783	-0.4146	-0.6966
1	-2.3642	-1.3387	0.0265	0.4862
1	0.0914	0.3938	-1.7372	0.2241
1	0.9657	-1.6805	-0.7696	0.1791
9	1.5906	-0.8143	0.9468	-0.4008
1	2.2550	-0.4366	-0.9225	0.1765

1Fb-1 -423.1183171					
	х	у	Z	NBO	
9	-2.4962	-0.3884	0.0951	-0.4022	
8	2.0914	0.7475	-0.1435	-0.5907	
6	-0.2319	0.2694	0.3242	-0.1539	
7	-0.5085	1.6183	-0.1408	-0.8466	
6	1.2268	-0.0668	0.0462	0.8066	
6	-1.1968	-0.7182	-0.3259	0.0927	
8	1.4651	-1.3981	0.0904	-0.6904	
1	-0.3401	0.1432	1.4172	0.2031	
1	-1.3694	1.9696	0.2600	0.3667	
1	0.2547	2.2460	0.0855	0.3759	
1	-1.1736	-0.6242	-1.4132	0.1731	
1	-1.0018	-1.7445	-0.0167	0.1779	
1	2.4164	-1.5267	-0.0454	0.4878	

1Fb-2 -423.1183178					
	х	у	Z	NBO	
7	0.5614	1.5933	-0.4256	-0.8372	
6	0.2373	0.1786	-0.4348	-0.1538	
6	-1.2099	-0.0128	-0.0083	0.8029	
8	-1.7090	-1.1905	-0.4473	-0.6850	
8	-1.8356	0.7568	0.6734	-0.5911	
6	1.1220	-0.6925	0.4748	0.0861	
1	0.1991	2.0450	0.4081	0.3691	

1	1.5644	1.7306	-0.4758	0.3660
1	0.3418	-0.2097	-1.4530	0.2184
1	0.8836	-1.7538	0.3791	0.1738
9	2.4563	-0.5213	0.0792	-0.3995
1	1.0503	-0.3753	1.5188	0.1641
1	-2.6148	-1.2680	-0.1100	0.4860

1Fb-3 -423.1165083					
	х	У	z	NBO	
8	-1.5495	-1.3189	-0.4268	-0.6887	
6	-1.2007	-0.0788	-0.0116	0.7894	
6	0.2523	0.2605	-0.3714	-0.1581	
7	0.5601	1.6742	-0.2752	-0.8277	
6	1.1879	-0.5680	0.5202	0.1002	
1	0.1149	2.0818	0.5418	0.3648	
1	0.2228	2.1808	-1.0853	0.3599	
1	0.4217	-0.0781	-1.3976	0.2272	
8	-1.9531	0.6511	0.5816	-0.5960	
1	0.8628	-1.6089	0.5744	0.1708	
1	1.2427	-0.1368	1.5237	0.1646	
9	2.4737	-0.5581	-0.0156	-0.3879	
1	-2.4663	-1.4756	-0.1519	0.4816	

1Fc -423.1182566				
	х	у	Z	NBO
1	0.0000	2.2066	0.6554	0.3673
7	0.3408	1.9736	-0.2731	-0.8332
6	0.3129	0.5276	-0.4735	-0.1516
6	-0.9608	-0.1227	0.0730	0.7943
8	-1.4346	0.1329	1.1530	-0.6084
6	1.5344	-0.0551	0.2427	0.0991
1	-0.2488	2.4492	-0.9465	0.3624
8	-1.5072	-1.0051	-0.7863	-0.6733
1	-2.2846	-1.3940	-0.3551	0.4797
1	0.3929	0.3082	-1.5394	0.2158
9	1.5582	-1.4481	0.1114	-0.3945
1	1.5017	0.1777	1.3101	0.1675
1	2.4442	0.3492	-0.2019	0.1749

2 F	2Fa-1 -423.120757				
	х	у	Z	NBO	
6	-1.3993	-0.6142	0.4364	0.0811	
6	-0.2056	0.3061	0.6582	-0.1714	
6	1.0859	-0.3088	0.0605	0.7929	
8	1.8646	0.5733	-0.5714	-0.6759	

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
Electronic Supplementary Material (ESI) for Organic & Diomolecular Orientistry
This journal is © The Royal Society of Chemistry 2012

7	-0.3962	1.6728	0.1581	-0.8796
1	-1.0342	1.6842	-0.6325	0.3805
1	-0.7497	2.3031	0.8673	0.3745
1	-0.0201	0.3451	1.7372	0.2278
8	1.3702	-1.4685	0.1992	-0.5876
1	-1.1335	-1.6524	0.6343	0.1973
9	-1.7979	-0.5163	-0.9085	-0.4012
1	-2.2537	-0.3081	1.0445	0.1612
1	1.3808	1.4278	-0.5332	0.5006

2F	2Fa-2 -423.1124388					
	х	у	Z	NBO		
1	-0.0547	-1.4415	-0.7711	0.4875		
6	-1.3534	-0.0129	0.8306	0.0782		
6	-0.1079	0.7267	0.3760	-0.1685		
6	1.1111	-0.1857	0.1065	0.7768		
8	0.8935	-1.3094	-0.6161	-0.6856		
8	2.2203	0.1113	0.4588	-0.5699		
7	-0.4350	1.5919	-0.7587	-0.8299		
9	-1.7994	-0.8787	-0.2077	-0.4141		
1	-1.1686	-0.6411	1.7036	0.1777		
1	0.1960	1.3665	1.2090	0.2305		
1	0.3662	2.1490	-1.0353	0.3690		
1	-0.7434	1.0586	-1.5651	0.3596		
1	-2.1647	0.6897	1.0189	0.1887		

-						
2H	2Fa-3 -423.1117944					
	х	у	Z	NBO		
1	-1.0481	1.3928	0.9397	0.4745		
6	1.3267	-0.7535	-0.3705	0.0926		
6	0.2398	0.2571	-0.7153	-0.1727		
6	-1.0995	-0.1988	-0.0762	0.7855		
8	-1.6432	0.6351	0.8296	-0.6677		
8	-1.6271	-1.2323	-0.3833	-0.5790		
7	0.7067	1.5937	-0.4189	-0.8789		
9	1.6543	-0.6169	0.9919	-0.4039		
1	0.9795	-1.7736	-0.5309	0.1891		
1	0.0720	0.1696	-1.7943	0.2319		
1	0.1561	2.3698	-0.7512	0.3759		
1	1.1332	1.7346	0.4851	0.3799		
1	2.2332	-0.5481	-0.9412	0.1728		

2F	2Fb -423.1206509					
	х	у	z	NBO		
8	-1.4704	-1.5113	-0.0433	-0.5845		
6	-1.2130	-0.3366	-0.0640	0.7883		
6	0.2063	0.2074	-0.3400	-0.1686		
7	0.2883	1.6208	0.0481	-0.8723		
6	1.2512	-0.7033	0.2931	0.0838		
8	-2.1283	0.6207	0.1199	-0.6766		
1	0.5879	1.7270	1.0135	0.3665		
1	0.9510	2.1260	-0.5281	0.3816		
1	0.3313	0.1561	-1.4271	0.2269		
1	1.2037	-0.6691	1.3859	0.1609		
9	2.5261	-0.2561	-0.0845	-0.4015		
1	1.1331	-1.7315	-0.0457	0.1945		
1	-1.6371	1.4709	0.0781	0.5009		

2 F	2Fc -423.113427					
	х	у	z	NBO		
1	1.3505	-0.1742	1.4024	0.1774		
6	1.4662	0.2974	0.4238	0.0858		
6	0.1152	0.5355	-0.2610	-0.1717		
6	-0.8782	-0.6202	-0.0122	0.7871		
7	-0.5373	1.8101	0.0681	-0.8701		
8	-2.1669	-0.2590	-0.1394	-0.6809		
1	1.9988	1.2474	0.5247	0.1570		
9	2.2604	-0.5405	-0.3581	-0.3861		
1	0.3035	0.5341	-1.3403	0.2312		
8	-0.5396	-1.7414	0.2465	-0.5660		
1	-2.1726	0.7127	-0.2510	0.4973		
1	-0.5181	2.0065	1.0649	0.3651		
1	-0.1122	2.5931	-0.4149	0.3738		

3H	3Fa -423.1187987					
	х	у	z	NBO		
8	-1.4763	-1.3121	-0.4016	-0.6040		
6	-1.0410	-0.2243	-0.1199	0.7943		
6	0.2737	0.3429	-0.6859	-0.1594		
7	0.6632	1.6835	-0.2885	-0.8353		
6	1.4035	-0.6376	-0.3949	0.0933		
8	-1.6790	0.6326	0.7064	-0.6873		
1	0.8637	1.7149	0.7057	0.3664		
1	-0.0758	2.3527	-0.4694	0.3625		
1	0.1346	0.3234	-1.7743	0.2269		
1	1.1360	-1.6514	-0.6920	0.1832		
9	1.6550	-0.6508	0.9887	-0.4023		
1	2.3182	-0.3070	-0.8880	0.1751		
1	-2.4892	0.1912	1.0048	0.4866		

3F	3Fb-1 -423.117889					
	х	у	Z	NBO		
9	-2.5374	-0.2163	0.1952	-0.4044		
8	1.4180	-1.4529	-0.2021	-0.5937		
6	-0.2216	0.2688	0.2940	-0.1513		
7	-0.3902	1.5385	-0.4110	-0.8442		
6	1.1680	-0.3017	0.0490	0.8112		
6	-1.2774	-0.7250	-0.1674	0.0933		
8	2.1229	0.6448	0.1915	-0.6903		
1	-0.3127	0.3618	1.3912	0.1991		
1	-1.3149	1.9116	-0.2236	0.3667		
1	0.2967	2.2191	-0.1068	0.3683		
1	-1.2668	-0.8327	-1.2530	0.1763		
1	-1.1560	-1.6942	0.3144	0.1809		
1	2.9802	0.2225	0.0292	0.4881		

3F	3Fb-2 -423.1166286					
	х	у	z	NBO		
7	0.4820	1.5515	-0.5094	-0.8353		
6	0.2430	0.1156	-0.4663	-0.1518		
6	-1.2043	-0.2110	-0.1241	0.8040		
8	-1.8128	-1.1581	-0.5501	-0.5872		
8	-1.7236	0.6554	0.7767	-0.6928		
6	1.1475	-0.6652	0.5032	0.0860		
1	0.2484	1.9940	0.3735	0.3620		
1	1.4597	1.7330	-0.7102	0.3660		
1	0.4106	-0.2936	-1.4656	0.2226		
1	0.9594	-1.7401	0.4530	0.1746		
9	2.4800	-0.4491	0.1265	-0.3994		
1	1.0373	-0.3060	1.5301	0.1628		
1	-2.6353	0.3793	0.9565	0.4886		

3H	3Fb-3 -423.1149888					
	х	у	Z	NBO		
1	-2.9575	0.0048	-0.5130	0.4841		
6	1.3055	-0.7034	0.0390	0.0974		
6	0.2327	0.3482	-0.2236	-0.1525		
6	-1.1508	-0.2738	-0.0367	0.7862		
8	-1.4066	-1.2139	0.6756	-0.6029		

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012

8	-2.0998	0.4052	-0.7245	-0.6882
7	0.4204	1.5133	0.6417	-0.8149
9	2.5415	-0.2280	-0.3985	-0.3899
1	1.3888	-0.9315	1.1040	0.1696
1	0.3254	0.6843	-1.2592	0.2214
1	-0.1835	2.2819	0.3735	0.3643
1	0.2463	1.2877	1.6161	0.3550
1	1.0905	-1.6237	-0.5083	0.1705

3F	3Fb-4 -423.1145609					
	х	у	Z	NBO		
1	-2.4799	-0.1810	1.2443	0.4869		
6	1.2014	-0.6301	0.4291	0.0982		
6	0.2547	0.2195	-0.4215	-0.1524		
6	-1.1919	-0.2001	-0.1440	0.7859		
8	-1.9424	-0.7109	-0.9344	-0.5864		
8	-1.5557	0.0899	1.1333	-0.7041		
7	0.5107	1.6408	-0.2202	-0.8222		
9	2.4976	-0.5379	-0.0724	-0.3868		
1	1.2164	-0.2847	1.4658	0.1680		
1	0.4406	-0.0222	-1.4693	0.2251		
1	0.0453	2.2093	-0.9182	0.3616		
1	0.2129	1.9493	0.6993	0.3598		
1	0.9117	-1.6844	0.3982	0.1663		

3F	3Fb-5 -423.1144466				
	х	у	Z	NBO	
8	-2.0881	0.5983	0.1968	-0.6895	
6	-1.1513	-0.3363	-0.0842	0.7875	
6	0.2427	0.2702	-0.3313	-0.1588	
7	0.4184	1.6810	-0.0426	-0.8238	
6	1.2784	-0.5795	0.4103	0.0983	
8	-1.4060	-1.5129	-0.1503	-0.6022	
1	0.4276	0.1152	-1.4011	0.2309	
1	0.1647	1.9002	0.9149	0.3541	
1	-0.1523	2.2593	-0.6476	0.3630	
1	1.0615	-1.6403	0.2877	0.1849	
1	1.3028	-0.3235	1.4744	0.1573	
9	2.5479	-0.3354	-0.1088	-0.3884	
1	-2.9304	0.1309	0.3091	0.4867	

3ŀ	3Fc -423.1170466				
	х	у	z	NBO	
8	-1.7208	-0.7226	-0.9382	-0.5859	
6	-0.9592	-0.2716	-0.1228	0.7919	
6	0.2670	0.5879	-0.4348	-0.1503	
7	0.1102	1.9820	-0.0152	-0.8290	
6	1.5370	0.0413	0.2117	0.0945	
8	-1.1360	-0.4223	1.2152	-0.7038	
1	-0.1907	2.0472	0.9518	0.3614	
1	-0.5667	2.4680	-0.5920	0.3664	
1	0.3823	0.5628	-1.5194	0.2192	
9	1.7168	-1.2979	-0.1539	-0.3940	
1	1.4771	0.0815	1.3016	0.1680	
1	2.3989	0.6115	-0.1373	0.1745	
1	-1.9383	-0.9495	1.3469	0.4873	

4F	4Fa -423.1087448				
	х	у	Z	NBO	
8	-1.6622	-1.1621	-0.3216	-0.6743	
6	-1.0768	0.0128	0.0359	0.7842	
6	0.2609	0.3553	-0.6689	-0.1687	
6	1.3324	-0.6985	-0.4026	0.0901	
7	0.7793	1.6673	-0.3368	-0.8316	
1	1.0378	-1.7005	-0.7283	0.1531	
9	1.5915	-0.7704	0.9702	-0.3946	
1	2.2589	-0.4079	-0.8998	0.1845	
1	0.0645	0.3232	-1.7504	0.2134	
8	-1.6109	0.7350	0.8257	-0.5582	
1	-1.1277	-1.6410	-0.9664	0.4668	
1	0.9967	1.7083	0.6548	0.3689	
1	0.0757	2.3791	-0.5027	0.3664	

4 F	4Fb -423.1070317				
	х	у	Z	NBO	
8	-1.8879	0.6295	0.7021	-0.5648	
6	-1.2161	-0.0904	0.0190	0.7777	
6	0.2372	0.2421	-0.3864	-0.1640	
7	0.5296	1.6623	-0.3911	-0.8268	
6	1.1828	-0.4990	0.5703	0.0974	
8	-1.7055	-1.2834	-0.4097	-0.6732	
1	0.1016	2.1076	0.4162	0.3685	
1	0.1517	2.1131	-1.2168	0.3601	
1	0.4273	-0.1546	-1.3903	0.2062	
1	0.8503	-1.5234	0.7616	0.1599	
1	1.2624	0.0412	1.5167	0.1744	
9	2.4554	-0.5753	0.0095	-0.3876	
1	-1.0764	-1.7275	-0.9921	0.4721	

4 I	4Fc -423.1151317				
	х	У	z	NBO	
1	1.6708	1.6483	-0.2482	0.3896	
7	0.7099	1.8662	-0.0003	-0.8549	
6	0.0092	0.6439	0.3622	-0.1686	
6	0.8755	-0.5875	0.0320	0.7953	
8	2.0397	-0.5000	-0.2516	-0.5777	
6	-1.3339	0.6401	-0.3772	0.0862	
1	0.7127	2.5422	0.7523	0.3628	
8	0.2654	-1.7835	0.1046	-0.6755	
1	-0.6859	-1.6773	0.2686	0.4930	
1	-0.2056	0.5804	1.4391	0.2059	
9	-2.1232	-0.4622	0.0517	-0.4138	
1	-1.2017	0.5481	-1.4560	0.1785	
1	-1.8955	1.5439	-0.1449	0.1794	

3-Fluoroalanines, CPCM

1H	1Fa _{aq} -423.1452346				
	х	у	Z	NBO	
1	0.9511	1.7276	0.7314	0.3793	
7	0.8400	1.6680	-0.2817	-0.8699	
6	0.2880	0.3791	-0.6597	-0.1712	
6	-1.0513	0.0345	0.0131	0.8147	
8	-1.5773	0.6978	0.8796	-0.6553	
6	1.3016	-0.7342	-0.4344	0.0873	
1	0.2024	2.4177	-0.5505	0.3845	
8	-1.5814	-1.0890	-0.4856	-0.7093	
1	-2.4415	-1.2803	-0.0254	0.5392	
1	0.0913	0.3812	-1.7429	0.2537	
1	0.9296	-1.7024	-0.7699	0.1876	
9	1.5757	-0.8534	0.9540	-0.4257	
1	2.2449	-0.4864	-0.9230	0.1850	

1F	1Fb-1 _{aq} -423.1429371					
	х	у	Z	NBO		
9	2.4948	-0.4237	-0.0494	-0.4235		
8	-2.0625	0.7580	0.2681	-0.6482		
6	0.2291	0.2619	-0.3413	-0.1631		
7	0.5323	1.6307	0.0615	-0.8786		
6	-1.2283	-0.0663	-0.0340	0.8239		
6	1.1686	-0.7151	0.3576	0.0875		
8	-1.4918	-1.3692	-0.1813	-0.7051		
1	0.3317	0.0909	-1.4300	0.2273		
1	1.4301	1.9088	-0.3353	0.3832		
1	-0.1691	2.2694	-0.3139	0.3862		
1	1.1378	-0.5896	1.4425	0.1788		
1	0.9685	-1.7482	0.0764	0.1892		
1	-2.4597	-1.5273	-0.0142	0.5423		

1H	1Fb-2 _{aq} -423.1431169					
	х	у	Z	NBO		
7	0.5479	1.6364	-0.3277	-0.8691		
6	0.2328	0.2183	-0.4045	-0.1648		
6	-1.2252	-0.0260	-0.0246	0.8201		
8	-1.6259	-1.2522	-0.3812	-0.7045		
8	-1.9315	0.7726	0.5493	-0.6459		
6	1.1185	-0.6918	0.4601	0.0789		

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chem	istrv
This is under a first provide the provide the provided of the	
I his journal is © The Royal Society of Chemistry 2012	

1	0.4642	1.9783	0.6314	0.3786
1	1.5114	1.7898	-0.6258	0.3841
1	0.3506	-0.1092	-1.4466	0.2407
1	0.8732	-1.7474	0.3320	0.1865
9	2.4624	-0.5262	0.0494	-0.4218
1	1.0736	-0.4099	1.5160	0.1764
1	-2.5668	-1.3876	-0.0896	0.5407

1H	1Fb-3 _{aq} -423.1434418				
	х	У	Z	NBO	
8	-1.5075	-1.3513	-0.3472	-0.7072	
6	-1.2129	-0.0882	-0.0180	0.8108	
6	0.2450	0.2665	-0.3626	-0.1649	
7	0.5687	1.6748	-0.2306	-0.8674	
6	1.1826	-0.5928	0.4862	0.0895	
1	0.3030	2.0204	0.6934	0.3781	
1	0.0480	2.2251	-0.9143	0.3845	
1	0.3882	-0.0348	-1.4098	0.2442	
8	-2.0060	0.6801	0.4797	-0.6520	
1	0.8934	-1.6438	0.4676	0.1869	
1	1.2292	-0.2291	1.5167	0.1769	
9	2.4925	-0.5180	-0.0355	-0.4193	
1	-2.4550	-1.5427	-0.1135	0.5400	

1F	1Fc _{ag} -423.1433629				
	х	у	Z	NBO	
1	0.1114	2.2050	0.7187	0.3810	
7	0.3535	1.9780	-0.2477	-0.8636	
6	0.3132	0.5341	-0.4654	-0.1576	
6	-0.9580	-0.1243	0.0844	0.8107	
8	-1.3663	0.0454	1.2153	-0.6654	
6	1.5415	-0.0661	0.2156	0.0909	
1	-0.3229	2.4481	-0.8505	0.3894	
8	-1.5727	-0.8960	-0.8158	-0.6968	
1	-2.3837	-1.2998	-0.4040	0.5375	
1	0.3705	0.3369	-1.5403	0.2311	
9	1.5433	-1.4725	0.0627	-0.4195	
1	1.5413	0.1403	1.2891	0.1774	
1	2.4510	0.3187	-0.2471	0.1849	

2F	2Fa-1 _{aq} -423.1444436				
	х	у	Z	NBO	
6	-1.4517	-0.4858	0.4681	0.0791	
6	-0.2087	0.3707	0.6395	-0.1826	
6	1.0432	-0.3379	0.0848	0.8127	
8	1.8799	0.4675	-0.5631	-0.6991	
7	-0.2915	1.7208	0.0823	-0.8961	
1	-0.9185	1.7661	-0.7231	0.3957	
1	-0.6117	2.3971	0.7749	0.4061	
1	-0.0295	0.4464	1.7235	0.2668	
8	1.2780	-1.5162	0.2472	-0.6603	
1	-1.2997	-1.4960	0.8499	0.1934	
9	-1.7550	-0.5997	-0.9128	-0.4231	
1	-2.3146	-0.0173	0.9449	0.1849	
1	1.4492	1.3634	-0.5583	0.5225	

2F	2Fa-2 _{aq} -423.1389029				
	х	у	Z	NBO	
1	-1.2636	1.3596	1.0318	0.5261	
6	1.3772	-0.6614	-0.3949	0.0882	
6	0.2585	0.3264	-0.6928	-0.1795	
6	-1.0623	-0.2160	-0.0987	0.8115	
8	-1.7134	0.5152	0.8101	-0.6941	
8	-1.5205	-1.2828	-0.4475	-0.6572	
7	0.6619	1.6757	-0.3515	-0.8846	

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
Electronic oupplementary material (Eor) for organic a Biomolecular orientistry
This journal is © The Roval Society of Chemistry 2012

9	1.6327	-0.6755	1.0015	-0.4249
1	1.1078	-1.6777	-0.6823	0.1898
1	0.1019	0.2753	-1.7808	0.2592
1	-0.0056	2.3811	-0.6617	0.3935
1	0.8632	1.8041	0.6408	0.3858
1	2.2996	-0.3451	-0.8835	0.1862

2 F	2Fa-3 _{aq} -423.1389025				
	х	у	Z	NBO	
1	-1.2863	1.3656	1.0116	0.5260	
6	1.3802	-0.6554	-0.3960	0.0883	
6	0.2572	0.3284	-0.6908	-0.1797	
6	-1.0613	-0.2213	-0.0986	0.8116	
8	-1.7264	0.5143	0.7965	-0.6941	
8	-1.5066	-1.2966	-0.4378	-0.6573	
7	0.6560	1.6777	-0.3445	-0.8848	
9	1.6383	-0.6692	1.0000	-0.4250	
1	1.1142	-1.6725	-0.6834	0.1898	
1	0.1008	0.2806	-1.7791	0.2595	
1	-0.0096	2.3831	-0.6589	0.3935	
1	0.8505	1.8050	0.6492	0.3860	
1	2.3005	-0.3350	-0.8858	0.1861	

2 F	2Fb _{aq} -423.1435629				
	х	у	Z	NBO	
8	-1.4845	-1.5174	-0.0716	-0.6593	
6	-1.2030	-0.3376	-0.0659	0.8159	
6	0.2110	0.2096	-0.3331	-0.1776	
7	0.2631	1.6253	0.0278	-0.8937	
6	1.2543	-0.6787	0.3331	0.0809	
8	-2.1161	0.6062	0.1410	-0.6987	
1	0.6021	1.7686	0.9820	0.3945	
1	0.8648	2.1532	-0.6031	0.4062	
1	0.3420	0.1281	-1.4228	0.2570	
1	1.2380	-0.5736	1.4219	0.1785	
9	2.5376	-0.2745	-0.1001	-0.4198	
1	1.1291	-1.7240	0.0510	0.1932	
1	-1.6253	1.4703	0.1173	0.5229	

2 F	2Fc _{aq} -423.1409855				
	х	У	Z	NBO	
1	1.3549	0.1240	1.4398	0.1813	
6	1.4525	0.4129	0.3901	0.0801	
6	0.0954	0.5497	-0.3031	-0.1768	
6	-0.8428	-0.6345	-0.0252	0.8128	
7	-0.6007	1.7976	0.0119	-0.8894	
8	-2.1381	-0.3136	-0.0048	-0.7006	
1	1.9953	1.3570	0.3090	0.1822	
9	2.2435	-0.5703	-0.2435	-0.4163	
1	0.2732	0.5274	-1.3890	0.2569	
8	-0.4732	-1.7770	0.1337	-0.6516	
1	-2.1923	0.6702	-0.0980	0.5240	
1	-0.5055	2.0548	0.9978	0.3932	
1	-0.2525	2.5726	-0.5529	0.4042	

3F	3Fa _{aq} -423.1439201				
	х	у	Z	NBO	
8	-1.4796	-1.2977	-0.4515	-0.6687	
6	-1.0399	-0.2151	-0.1194	0.8150	
6	0.2755	0.3575	-0.6796	-0.1704	
7	0.6487	1.7035	-0.2756	-0.8712	
6	1.4074	-0.6210	-0.4055	0.0884	
8	-1.6491	0.5947	0.7466	-0.6981	
1	0.7313	1.7690	0.7393	0.3795	
1	-0.0669	2.3730	-0.5580	0.3850	
1	0.1382	0.3454	-1.7720	0.2543	
1	1.1617	-1.6307	-0.7351	0.1876	
9	1.6477	-0.6869	0.9930	-0.4263	
1	2.3301	-0.2694	-0.8688	0.1847	
1	-2.4930	0.1657	1.0515	0.5401	

3F	3Fb-1 _{aq} -423.1417317				
	х	у	Z	NBO	
9	-2.5440	-0.2424	0.1607	-0.4241	
8	1.4158	-1.4767	-0.1056	-0.6566	
6	-0.2204	0.2650	0.3000	-0.1613	
7	-0.3958	1.5765	-0.3287	-0.8786	
6	1.1750	-0.2976	0.0537	0.8276	
6	-1.2622	-0.7138	-0.2192	0.0878	
8	2.1142	0.6496	0.0831	-0.7009	
1	-0.3170	0.2982	1.4031	0.2265	
1	-1.3125	1.9464	-0.0727	0.3821	
1	0.2912	2.2365	0.0356	0.3859	
1	-1.2549	-0.7663	-1.3101	0.1792	
1	-1.1407	-1.7040	0.2177	0.1896	
1	3.0067	0.2300	-0.0466	0.5425	

3F	3Fb-2 _{aq} -423.1417008				
	х	у	Z	NBO	
7	0.4500	1.6149	-0.3697	-0.8710	
6	0.2394	0.1744	-0.4281	-0.1612	
6	-1.1979	-0.2357	-0.1146	0.8204	
8	-1.6501	-1.3218	-0.4159	-0.6603	
8	-1.8842	0.6910	0.5532	-0.6942	
6	1.1607	-0.6549	0.4809	0.0809	
1	0.3479	1.9649	0.5846	0.3784	
1	1.4003	1.8312	-0.6720	0.3839	
1	0.4211	-0.1579	-1.4583	0.2405	
1	0.9717	-1.7257	0.3841	0.1853	
9	2.4981	-0.4306	0.0832	-0.4207	
1	1.0832	-0.3412	1.5258	0.1764	
1	-2.7958	0.3427	0.7469	0.5415	

3H	3Fb-3 _{aq} -423.1420554				
	х	у	z	NBO	
1	-2.9920	0.0244	-0.4997	0.5385	
6	1.2910	-0.7128	0.0271	0.0880	
6	0.2302	0.3481	-0.2300	-0.1599	
6	-1.1586	-0.2663	-0.0415	0.8102	

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is @ The Royal Society of Chemistry 2012
The journal is a the Reyar bellow of chemistry 2012

8	-1.3979	-1.2233	0.6682	-0.6608
8	-2.0997	0.4116	-0.7077	-0.7017
7	0.4319	1.5103	0.6413	-0.8576
9	2.5502	-0.2209	-0.3830	-0.4208
1	1.3714	-0.9592	1.0880	0.1798
1	0.3151	0.6839	-1.2702	0.2361
1	-0.1720	2.2838	0.3607	0.3865
1	0.2098	1.2806	1.6128	0.3786
1	1.0983	-1.6177	-0.5524	0.1831

3F	3Fb-4 _{ag} -423.1418378						
	х	у	Z	NBO			
1	-2.4831	-0.3230	1.2736	0.5414			
6	1.1935	-0.6735	0.3649	0.0870			
6	0.2505	0.2466	-0.4050	-0.1570			
6	-1.1997	-0.1802	-0.1417	0.8093			
8	-1.9689	-0.5600	-1.0000	-0.6532			
8	-1.5303	-0.0660	1.1501	-0.7096			
7	0.5183	1.6486	-0.0909	-0.8617			
9	2.5083	-0.5145	-0.1239	-0.4183			
1	1.2147	-0.4300	1.4298	0.1809			
1	0.4196	0.0912	-1.4756	0.2332			
1	-0.0330	2.2644	-0.6903	0.3861			
1	0.2776	1.8630	0.8782	0.3789			
1	0.9281	-1.7246	0.2255	0.1830			

3F	3Fb-5 _{aq} -423.1420085					
	х	у	Z	NBO		
8	-2.0497	0.6057	0.2863	-0.6971		
6	-1.1632	-0.3176	-0.0860	0.8122		
6	0.2433	0.2538	-0.3505	-0.1649		
7	0.4435	1.6734	-0.1148	-0.8685		
6	1.2521	-0.5796	0.4384	0.0907		
8	-1.4372	-1.4933	-0.2248	-0.6666		
1	0.4225	0.0495	-1.4168	0.2464		
1	0.1703	1.9274	0.8358	0.3777		
1	-0.1297	2.2284	-0.7501	0.3850		
1	1.0496	-1.6456	0.3390	0.1882		
1	1.2685	-0.2909	1.4934	0.1758		
9	2.5500	-0.3544	-0.0688	-0.4198		
1	-2.9338	0.1690	0.4179	0.5409		

3F	3Fc _{ag} -423.1428936					
	х	у	Z	NBO		
8	-1.6967	-0.7450	-0.9447	-0.6571		
6	-0.9582	-0.2642	-0.1096	0.8106		
6	0.2703	0.5899	-0.4388	-0.1568		
7	0.1275	1.9903	-0.0371	-0.8609		
6	1.5343	0.0420	0.2139	0.0876		
8	-1.1527	-0.3903	1.2082	-0.7107		
1	-0.1464	2.0715	0.9434	0.3814		
1	-0.5878	2.4541	-0.5983	0.3909		
1	0.3859	0.5522	-1.5266	0.2305		
9	1.6956	-1.3216	-0.1314	-0.4202		
1	1.4844	0.0938	1.3037	0.1795		
1	2.4087	0.5807	-0.1539	0.1844		
1	-1.9812	-0.9143	1.3726	0.5408		

4 F	4Fa _{aq} -423.1403441				
	х	у	Z	NBO	
8	-1.8763	-0.8794	-0.4200	-0.7086	
6	-1.0509	0.0508	0.0887	0.8085	
6	0.2497	0.3346	-0.6891	-0.1763	
6	1.2524	-0.7908	-0.4485	0.0865	
7	0.8516	1.6235	-0.3982	-0.8675	
1	0.8479	-1.7718	-0.7078	0.1835	
9	1.6033	-0.8375	0.9219	-0.4232	
1	2.1684	-0.5933	-1.0074	0.1888	
1	0.0090	0.2912	-1.7629	0.2479	
8	-1.3406	0.5988	1.1271	-0.6449	
1	-1.6198	-1.1776	-1.3286	0.5379	
1	1.0127	1.7235	0.6050	0.3816	
1	0.2203	2.3776	-0.6719	0.3857	

4 I	4Fb _{ag} -423.1391095					
	х	у	Z	NBO		
8	-1.8075	0.6352	0.8187	-0.6461		
6	-1.2140	-0.0745	0.0382	0.8038		
6	0.2377	0.2010	-0.4072	-0.1680		
7	0.5813	1.6109	-0.4663	-0.8647		
6	1.1625	-0.5405	0.5610	0.0883		
8	-1.8139	-1.1691	-0.4511	-0.7037		

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chem	istrv
This issue of the Device of the mistry 2002	
I his journal is © The Royal Society of Chemistry 2012	

1	0.3325	2.0767	0.4085	0.3803
1	0.0617	2.0737	-1.2133	0.3854
1	0.3775	-0.2382	-1.4047	0.2355
1	0.8509	-1.5775	0.7086	0.1829
1	1.2185	-0.0242	1.5231	0.1812
9	2.4682	-0.5775	0.0317	-0.4156
1	-1.2698	-1.6357	-1.1358	0.5406

4 I	4Fc _{ag} -423.1401263					
	х	у	Z	NBO		
1	-0.0667	2.2422	0.6212	0.3824		
7	0.2218	1.9917	-0.3263	-0.8642		
6	0.2734	0.5439	-0.4794	-0.1663		
6	-0.9698	-0.1797	0.0711	0.8065		
8	-1.5017	0.1391	1.1123	-0.6548		
6	1.5172	0.0488	0.2609	0.0908		
1	-0.4619	2.3936	-0.9688	0.3899		
8	-1.4594	-1.2056	-0.6359	-0.7001		
1	-0.9593	-1.3615	-1.4766	0.5405		
1	0.3838	0.3078	-1.5454	0.2290		
9	1.6029	-1.3602	0.1782	-0.4189		
1	1.4745	0.3081	1.3221	0.1786		
1	2.4151	0.4638	-0.1982	0.1865		

Alanine Zwitterion, CPCM

zv	zwAr _{ag} -323.8780279					
	х	у	Z	NBO		
8	1.1154	-1.1193	0.6358	-0.8169		
6	0.9254	-0.0728	-0.0346	0.7654		
6	-0.5505	0.2353	-0.4155	-0.1146		
7	-1.3416	-1.0436	-0.2722	-0.6999		
6	-1.1483	1.3171	0.4801	-0.5959		
1	-1.1506	-1.6850	-1.0560	0.4571		
1	-2.3600	-0.8910	-0.2370	0.4485		
1	-1.0279	-1.5278	0.5848	0.4600		
1	-0.6091	0.5237	-1.4685	0.2377		
8	1.7657	0.7721	-0.4108	-0.7984		
1	-1.1187	1.0199	1.5326	0.2118		
1	-2.1844	1.5329	0.2040	0.2128		
1	-0.5670	2.2325	0.3654	0.2324		

zv	zwAl _{ag} -323.8778686				
	Х	у	z	NBO	
1	0.5100	-1.9116	0.0923	0.4647	
7	1.2409	-1.1808	0.0311	-0.7035	
6	0.5774	0.1287	0.3899	-0.1188	
6	-0.9351	0.0032	0.0333	0.7692	
6	1.2970	1.2993	-0.2639	-0.5973	
8	-1.3356	-1.1561	-0.2524	-0.8183	
8	-1.6017	1.0553	0.1045	-0.7928	
1	0.6424	0.2008	1.4823	0.2417	
1	2.0304	-1.4128	0.6499	0.4530	
1	1.5862	-1.1900	-0.9400	0.4458	
1	1.2637	1.2229	-1.3552	0.2090	
1	2.3420	1.3501	0.0536	0.2119	
1	0.8017	2.2251	0.0263	0.2353	

zwAFa_{aq} -423.1443442 Х NBO z у 8 1.8155 0.5654 -0.6125 -0.8045 6 0.0307 1.1286 -0.2664 0.7741 6 -0.1859 0.3045 0.6620 -0.1689 7 -0.4081 1.6844 0.1038 -0.7081 6 -1.4020 -0.5683 0.4640 0.0675 1 -0.7535 2.3541 0.8061 0.4581 8 0.2700 1.3651 -1.4645 -0.7827 1 -0.0113 0.4137 1.7404 0.2673 1 0.5181 1.9896 -0.2556 0.4671 1 -1.0575 1.6865 -0.6971 0.4515 1 -1.2041 -1.5667 0.8523 0.2078 9 -1.6695 -0.6833 -0.9218 -0.4180 -2.2986 -0.1451 0.9240 0.1889 1

3-Fluoroalanines, Zwitterions CPCM

_							
zv	zwAFbr _{ag} -423.1441575						
	Х	у	Z	NBO			
1	1.0567	-1.7637	0.0385	0.2082			
6	1.2000	-0.7240	0.3268	0.0668			
6	0.1752	0.1463	-0.3604	-0.1633			
6	-1.3009	-0.2746	-0.0462	0.7729			
7	0.3453	1.5926	0.0173	-0.7042			
8	-2.0883	0.6761	0.1748	-0.8000			
8	-1.5326	-1.4982	-0.0838	-0.7831			
1	0.3109	0.0927	-1.4479	0.2565			
1	0.6179	1.7137	1.0055	0.4521			
1	1.0409	2.0798	-0.5659	0.4586			
1	-0.5852	2.0357	-0.0907	0.4678			
1	1.1669	-0.6236	1.4161	0.1857			
9	2.4996	-0.3324	-0.0806	-0.4180			

zv	zwAFb1 _{aq} -423.1439166					
	Х	у	Z	NBO		
9	2.4612	-0.4511	0.0377	-0.4156		
6	1.1279	-0.7110	0.4358	0.0662		
6	0.1776	0.0930	-0.4259	-0.1599		
6	-1.3051	-0.2196	-0.0344	0.7666		
7	0.4301	1.5639	-0.2379	-0.7016		
8	-1.9059	0.6926	0.5794	-0.7994		

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemist	rv,
This journal is © The Royal Society of Chemistry 2012	' y

8	-1.7075	-1.3536	-0.3606	-0.7846
1	0.3431	-0.1358	-1.4831	0.2534
1	0.0723	2.1011	-1.0422	0.4619
1	1.4303	1.7933	-0.1340	0.4540
1	-0.0982	1.8863	0.5907	0.4643
1	0.9391	-1.7752	0.2972	0.2064
1	1.0570	-0.4443	1.4944	0.1884

zwAFcl _{ag} -423.1384438					
	Х	у	Z	NBO	
1	1.2793	-0.2081	1.4295	0.1921	
6	1.4183	0.2898	0.4682	0.0758	
6	0.1043	0.4504	-0.2930	-0.1623	
6	-0.9745	-0.6458	-0.0244	0.7695	
7	-0.5201	1.7876	-0.0001	-0.7031	
8	-2.1610	-0.2295	-0.0051	-0.8094	
8	-0.5506	-1.8088	0.1091	-0.7804	
1	0.3236	0.4445	-1.3682	0.2606	
1	-0.4391	2.0586	0.9928	0.4524	
1	-0.1285	2.5509	-0.5717	0.4585	
1	-1.5330	1.6751	-0.1940	0.4697	
1	1.9132	1.2554	0.6106	0.1831	
9	2.2921	-0.5056	-0.2929	-0.4066	

zv	zwAFcr _{aq} -423.1381092					
	Х	у	Z	NBO		
8	-1.7149	-0.2101	0.8661	-0.8112		
6	-0.9199	-0.6052	-0.0237	0.7612		
6	0.1294	0.4580	-0.4777	-0.1498		
7	-0.4923	1.8137	-0.2871	-0.7026		
6	1.4033	0.4077	0.3699	0.0769		
1	-1.1551	2.0177	-1.0514	0.4646		
1	0.1887	2.5896	-0.2583	0.4546		
1	-1.0427	1.7904	0.5902	0.4656		
1	0.3772	0.3458	-1.5367	0.2478		
8	-0.8437	-1.7238	-0.5669	-0.7792		
1	1.1767	0.4534	1.4393	0.1864		
1	2.0869	1.2180	0.0969	0.1848		
9	2.0673	-0.8003	0.1250	-0.3992		

Alanines, protonated Gasphase

p1	p1 -324.2115677					
	х	У	z	NBO		
1	0.6805	-1.8029	-0.1268	0.4656		
7	1.3933	-1.0782	0.1007	-0.6964		
6	0.6134	0.1977	0.4028	-0.1040		
6	-0.8358	-0.1526	0.0291	0.7981		
8	-1.1364	-1.2569	-0.3572	-0.5838		
6	1.1894	1.4012	-0.3368	-0.6040		
1	1.9666	-1.3909	0.8870	0.4414		
8	-1.6478	0.8722	0.2020	-0.6387		
1	-2.5610	0.6218	-0.0224	0.5162		
1	0.6562	0.3497	1.4835	0.2499		
1	0.5997	2.2845	-0.0914	0.2623		
1	1.1519	1.2610	-1.4207	0.2247		
1	2.2205	1.5894	-0.0305	0.2308		
1	2.0036	-0.9651	-0.7134	0.4378		

р3	-324.2055391				
	х	у	Z	NBO	
8	1.3816	1.0417	-0.1753	-0.7164	
6	0.8630	-0.1833	0.0676	0.7806	
6	-0.6341	-0.0932	0.3963	-0.1015	
7	-1.1687	1.2846	-0.0028	-0.6812	
6	-1.4559	-1.1978	-0.2523	-0.6071	
1	-1.2238	1.3749	-1.0226	0.4399	
1	-0.5444	2.0280	0.3297	0.4579	
1	-2.1078	1.4390	0.3757	0.4401	
1	-0.7217	-0.1306	1.4859	0.2496	
8	1.4623	-1.2119	0.0678	-0.5064	
1	-1.0390	-2.1586	0.0502	0.2706	
1	-1.4121	-1.1460	-1.3435	0.2244	
1	-2.4976	-1.1609	0.0733	0.2266	
1	2.3376	0.9701	-0.3397	0.5229	

p4	-324,1972222				
	х	у	Z	NBO	
1	0.7971	-1.6452	-0.3316	0.4676	
7	1.4111	-1.0138	0.2335	-0.6994	
6	0.5883	0.2526	0.4208	-0.1189	
6	-0.8415	-0.1812	0.0096	0.7942	
8	-1.0042	-1.2474	-0.5262	-0.5552	

6	1.1358	1.3888	-0.4452	-0.6055
1	1.6189	-1.4849	1.1175	0.4423
8	-1.8369	0.6565	0.2403	-0.6099
1	-1.5795	1.4661	0.7034	0.4939
1	0.6227	0.5121	1.4808	0.2386
1	0.5349	2.2898	-0.3105	0.2440
1	1.1091	1.1285	-1.5063	0.2352
1	2.1585	1.6403	-0.1558	0.2345
1	2.2929	-0.8447	-0.2563	0.4386

Alanine Protonated-CPCM

p1	p1 _{aq} -324.329114					
	х	у	Z	NBO		
1	-1.1063	-1.8319	-0.6841	0.4704		
7	-1.4570	-1.0146	-0.1573	-0.6949		
6	-0.6003	0.1975	-0.3918	-0.1136		
6	0.8323	-0.1769	-0.0239	0.8131		
8	1.1382	-1.2510	0.4433	-0.6352		
6	-1.1315	1.3936	0.3968	-0.5963		
1	-2.4299	-0.8442	-0.4616	0.4660		
8	1.6659	0.8190	-0.2842	-0.6857		
1	2.5955	0.5552	-0.0347	0.5527		
1	-0.6373	0.3969	-1.4709	0.2724		
1	-0.5208	2.2686	0.1753	0.2415		
1	-1.0971	1.2061	1.4735	0.2205		
1	-2.1617	1.6105	0.1052	0.2261		
1	-1.4787	-1.2877	0.8399	0.4629		

рЗ	p3 _{aq} -324.3271564					
	х	у	Z	NBO		
8	1.2760	-1.0803	0.3450	-0.7028		
6	0.8694	0.1108	-0.0847	0.8156		
6	-0.6263	0.1492	-0.3929	-0.1134		
7	-1.2673	-1.1889	-0.1248	-0.6977		
6	-1.3438	1.2505	0.3836	-0.5953		
1	-1.2194	-1.4564	0.8729	0.4632		
1	-0.8151	-1.9448	-0.6648	0.4706		
1	-2.2646	-1.1756	-0.3969	0.4657		
1	-0.7224	0.3157	-1.4743	0.2730		
8	1.5727	1.0802	-0.2353	-0.6249		

1	-0.8742	2.2073	0.1566	0.2420
1	-1.2846	1.0789	1.4620	0.2200
1	-2.3936	1.3014	0.0864	0.2254
1	2.2596	-1.0667	0.5183	0.5587

p4	p4 _{ag} -324.3231288					
	х	у	Z	NBO		
1	-1.4151	-1.4127	0.5802	0.4661		
7	-1.4515	-0.9581	-0.3482	-0.6957		
6	-0.5701	0.2575	-0.3994	-0.1220		
6	0.8351	-0.1874	0.0119	0.8085		
8	1.0136	-1.1652	0.7003	-0.6265		
6	-1.1057	1.3377	0.5440	-0.5968		
1	-1.1599	-1.6663	-1.0436	0.4704		
8	1.8479	0.5826	-0.3661	-0.6816		
1	1.6056	1.2794	-1.0333	0.5507		
1	-0.5738	0.6042	-1.4408	0.2683		
1	-0.4712	2.2238	0.4882	0.2380		
1	-1.1204	0.9827	1.5778	0.2239		
1	-2.1170	1.6266	0.2488	0.2302		
1	-2.4359	-0.7173	-0.5527	0.4664		

3-Fluoroalanines, protonated, Gasphase

p1	p1Fa -423.4690334					
	х	у	Z	NBO		
1	-1.3209	1.4463	-0.6101	0.4525		
7	-0.6831	1.5756	0.1867	-0.6958		
6	-0.2402	0.2226	0.7006	-0.1456		
6	1.1151	-0.0311	0.0115	0.7973		
8	1.6742	0.8437	-0.5991	-0.5704		
6	-1.3206	-0.8180	0.4137	0.0689		
1	0.1659	2.0513	-0.1741	0.4680		
8	1.5411	-1.2617	0.2211	-0.6431		
1	2.4099	-1.3984	-0.1959	0.5197		
1	-0.0655	0.2969	1.7770	0.2639		
1	-0.9311	-1.8233	0.5698	0.2248		
9	-1.6856	-0.6658	-0.9249	-0.3769		
1	-2.2109	-0.6591	1.0258	0.1943		
1	-1.1431	2.1529	0.8938	0.4423		

p1	p1Fb -423.4681597				
	х	у	Z	NBO	
9	-2.4348	-0.4622	-0.0972	-0.3728	
6	-1.1268	-0.8573	-0.3719	0.0729	
6	-0.2091	0.0520	0.4562	-0.1417	
7	-0.6301	1.4904	0.2468	-0.6901	
6	1.2553	-0.0345	0.0087	0.7871	
8	1.7825	-1.2023	0.3306	-0.6410	
1	-0.0563	1.8884	-0.5153	0.4622	
1	-0.4615	2.0626	1.0790	0.4462	
1	-1.6318	1.5386	0.0220	0.4542	
1	-0.3136	-0.1792	1.5168	0.2581	
8	1.7827	0.8720	-0.5823	-0.5670	
1	-0.9618	-0.7460	-1.4467	0.1925	
1	-0.9927	-1.8969	-0.0747	0.2214	
1	2.7038	-1.2588	0.0206	0.5182	

p1	p1Fc -423.4575808					
	х	у	z	NBO		
7	0.5170	1.8503	0.2320	-0.6963		
6	-0.1560	0.5087	0.4458	-0.1396		
6	0.9058	-0.5174	0.0113	0.7920		
8	1.8729	-0.1612	-0.6209	-0.5844		

8	0.6067	-1.7368	0.3948	-0.6188
6	-1.4504	0.4363	-0.3959	0.0848
1	-0.0995	2.5554	-0.1819	0.4386
1	0.8925	2.2351	1.1033	0.4473
1	1.3213	1.6596	-0.4049	0.4688
1	-0.4047	0.3936	1.5010	0.2591
1	1.2734	-2.3703	0.0747	0.5164
1	-1.2312	0.4380	-1.4686	0.1893
9	-2.1004	-0.7252	-0.0733	-0.3411
1	-2.1008	1.2816	-0.1467	0.1837

p3	p3Fa -423.4634874				
	х	у	Z	NBO	
8	1.4181	-1.4396	0.1707	-0.5041	
6	1.0860	-0.3000	0.0894	0.7849	
6	-0.2302	0.2146	0.7008	-0.1453	
7	-0.5606	1.5996	0.1651	-0.6886	
6	-1.4040	-0.7152	0.4047	0.0677	
8	1.7807	0.7055	-0.4768	-0.7102	
1	-1.0030	1.4995	-0.7590	0.4555	
1	0.2970	2.1514	0.0452	0.4629	
1	-1.2085	2.1072	0.7748	0.4418	
1	-0.0753	0.3029	1.7793	0.2639	
1	-1.1045	-1.7512	0.5606	0.2324	
9	-1.7362	-0.5256	-0.9396	-0.3794	
1	-2.2835	-0.4756	1.0060	0.1921	
1	2.6265	0.3761	-0.8272	0.5266	

p3	p3Fb -423.4626721				
	х	у	Z	NBO	
9	-2.4777	-0.3055	-0.0390	-0.3768	
6	-1.2129	-0.8214	-0.3212	0.0731	
6	-0.2101	0.0689	0.4163	-0.1415	
6	1.2375	-0.2986	0.0838	0.7773	
7	-0.5238	1.5208	0.0906	-0.6823	
8	1.9375	0.7872	-0.2944	-0.7033	
8	1.6382	-1.4175	0.1653	-0.5039	
1	-0.3576	-0.0353	1.4940	0.2600	
1	-0.2802	1.7516	-0.8785	0.4471	
1	0.0020	2.1637	0.6901	0.4516	
1	-1.5312	1.6812	0.2213	0.4563	
1	-1.0735	-0.8031	-1.4053	0.1904	

1	-1.1433	-1.8443	0.0462	0.2282
1	2.8581	0.5400	-0.4912	0.5238

p3	p3Fc -423.450235					
	х	у	Z	NBO		
7	-0.2571	1.8846	-0.3008	-0.6833		
6	0.2388	0.4573	-0.4950	-0.1340		
6	-0.8863	-0.5228	-0.1354	0.7700		
8	-1.0574	-1.5621	-0.6847	-0.4785		
8	-1.6042	-0.0248	0.8997	-0.7223		
6	1.4911	0.2475	0.3831	0.0822		
1	0.5055	2.5683	-0.3603	0.4413		
1	-0.9530	2.1359	-1.0107	0.4497		
1	-0.7163	1.9704	0.6156	0.4606		
1	0.4930	0.3303	-1.5471	0.2583		
1	-2.2901	-0.6592	1.1703	0.5248		
1	1.2573	0.3631	1.4462	0.1881		
9	1.9397	-1.0278	0.1624	-0.3398		
1	2.2779	0.9530	0.0943	0.1830		

p4	p4Fa -423.4521168				
	х	у	Z	NBO	
1	-1.3260	1.5013	-0.5342	0.4510	
7	-0.6391	1.5794	0.2265	-0.7003	
6	-0.2331	0.2034	0.7057	-0.1605	
6	1.1291	-0.0516	-0.0075	0.7965	
8	1.6392	0.8486	-0.6187	-0.5446	
6	-1.3535	-0.7900	0.4013	0.0669	
1	0.2284	1.9900	-0.1854	0.4716	
8	1.6946	-1.2373	0.1209	-0.6061	
1	1.1944	-1.8748	0.6484	0.4925	
1	-0.0563	0.2514	1.7840	0.2588	
1	-1.0424	-1.8219	0.5767	0.1991	
9	-1.6878	-0.6399	-0.9391	-0.3684	
1	-2.2443	-0.5863	1.0005	0.2009	
1	-1.0147	2.1822	0.9616	0.4426	

p 4	p4Fb -423.45273					
	х	у	Z	NBO		
9	-2.4320	-0.4690	-0.1002	-0.3692		
6	-1.1263	-0.8289	-0.4187	0.0695		

6	-0.2028	0.0198	0.4675	-0.1549
7	-0.6162	1.4676	0.3294	-0.6932
6	1.2677	-0.0345	-0.0146	0.7831
8	1.9780	-1.1131	0.2732	-0.6099
1	-0.0365	1.8740	-0.4287	0.4667
1	-0.4265	2.0063	1.1794	0.4462
1	-1.6187	1.5419	0.1176	0.4537
1	-0.3203	-0.2612	1.5156	0.2447
8	1.6957	0.8766	-0.6690	-0.5412
1	-0.9678	-0.6302	-1.4818	0.1999
1	-0.9935	-1.8923	-0.2158	0.2096
1	1.5437	-1.7373	0.8718	0.4951

p4	p4Fc -423.4508212					
	х	у	Z	NBO		
7	0.9531	1.6956	0.0757	-0.7019		
6	-0.0162	0.5792	0.3859	-0.1583		
6	0.7750	-0.7133	0.0234	0.7963		
8	1.9418	-0.6011	-0.2636	-0.5577		
8	0.1469	-1.8632	0.0736	-0.6060		
6	-1.3517	0.7520	-0.3520	0.0698		
1	1.0615	2.3640	0.8420	0.4463		
1	1.8585	1.1841	-0.0969	0.4731		
1	0.7175	2.2161	-0.7749	0.4380		
1	-0.1994	0.5836	1.4632	0.2565		
1	-0.8035	-1.7781	0.2620	0.5120		
1	-1.2364	0.6994	-1.4385	0.1952		
9	-2.1521	-0.3124	0.0507	-0.3642		
1	-1.8535	1.6793	-0.0677	0.2008		

p1Fa_{ag} -423.591693 NBO х z y 1 0.9467 1.6096 0.8662 0.4680 7 0.7399 1.6391 -0.1473 -0.6976 6 0.2729 0.3128 -0.6643 -0.1591 6 -1.0796 0.0034 -0.0181 0.8146 8 -1.6328 0.7680 0.7365 -0.6242 6 1.3213 -0.7602 -0.4280 0.0683 1 0.0178 -0.2854 2.3665 0.4753 8 -1.5320 -1.1743 -0.4127 -0.6837 1 -2.4190 -1.3581 0.0088 0.5569 1 0.1240 0.4178 -1.7502 0.2971 1 0.9872 -1.7083 -0.8504 0.2149 9 1.5015 -0.9295 0.9566 -0.4041 2.2857 -0.4719 -0.8549 0.2022 1 1 1.5954 1.9498 -0.6398 0.4715

p1	p1Fb _{ag} -423.5908547				
	х	у	Z	NBO	
9	2.4737	-0.4828	-0.0205	-0.3999	
6	1.1597	-0.7712	0.3834	0.0697	
6	0.2170	0.1502	-0.3800	-0.1542	
7	0.5443	1.5836	-0.0983	-0.6973	
6	-1.2532	-0.0855	-0.0331	0.8134	
8	-1.5851	-1.3513	-0.2236	-0.6827	
1	0.4228	1.8240	0.9015	0.4679	
1	-0.0695	2.2169	-0.6388	0.4752	
1	1.5213	1.7965	-0.3625	0.4715	
1	0.3489	-0.0011	-1.4613	0.2865	
8	-1.9820	0.7979	0.3508	-0.6197	
1	1.1057	-0.6114	1.4647	0.1973	
1	0.9451	-1.8113	0.1385	0.2145	
1	-2.5518	-1.4874	-0.0081	0.5579	

p1	p1Fc _{ag} -423.5863661					
	х	у	z	NBO		
7	-0.3996	1.8865	-0.2047	-0.6963		
6	0.1480	0.5054	-0.3869	-0.1506		
6	-0.9565	-0.4839	-0.0176	0.8097		
8	-1.9997	-0.1355	0.4864	-0.6284		

3-Fluoroalanine, protonated CPCM

8	-0.6094	-1.7240	-0.3134	-0.6769
6	1.4251	0.3506	0.4563	0.0772
1	0.2869	2.6055	-0.4934	0.4720
1	-1.2489	2.0232	-0.7799	0.4769
1	-0.6724	2.0754	0.7763	0.4699
1	0.4053	0.3935	-1.4488	0.2847
1	-1.3376	-2.3515	-0.0409	0.5540
1	1.2028	0.1854	1.5144	0.1969
9	2.1420	-0.7478	-0.0143	-0.3861
1	2.0557	1.2373	0.3390	0.1971

p3Fa _{aq} -423.58994				
	х	у	Z	NBO
8	-1.4533	-1.3597	-0.3991	-0.6164
6	-1.0609	-0.2536	-0.1236	0.8165
6	0.2593	0.2851	-0.6831	-0.1588
7	0.5626	1.6634	-0.1669	-0.7002
6	1.4161	-0.6565	-0.4000	0.0698
8	-1.6786	0.6272	0.6517	-0.6975
1	0.7130	1.6737	0.8567	0.4685
1	-0.2086	2.3213	-0.3695	0.4752
1	1.4150	2.0445	-0.6148	0.4714
1	0.1416	0.3694	-1.7744	0.2971
1	1.1873	-1.6500	-0.7871	0.2150
9	1.5977	-0.7516	0.9918	-0.4045
1	2.3480	-0.2817	-0.8313	0.2019
1	-2.5450	0.2532	0.9818	0.5619

p3	p3Fb _{ag} -423.5889773				
	х	у	Z	NBO	
9	2.5173	-0.3444	-0.0378	-0.3999	
6	1.2304	-0.7358	0.3639	0.0714	
6	0.2199	0.1307	-0.3753	-0.1541	
6	-1.2112	-0.3202	-0.0805	0.8159	
7	0.4331	1.5795	-0.0452	-0.6993	
8	-2.0013	0.6967	0.2353	-0.6957	
8	-1.5355	-1.4794	-0.1566	-0.6140	
1	0.3780	0.0329	-1.4597	0.2872	
1	0.2760	1.7839	0.9575	0.4678	
1	-0.2045	2.1871	-0.5865	0.4754	
1	1.3998	1.8667	-0.2778	0.4711	
1	1.1698	-0.6063	1.4488	0.1971	

1	1.0857	-1.7816	0.0940	0.2149
1	-2.9332	0.3747	0.4027	0.5624

рЗ	p3Fc _{aq} -423.5843673				
	х	у	Z	NBO	
7	-0.3242	1.8721	-0.2828	-0.6991	
6	0.2027	0.4765	-0.4521	-0.1460	
6	-0.8695	-0.5614	-0.1210	0.8083	
8	-0.8406	-1.6805	-0.5672	-0.6064	
8	-1.7752	-0.0782	0.7237	-0.7031	
6	1.4486	0.3154	0.4346	0.0781	
1	0.3849	2.5746	-0.5612	0.4727	
1	-1.1540	2.0308	-0.8813	0.4771	
1	-0.6089	2.0770	0.6911	0.4706	
1	0.4845	0.3610	-1.5052	0.2795	
1	-2.4536	-0.7780	0.9452	0.5611	
1	1.1945	0.3108	1.4988	0.1960	
9	2.0549	-0.9010	0.1279	-0.3877	
1	2.1636	1.1155	0.2201	0.1987	

p 4	p4Fa _{aq} -423.5848344				
	х	у	Z	NBO	
1	0.9905	1.6113	0.7197	0.4708	
7	0.8172	1.5690	-0.2995	-0.6984	
6	0.2450	0.2452	-0.7069	-0.1669	
6	-1.0752	0.0569	0.0518	0.8091	
8	-1.3413	0.7239	1.0217	-0.6141	
6	1.2454	-0.8664	-0.4159	0.0673	
1	0.1707	2.3439	-0.5284	0.4753	
8	-1.8866	-0.8990	-0.3793	-0.6789	
1	-1.6484	-1.2820	-1.2661	0.5524	
1	0.0642	0.2803	-1.7922	0.2942	
1	0.8508	-1.8295	-0.7481	0.2110	
9	1.4746	-0.9345	0.9659	-0.3992	
1	2.2023	-0.6670	-0.9064	0.2058	
1	1.7100	1.7576	-0.7888	0.4717	

p 4	p4Fbaq -423.5840921					
	х	у	Z	NBO		
9	2.4459	-0.5583	0.0549	-0.3952		
6	1.1298	-0.7155	0.5108	0.0690		

6	0.2091	0.0737	-0.4171	-0.1608
7	0.5712	1.5266	-0.3719	-0.6985
6	-1.2544	-0.0630	0.0268	0.8054
8	-1.9088	-1.1416	-0.3743	-0.6731
1	0.3561	1.9432	0.5514	0.4705
1	0.0444	2.0655	-1.0817	0.4751
1	1.5778	1.6663	-0.5669	0.4715
1	0.3412	-0.2624	-1.4548	0.2812
8	-1.7638	0.7616	0.7463	-0.6114
1	1.0874	-0.3441	1.5391	0.2009
1	0.8804	-1.7783	0.4781	0.2113
1	-1.4250	-1.6834	-1.0556	0.5542

45 400 501000						
p 4	$p4Fc_{aq}$ -423.581608					
	Х	у	Z	NBO		
7	-0.4140	1.8904	-0.2967	-0.6975		
6	0.1491	0.5142	-0.4608	-0.1567		
6	-0.9140	-0.4823	0.0204	0.8046		
8	-1.7410	-0.1580	0.8399	-0.6199		
8	-0.8592	-1.7120	-0.4644	-0.6722		
6	1.4364	0.4043	0.3717	0.0756		
1	0.2831	2.6213	-0.5270	0.4730		
1	-1.2230	2.0350	-0.9269	0.4779		
1	-0.7512	2.0524	0.6694	0.4723		
1	0.3768	0.3743	-1.5260	0.2781		
1	-0.1884	-1.8367	-1.1893	0.5541		
1	1.2350	0.5213	1.4408	0.1977		
9	1.9744	-0.8668	0.1675	-0.3887		
1	2.1688	1.1441	0.0365	0.2019		

Alanine Anions Gasphase

a1	a1r -323.3030773				
	Х	у	Z	NBO	
1	-0.9743	-1.6201	0.4370	0.3668	
7	-1.4181	-1.0948	-0.3209	-0.8814	
6	-0.6185	0.1492	-0.4087	-0.1215	
6	0.8963	-0.0540	-0.0325	0.7428	
8	1.1444	-1.0541	0.6899	-0.8038	
6	-1.2289	1.2165	0.5078	-0.5722	
1	-1.2122	-1.6519	-1.1470	0.3307	
8	1.6820	0.8192	-0.4689	-0.7889	
1	-0.6567	0.5156	-1.4401	0.1649	
1	-0.6505	2.1422	0.4476	0.2003	
1	-1.2139	0.8699	1.5473	0.1865	
1	-2.2709	1.4173	0.2338	0.1758	

a1	all -323.3029148					
	х	у	Z	NBO		
1	-0.5124	1.9515	0.1210	0.3744		
7	-1.2839	1.2805	0.1424	-0.8793		
6	-0.6235	-0.0186	0.3989	-0.1236		
6	0.9112	-0.0284	0.0265	0.7467		
8	1.4041	1.0872	-0.2807	-0.8006		
6	-1.3846	-1.1577	-0.2767	-0.5807		
8	1.4789	-1.1416	0.1171	-0.7916		
1	-0.6528	-0.1947	1.4836	0.1667		
1	-0.8918	-2.1068	-0.0634	0.2199		
1	-1.3885	-1.0222	-1.3666	0.1752		
1	-2.4268	-1.1995	0.0640	0.1721		
1	-1.6232	1.2719	-0.8182	0.3207		

Alanine Anions CPCM

al	all _{ag} -323.410603				
	Х	у	Z	NBO	
1	-1.3352	-1.5196	0.5058	0.3649	
7	-1.4351	-1.0653	-0.4037	-0.8852	
6	-0.6098	0.1516	-0.4125	-0.1215	
6	0.8820	-0.0586	-0.0244	0.7592	
8	1.1541	-0.9779	0.7945	-0.8463	
6	-1.2296	1.1960	0.5258	-0.5751	
1	-1.0599	-1.7322	-1.0802	0.3674	
8	1.7170	0.7357	-0.5435	-0.8521	
1	-0.6207	0.5504	-1.4328	0.1924	
1	-0.6519	2.1235	0.5180	0.2034	
1	-1.2559	0.8185	1.5536	0.1935	
1	-2.2552	1.4196	0.2202	0.1994	

Fluoroalanines, Anions, Gasphase

a1	a1Fal -422.5756392				
	Х	у	Z	NBO	
6	-1.3550	-0.5710	0.4572	0.0831	
6	-0.1616	0.3375	0.6416	-0.1673	
6	1.1617	-0.2403	-0.0125	0.7530	
8	1.8797	0.6034	-0.5981	-0.7877	
7	-0.4830	1.7235	0.2623	-0.8794	
1	0.4161	2.1155	-0.0234	0.3746	
1	-1.0147	1.6819	-0.6046	0.3392	
1	0.0415	0.3105	1.7235	0.1825	
8	1.3604	-1.4587	0.1917	-0.7872	
1	-1.0620	-1.6027	0.6472	0.1878	
9	-1.8434	-0.5129	-0.8810	-0.4334	
1	-2.2012	-0.2678	1.0835	0.1348	

al	alFar -422.5787216				
	Х	у	Z	NBO	
9	2.4839	-0.4070	0.0880	-0.4462	
6	1.1016	-0.6483	0.4015	0.0800	
6	0.1860	0.1826	-0.4693	-0.1648	
6	-1.2955	-0.1964	-0.0369	0.7576	
7	0.4210	1.6252	-0.3673	-0.8791	
1	0.9931	-0.3865	1.4583	0.1471	

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chem	istrv
This issue of the Device of the mistry 2002	
I his journal is © The Royal Society of Chemistry 2012	

1	0.9264	-1.7124	0.2469	0.1750
1	0.3101	-0.1504	-1.5062	0.1778
8	-1.9256	0.7006	0.5683	-0.7804
8	-1.6376	-1.3631	-0.3268	-0.7783
1	-0.3119	1.9825	0.2473	0.3792
1	1.3332	1.8260	0.0293	0.3323

a1	a1Fbr -422.5791161				
	Х	у	Z	NBO	
9	2.5353	-0.2924	-0.1021	-0.4476	
6	1.2103	-0.6219	0.3461	0.0864	
6	0.1859	0.2660	-0.3158	-0.1666	
6	-1.2830	-0.2824	-0.0488	0.7612	
7	0.3086	1.6579	0.1313	-0.8831	
1	1.2147	-0.4727	1.4280	0.1518	
1	1.0435	-1.6667	0.0922	0.1778	
1	0.3261	0.1663	-1.4043	0.1675	
8	-2.1504	0.6010	0.1374	-0.7805	
8	-1.4054	-1.5258	-0.0936	-0.7807	
1	0.8514	2.2114	-0.5215	0.3311	
1	-0.6468	2.0161	0.1656	0.3827	

al	alFcl -422.56904850				
	Х	у	Z	NBO	
7	-0.2009	1.8765	-0.4481	-0.8624	
6	0.1725	0.4533	-0.5249	-0.1571	
6	-1.0451	-0.4079	-0.0052	0.7557	
8	-1.3150	-1.4361	-0.6531	-0.7538	
8	-1.5886	0.0604	1.0297	-0.8062	
6	1.4074	0.2144	0.3412	0.0872	
1	-0.8089	1.9558	0.3681	0.3779	
1	0.6093	2.4769	-0.3099	0.3161	
1	0.3957	0.1700	-1.5574	0.1759	
1	2.1954	0.9427	0.1023	0.1208	
1	1.1415	0.2894	1.3996	0.1633	
9	1.9882	-1.0581	0.1394	-0.4176	

a1	a1Fcr -422.57147903				
	Х	у	Z	NBO	
7	-0.1249	1.9227	-0.3029	-0.8747	
6	0.1691	0.4784	-0.4903	-0.1549	
6	-1.0162	-0.4181	0.0230	0.7415	
8	-1.4308	-1.3040	-0.7525	-0.7641	
8	-1.4254	-0.0984	1.1712	-0.8091	
6	1.4562	0.2279	0.2814	0.0964	
1	-0.7864	2.2023	-1.0221	0.3396	
1	-0.6507	1.9641	0.5724	0.3671	
1	0.3460	0.2823	-1.5517	0.1770	
1	2.2349	0.9275	-0.0374	0.1397	
1	1.2736	0.3267	1.3549	0.1612	
9	1.9614	-1.0746	0.0634	-0.4197	

3-Fluoroalanine Anion-CPCM

a 1	a1Fal _{aq} -422.6816284				
	Х	у	Z	NBO	
6	1.3248	-0.6387	-0.4439	0.0883	
6	0.2099	0.3646	-0.6624	-0.1767	
6	-1.1213	-0.1423	-0.0114	0.7614	
8	-1.6553	0.5726	0.8729	-0.8284	
7	0.6576	1.7056	-0.2821	-0.8819	
1	-0.0625	2.3811	-0.5379	0.3740	
1	0.7226	1.7589	0.7352	0.3704	
1	0.0324	0.3606	-1.7475	0.2250	
8	-1.5564	-1.2414	-0.4508	-0.8435	
1	1.0357	-1.6371	-0.7705	0.1818	
9	1.6260	-0.7375	0.9504	-0.4414	
1	2.2483	-0.3168	-0.9287	0.1713	

a1Fbl _{aq} -422.6814324				
	Х	у	Z	NBO
9	2.4540	-0.4680	0.0757	-0.4384
6	1.0945	-0.6462	0.4745	0.0783
6	0.1841	0.1640	-0.4427	-0.1635
6	-1.2846	-0.1613	-0.0392	0.7671
7	0.4458	1.6035	-0.4237	-0.8856
1	1.0356	-0.3043	1.5114	0.1689
1	0.8914	-1.7164	0.4082	0.1787
1	0.3312	-0.2093	-1.4631	0.2054
8	-1.8870	0.6807	0.6725	-0.8225
8	-1.7326	-1.2695	-0.4367	-0.8327
1	0.0790	2.0022	0.4402	0.3755
1	1.4489	1.7865	-0.4543	0.3689

a 1	a1Fbr _{ag} -422.6814488				
	Х	у	Z	NBO	
9	-2.5036	-0.3105	0.0673	-0.4429	
6	-1.1795	-0.6796	-0.3315	0.0875	
6	-0.1796	0.2459	0.3317	-0.1672	
6	1.2766	-0.2364	0.0465	0.7708	
7	-0.3913	1.6269	-0.1087	-0.8954	
1	-1.1541	-0.5844	-1.4195	0.1675	
1	-1.0405	-1.7149	-0.0262	0.1823	

1	-0.3052	0.1331	1.4234	0.1985
8	2.1358	0.6486	-0.1923	-0.8231
8	1.4784	-1.4770	0.1195	-0.8317
1	-1.1206	2.0720	0.4466	0.3714
1	0.4724	2.1475	0.0327	0.3822

a1Fcl _{aq} -422.67994399				
	Х	у	Z	NBO
7	-0.0432	1.9430	-0.2859	-0.8841
6	0.2055	0.5063	-0.4796	-0.1583
6	-1.0320	-0.2930	0.0086	0.7717
8	-1.5946	-1.0553	-0.8208	-0.8112
8	-1.3753	-0.1086	1.2065	-0.8372
6	1.4658	0.0731	0.2633	0.0761
1	-0.2118	2.1317	0.7031	0.3796
1	0.7696	2.4928	-0.5702	0.3656
1	0.3424	0.3193	-1.5491	0.1916
1	2.3414	0.6229	-0.0920	0.1648
1	1.3482	0.1989	1.3421	0.1708
9	1.7374	-1.3082	0.0365	-0.4294

a1Fcr _{aq} -422.68004928					
	Х	у	Z	NBO	
7	0.0041	1.9758	-0.2092	-0.8799	
6	0.1897	0.5387	-0.4696	-0.1573	
6	-0.9957	-0.3432	0.0175	0.7569	
8	-1.5318	-1.1113	-0.8258	-0.8341	
8	-1.3345	-0.2076	1.2240	-0.8414	
6	1.4874	0.1433	0.2213	0.0903	
1	-0.7046	2.3490	-0.8416	0.3788	
1	-0.3597	2.0974	0.7375	0.3730	
1	0.3080	0.3991	-1.5488	0.2033	
1	2.3335	0.6945	-0.1928	0.1715	
1	1.4223	0.2988	1.3009	0.1703	
9	1.7570	-1.2391	0.0232	-0.4312	