# Supplementary Information

for

# Mechanistic investigation of the iridium-catalysed alkylation of amines with alcohols

Peter Fristrup,\* Matyas Tursky and Robert Madsen\*

Department of Chemistry, Building 201 Technical University of Denmark DK-2800 Kgs. Lyngby, Denmark

### **Table of Contents**

| GC retention times                                                      | 2  |
|-------------------------------------------------------------------------|----|
| Competition experiments                                                 | 4  |
| Primary KIE determination                                               | 20 |
| Primary KIE determination with GC-FID and GC-MS measurements            | 21 |
| Racemisation experiment                                                 | 26 |
| Validation of computational method using two available X-ray structures | 27 |
| XYZ coordinates and energies from computational study                   |    |
| Calculation of theoretical KIE                                          |    |
| IRC scan calculations of representative TS's                            |    |
| Dihedral scan, <i>cis</i> -imine to <i>trans</i> -imine                 | 44 |

#### GC retention times

Injector temperature 300 °C, detector temperature 350 °C.

Table A. Programmed oven temperature: start 100 °C, ramp 20 °C/min to 300 °C, 5 min @ 300 °C.

| Compound                   | <b>Retention Time</b> |
|----------------------------|-----------------------|
| aniline                    | 1.52 min              |
| benzyl alcohol             | 1.70 min              |
| 1,2,4,5-tetramethylbenzene | 2.11 min              |
| naphthalene                | 2.47 min              |
| <i>p</i> -anisalcohol      | 2.92 min              |

**Table B.** Programmed oven temperature: start 100 °C, ramp 20 °C/min to 200 °C, 5 min @ 200 °C, ramp 20 °C/min to 300 °C, 5 min @ 300 °C.

| Compound                                 | <b>Retention Time</b> |
|------------------------------------------|-----------------------|
| <i>p</i> -toluidine                      | 1.84 min              |
| <i>p</i> -(trifluoromethyl)aniline       | 1.85 min              |
| p-(trifluoromethyl)benzyl alcohol        | 1.91 min              |
| <i>p</i> -methylbenzyl alcohol           | 2.14 min              |
| <i>p</i> -chloroaniline                  | 2.43 min              |
| <i>p</i> -anisidine                      | 2.51 min              |
| <i>p</i> -chlorobenzyl alcohol           | 2.64 min              |
| <i>p</i> -(dimethylamino)aniline         | 3.31 min              |
| p-(hydroxymethyl)benzonitrile            | 3.52 min              |
| <i>p</i> -aminobenzonitrile              | 3.76 min              |
| p-(dimethylamino)benzyl alcohol          | 3.98 min              |
| methyl <i>p</i> -(hydroxymethyl)benzoate | 4.08 min              |
| methyl p-aminobenzoate                   | 4.18 min              |
| <i>p</i> -nitrobenzyl alcohol            | 4.21 min              |

**Table C.** Programmed oven temperature: start 100 °C, ramp 5 °C/min to 130 °C, 20 °C/min to 200 °C, 5 min @ 200 °C, ramp 20 °C to 300 °C, 5 min @ 300 °C.

| Compound                    | <b>Retention Time</b> |
|-----------------------------|-----------------------|
| aniline                     | 1.73 min              |
| benzyl alcohol              | 2.05 min              |
| 1,2,4,5-tetramethylbenzene  | 2.85 min              |
| naphthalene                 | 3.53 min              |
| <i>p</i> -chloroaniline     | 3.39 min              |
| <i>p</i> -aminobenzonitrile | 6.72 min              |

### Competition experiment 1, p-methoxybenzyl alcohol vs. benzyl alcohol

K<sub>2</sub>CO<sub>3</sub> (14 mg, 0.10 mmol)

aniline (180 µL, 2 mmol)

benzyl alcohol (105 µL, 1 mmol)

*p*-methoxybenzyl alcohol (125 µL, 1 mmol)

naphthalene (129 mg, 1 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (40 mg, 0.05 mmol)

|             |                   |       | Areas              |             | Conversio         | n      |                    |
|-------------|-------------------|-------|--------------------|-------------|-------------------|--------|--------------------|
| Time        | PhNH <sub>2</sub> | BnOH  | <i>p</i> -MeO-BnOH | Naphthalene | PhNH <sub>2</sub> | BnOH   | <i>p</i> -MeO-BnOH |
| 0 - no cat. | 58363             | 33031 | 27709              | 52420       | 0.0024            | 0.0082 | -0.0045            |
| 0 - cat.    | 89360             | 50868 | 42134              | 80064       | 0.0000            | 0.0000 | 0.0000             |
| 30 min      | 62112             | 35090 | 27070              | 59223       | 0.0603            | 0.0674 | 0.1314             |
| 1h          | 33934             | 19358 | 13487              | 35878       | 0.1526            | 0.1508 | 0.2857             |
| 2h          | 70544             | 44593 | 29264              | 91116       | 0.3063            | 0.2297 | 0.3897             |
| 3h          | 84513             | 57311 | 33053              | 135093      | 0.4395            | 0.3323 | 0.5351             |
| 4h          | 66124             | 47585 | 22871              | 131233      | 0.5485            | 0.4293 | 0.6688             |
| 6h          | 50356             | 41146 | 13398              | 143293      | 0.6851            | 0.5480 | 0.8223             |
| 8h          | 51889             | 42795 | 9803               | 171480      | 0.7282            | 0.6072 | 0.8914             |
| 24h         | 12822             | 3046  | 0                  | 161975      | 0.9289            | 0.9704 | 1.0000             |



### Competition experiment 2, *p*-methylbenzyl alcohol vs. benzyl alcohol

K<sub>2</sub>CO<sub>3</sub> (14 mg, 0.10 mmol) aniline (180 μL, 2 mmol)

benzyl alcohol (105 µL, 1 mmol)

*p*-methylbenzyl alcohol (122 mg, 1 mmol)

naphthalene (126 mg, 1 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (40 mg, 0.05 mmol)

|             |        |        | Areas     | Conversion  |        |         |           |
|-------------|--------|--------|-----------|-------------|--------|---------|-----------|
| time        | PhNH2  | BnOH   | p-Me-BnOH | Naphthalene | PhNH2  | BnOH    | p-Me-BnOH |
| 0 - no cat. | 717745 | 424429 | 470110    | 625773      | 0.0071 | -0.0164 | -0.0298   |
| 0 - cat.    | 445759 | 261196 | 285530    | 391417      | 0.0000 | 0.0000  | 0.0000    |
| 30 min      | 465851 | 271063 | 286663    | 428255      | 0.0448 | 0.0515  | 0.0824    |
| 1 h         | 307854 | 180906 | 185579    | 299271      | 0.0967 | 0.0941  | 0.1499    |
| 2 h         | 269225 | 163497 | 156588    | 307424      | 0.2310 | 0.2030  | 0.3018    |
| 3 h         | 106058 | 65690  | 57578     | 140889      | 0.3390 | 0.3013  | 0.4398    |
| 4 h         | 83940  | 53727  | 43248     | 131790      | 0.4407 | 0.3891  | 0.5501    |
| 6 h         | 63474  | 44218  | 30041     | 136795      | 0.5926 | 0.5156  | 0.6990    |
| 7 h         | 61753  | 45149  | 28244     | 152627      | 0.6472 | 0.5567  | 0.7463    |
| 8 h         | 202196 | 152689 | 89591     | 562404      | 0.6865 | 0.5932  | 0.7816    |
| 26 h        | 6387   | 7795   | 4327      | 210311      | 0.9735 | 0.9445  | 0.9718    |



### Competition experiment 3, p-(trifluoromethyl)benzyl alcohol vs. benzyl alcohol

K<sub>2</sub>CO<sub>3</sub> (15 mg, 0.11 mmol)

aniline (180 µL, 2 mmol)

benzyl alcohol (105 µL, 1 mmol)

*p*-(trifluoromethyl)benzyl alcohol (135 µL, 0.99 mmol)

naphthalene (127 mg, 1 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (39 mg, 0.049 mmol)

|             |        |       | Areas                           |             | Conversion | I       |                                 |
|-------------|--------|-------|---------------------------------|-------------|------------|---------|---------------------------------|
| time        | PhNH₂  | BnOH  | <i>p</i> -CF <sub>3</sub> -BnOH | Naphthalene | $PhNH_2$   | BnOH    | <i>p</i> -CF <sub>3</sub> -BnOH |
| 0 - no cat. | 157965 | 89809 | 95716                           | 136593      | -0.0121    | -0.0368 | -0.0259                         |
| 0 - cat.    | 174293 | 96726 | 104192                          | 152533      | 0.0000     | 0.0000  | 0.0000                          |
| 30 min      | 168967 | 89463 | 102363                          | 151947      | 0.0268     | 0.0715  | 0.0138                          |
| 1 h         | 119507 | 61467 | 75025                           | 113259      | 0.0766     | 0.1442  | 0.0302                          |
| 2 h         | 204569 | 96720 | 140437                          | 219523      | 0.1845     | 0.3052  | 0.0635                          |
| 3 h         | 114162 | 46925 | 84758                           | 139837      | 0.2855     | 0.4708  | 0.1127                          |
| 5 h         | 109765 | 39957 | 88195                           | 152176      | 0.3687     | 0.5859  | 0.1515                          |
| 6 h         | 124374 | 28462 | 120277                          | 239791      | 0.5461     | 0.8128  | 0.2657                          |
| 24 h        | 12946  | 0     | 19788                           | 178546      | 0.9365     | 1.0000  | 0.8378                          |



### Competition experiment 4, *p*-chlorobenzyl alcohol vs. benzyl alcohol

K<sub>2</sub>CO<sub>3</sub> (14 mg, 0.10 mmol)

aniline (180 µL, 2 mmol)

benzyl alcohol (105 µL, 1 mmol)

*p*-chlorobenzyl alcohol (143 mg, 1 mmol)

naphthalene (128 mg, 1 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (40 mg, 0.05 mmol)

|             |       | А     | reas      | Conversion  |         |         |           |
|-------------|-------|-------|-----------|-------------|---------|---------|-----------|
| time        | PhNH2 | BnOH  | p-Cl-BnOH | Naphthalene | PhNH2   | BnOH    | p-Cl-BnOH |
| 0 - no cat. | 99611 | 56266 | 46300     | 89186       | -0.0123 | -0.0878 | -0.0516   |
| 0 - cat.    | 89255 | 46913 | 39933     | 80893       | 0.0000  | 0.0000  | 0.0000    |
| 30 min      | 62807 | 33772 | 28970     | 64089       | 0.1118  | 0.0914  | 0.0843    |
| 1 h         | 78890 | 41633 | 38611     | 91734       | 0.2206  | 0.2174  | 0.1474    |
| 2 h         | 88375 | 44380 | 46788     | 139776      | 0.4270  | 0.4525  | 0.3219    |
| 3 h         | 63734 | 29365 | 35887     | 148703      | 0.6116  | 0.6595  | 0.5111    |
| 4 h         | 36608 | 15073 | 21644     | 139784      | 0.7626  | 0.8141  | 0.6863    |
| 6 h         | 12715 | 3999  | 8300      | 164598      | 0.9300  | 0.9581  | 0.8979    |
| 18 h        | 1223  | 0     | 1072      | 181903      | 0.9940  | 1.0000  | 0.9881    |



# Competition experiment 5, methyl p-(hydroxymethyl)benzoate vs. benzyl alcohol

K<sub>2</sub>CO<sub>3</sub> (15 mg, 0.11 mmol)

aniline (180 µL, 2 mmol)

benzyl alcohol (105 µL, 1 mmol)

methyl *p*-(hydroxymethyl)benzoate (165 mg, 0.99 mmol)

naphthalene (128 mg, 1 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (39 mg, 0.049 mmol)

|             |        |        | Areas        | Conversion  |         |         |              |
|-------------|--------|--------|--------------|-------------|---------|---------|--------------|
| time        | PhNH2  | BnOH   | p-COOMe-BnOH | Naphthalene | PhNH2   | BnOH    | p-COOMe-BnOH |
| 0 - no cat. | 149311 | 78395  | 58713        | 127031      | -0.0089 | -0.0396 | -0.0554      |
| 0 - cat.    | 206242 | 105095 | 77526        | 177035      | 0.0000  | 0.0000  | 0.0000       |
| 30 min      | 141927 | 69644  | 55831        | 130416      | 0.0659  | 0.1004  | 0.0224       |
| 1 h         | 148095 | 68740  | 60272        | 147716      | 0.1394  | 0.2161  | 0.0682       |
| 2 h         | 120747 | 51527  | 51569        | 139089      | 0.2548  | 0.3760  | 0.1533       |
| 3 h         | 103203 | 39140  | 45545        | 137564      | 0.3560  | 0.5207  | 0.2440       |
| 4 h         | 99813  | 32690  | 45105        | 155033      | 0.4474  | 0.6448  | 0.3356       |
| 5 h         | 90074  | 25861  | 41549        | 160990      | 0.5197  | 0.7294  | 0.4106       |
| 6 h         | 78559  | 19559  | 35409        | 163113      | 0.5866  | 0.7980  | 0.5043       |
| 8 h         | 63949  | 11928  | 27265        | 171960      | 0.6808  | 0.8832  | 0.6379       |
| 26 h        | 46563  | 3743   | 14776        | 237079      | 0.8314  | 0.9734  | 0.8577       |



# Competition experiment 6, *p*-(hydroxymethyl)benzonitrile vs. benzyl alcohol

K<sub>2</sub>CO<sub>3</sub> (14 mg, 0.10 mmol)

aniline (180 µL, 2 mmol)

benzyl alcohol (105 µL, 1 mmol)

*p*-(hydroxymethyl)benzonitrile (132 mg, 0.99 mmol)

naphthalene (127 mg, 1 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (39 mg, 0.049 mmol)

|             |                   |        | Areas             |             | Conversion        |         |                   |
|-------------|-------------------|--------|-------------------|-------------|-------------------|---------|-------------------|
| time        | PhNH <sub>2</sub> | BnOH   | <i>p</i> -CN-BnOH | Naphthalene | PhNH <sub>2</sub> | BnOH    | <i>p</i> -CN-BnOH |
| 0 - no cat. | 149709            | 86415  | 81164             | 129097      | 0.0065            | -0.0217 | -0.0499           |
| 0 - cat.    | 231764            | 130082 | 118897            | 198548      | 0.0000            | 0.0000  | 0.0000            |
| 30 min      | 179791            | 95674  | 95399             | 166665      | 0.0758            | 0.1238  | 0.0441            |
| 1 h         | 144854            | 72163  | 81544             | 146009      | 0.1501            | 0.2456  | 0.0674            |
| 2 h         | 141770            | 62334  | 89792             | 174040      | 0.3022            | 0.4533  | 0.1384            |
| 3 h         | 98940             | 37233  | 68475             | 142925      | 0.4070            | 0.6024  | 0.1999            |
| 4 h         | 79275             | 25041  | 59880             | 136787      | 0.5035            | 0.7206  | 0.2690            |
| 5 h         | 81792             | 21816  | 65654             | 165216      | 0.5759            | 0.7985  | 0.3364            |
| 6 h         | 62498             | 14644  | 52365             | 145869      | 0.6330            | 0.8468  | 0.4005            |
| 8 h         | 64211             | 11503  | 58439             | 191729      | 0.7131            | 0.9084  | 0.4910            |
| 26 h        | 41001             | 3633   | 45939             | 249599      | 0.8593            | 0.9778  | 0.6926            |



# Competition experiment 7, p-(dimethylamino)benzyl alcohol vs. benzyl alcohol

K<sub>2</sub>CO<sub>3</sub> (14 mg, 0.10 mmol)

aniline (180 µL, 2 mmol)

benzyl alcohol (105 µL, 1 mmol)

*p*-(dimethylamino)benzyl alcohol (156 mg, 1.03 mmol)

naphthalene (126 mg, 1 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (40 mg, 0.05 mmol)

|             |                   |        | Areas                            |             | Conversio         | on      |                                  |
|-------------|-------------------|--------|----------------------------------|-------------|-------------------|---------|----------------------------------|
| time        | PhNH <sub>2</sub> | BnOH   | <i>p</i> -NMe <sub>2</sub> -BnOH | Naphthalene | PhNH <sub>2</sub> | BnOH    | <i>p</i> -NMe <sub>2</sub> -BnOH |
| 0 - no cat. | 209125            | 121875 | 117043                           | 181156      | -0.0013           | -0.0055 | -0.0813                          |
| 0 - cat.    | 218138            | 126593 | 113049                           | 189206      | 0.0000            | 0.0000  | 0.0000                           |
| 30 min      | 144087            | 88655  | 58560                            | 138510      | 0.0977            | 0.0434  | 0.2924                           |
| 1 h         | 158873            | 104275 | 52523                            | 170665      | 0.1926            | 0.0868  | 0.4849                           |
| 2 h         | 126122            | 91434  | 26633                            | 169650      | 0.3552            | 0.1945  | 0.7373                           |
| 3 h         | 107588            | 85496  | 15213                            | 182405      | 0.4884            | 0.2995  | 0.8604                           |
| 4 h         | 84270             | 71699  | 8315                             | 169416      | 0.5686            | 0.3675  | 0.9179                           |
| 5 h         | 88457             | 76599  | 6273                             | 200827      | 0.6180            | 0.4299  | 0.9477                           |
| 6 h         | 63133             | 53784  | 2523                             | 157699      | 0.6528            | 0.4903  | 0.9732                           |
| 8 h         | 95615             | 80366  | 1489                             | 295368      | 0.7192            | 0.5933  | 0.9916                           |



### Competition experiment 8, p-nitrobenzyl alcohol vs. p-chlorobenzyl alcohol

K<sub>2</sub>CO<sub>3</sub> (14 mg, 0.10 mmol) aniline (180 μL, 2 mmol) *p*-chlorobenzyl alcohol (144 mg, 1.01 mmol) *p*-nitrobenzyl alcohol (154 mg, 1.02 mmol)

naphthalene (130 mg, 1.01 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (40 mg, 0.05 mmol)

|             |         |                   | Areas                           |             | Conversio         | n                 |                                 |
|-------------|---------|-------------------|---------------------------------|-------------|-------------------|-------------------|---------------------------------|
| time        | aniline | <i>p</i> -CI-BnOH | <i>p</i> -NO <sub>2</sub> -BnOH | Naphthalene | PhNH <sub>2</sub> | <i>p</i> -CI-BnOH | <i>p</i> -NO <sub>2</sub> -BnOH |
| 0 - no cat. | 163482  | 85109             | 63816                           | 150191      | 0.0087            | -0.0116           | -0.0219                         |
| 0 - cat.    | 213004  | 108662            | 80655                           | 193979      | 0.0000            | 0.0000            | 0.0000                          |
| 30 min      | 119982  | 56846             | 44856                           | 120605      | 0.0940            | 0.1586            | 0.1055                          |
| 1 h         | 165550  | 72359             | 68134                           | 182402      | 0.1735            | 0.2918            | 0.1016                          |
| 2 h         | 134663  | 47881             | 60983                           | 183316      | 0.3310            | 0.5337            | 0.1999                          |
| 3 h         | 81317   | 22524             | 38640                           | 141190      | 0.4755            | 0.7152            | 0.3418                          |
| 4 h         | 96742   | 19581             | 49538                           | 205067      | 0.5704            | 0.8295            | 0.4190                          |
| 5 h         | 75060   | 10498             | 39788                           | 193123      | 0.6461            | 0.9030            | 0.5045                          |
| 6 h         | 67887   | 4324              | 36922                           | 231096      | 0.7325            | 0.9666            | 0.6157                          |



# Competition experiment 9, *p*-toluidine vs. aniline

K<sub>2</sub>CO<sub>3</sub> (15 mg, 0.11 mmol)

aniline (90 µL, 1 mmol)

*p*-toluidine (107 mg, 1.0 mmol)

benzyl alcohol (210 µL, 2.03 mmol)

naphthalene (126 mg, 0.98 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (41 mg, 0.051 mmol)

|             |        | Areas               |                      |             | Conversion |                     | )                    |
|-------------|--------|---------------------|----------------------|-------------|------------|---------------------|----------------------|
| time        | BnOH   | <i>p</i> -H-aniline | <i>p</i> -Me-aniline | Naphthalene | BnOH       | <i>p</i> -H-aniline | <i>p</i> -Me-aniline |
| 0 - no cat. | 285154 | 123435              | 138575               | 219133      | -0.0099    | 0.0075              | 0.0218               |
| 0 - cat.    | 380537 | 167625              | 190922               | 295339      | 0.0000     | 0.0000              | 0.0000               |
| 30 min      | 275236 | 126766              | 133758               | 232700      | 0.0820     | 0.0402              | 0.1108               |
| 1 h         | 196237 | 94492               | 89722                | 185673      | 0.1797     | 0.1033              | 0.2525               |
| 2 h         | 239260 | 128024              | 98125                | 282659      | 0.3431     | 0.2020              | 0.4630               |
| 3 h         | 168770 | 98359               | 59964                | 249005      | 0.4740     | 0.3040              | 0.6275               |
| 4 h         | 136298 | 86445               | 41337                | 253530      | 0.5828     | 0.3993              | 0.7478               |
| 5 h         | 121028 | 82521               | 31423                | 281709      | 0.6666     | 0.4839              | 0.8275               |
| 6 h         | 84128  | 61049               | 18463                | 248942      | 0.7377     | 0.5679              | 0.8853               |
| 8 h         | 41953  | 32764               | 6403                 | 197281      | 0.8350     | 0.7074              | 0.9498               |



### Competition experiment 10, *p*-anisidine vs. aniline

K<sub>2</sub>CO<sub>3</sub> (14 mg, 0.10 mmol)

aniline (90 µL, 1 mmol)

*p*-anisidine (122 mg, 0.99 mmol)

benzyl alcohol (210 µL, 2.03 mmol)

naphthalene (126 mg, 0.98 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (40 mg, 0.05 mmol)

|             |        | Areas               |                       |             | Conversion |                     |                       |
|-------------|--------|---------------------|-----------------------|-------------|------------|---------------------|-----------------------|
| time        | BnOH   | <i>p</i> -H-aniline | <i>p-</i> MeO-aniline | Naphthalene | BnOH       | <i>p</i> -H-aniline | <i>p</i> -MeO-aniline |
| 0 - no cat. | 343599 | 150659              | 138236                | 264187      | -0.0122    | -0.0043             | -0.0102               |
| 0 - cat.    | 329652 | 145678              | 132887                | 256548      | 0.0000     | 0.0000              | 0.0000                |
| 30 min      | 265783 | 126448              | 100102                | 228199      | 0.0936     | 0.0242              | 0.1531                |
| 1 h         | 323116 | 166186              | 112462                | 305549      | 0.1770     | 0.0422              | 0.2894                |
| 2 h         | 187718 | 113165              | 49157                 | 226687      | 0.3555     | 0.1209              | 0.5814                |
| 3 h         | 223473 | 158426              | 38374                 | 346160      | 0.4976     | 0.1940              | 0.7860                |
| 4 h         | 103434 | 82922               | 7967                  | 217062      | 0.6292     | 0.3272              | 0.9291                |
| 5 h         | 76477  | 66151               | 2073                  | 215921      | 0.7244     | 0.4605              | 0.9815                |
| 6 h         | 64130  | 56295               | 0                     | 234453      | 0.7871     | 0.5771              | 1.0000                |
| 8 h         | 25236  | 21225               | 0                     | 176175      | 0.8885     | 0.7878              | 1.0000                |



# Competition experiment 11, *p*-(trifluoromethyl)aniline vs. aniline

 $K_2CO_3$  (14 mg, 0.10 mmol) aniline (90 µL, 1 mmol) p-(trifluoromethyl)aniline (125 µL, 1.0 mmol) benzyl alcohol (210 µL, 2.03 mmol) naphthalene (126 mg, 0.98 mmol) [Cp\*IrCl<sub>2</sub>]<sub>2</sub> (40 mg, 0.05 mmol)

|             |        | /                   | Areas                              |             | Conversion |                     |                                    |
|-------------|--------|---------------------|------------------------------------|-------------|------------|---------------------|------------------------------------|
| time        | BnOH   | <i>p</i> -H-aniline | <i>p</i> -CF <sub>3</sub> -aniline | Naphthalene | BnOH       | <i>p</i> -H-aniline | <i>p</i> -CF <sub>3</sub> -aniline |
| 0 - no cat. | 210026 | 90846               | 107115                             | 168150      | -0.0127    | -0.0028             | 0.0029                             |
| 0 - cat.    | 191996 | 83874               | 99455                              | 155674      | 0.0000     | 0.0000              | 0.0000                             |
| 30 min      | 234622 | 97912               | 126553                             | 198747      | 0.0428     | 0.0856              | 0.0033                             |
| 1 h         | 169951 | 66518               | 97037                              | 154009      | 0.1053     | 0.1984              | 0.0138                             |
| 2 h         | 146850 | 49756               | 95014                              | 152816      | 0.2208     | 0.3957              | 0.0268                             |
| 3 h         | 140662 | 38164               | 100703                             | 163620      | 0.3029     | 0.5671              | 0.0366                             |
| 4 h         | 125541 | 26412               | 102073                             | 172529      | 0.4100     | 0.7159              | 0.0739                             |
| 5 h         | 125630 | 21416               | 110818                             | 191722      | 0.4687     | 0.7927              | 0.0953                             |
| 6 h         | 105803 | 14126               | 101013                             | 183163      | 0.5316     | 0.8569              | 0.1368                             |
| 8 h         | 91915  | 6395                | 96242                              | 195842      | 0.6195     | 0.9394              | 0.2308                             |



#### Competition experiment 12, p-chloroaniline vs. aniline

K<sub>2</sub>CO<sub>3</sub> (14 mg, 0.10 mmol)

aniline (90 µL, 1 mmol)

*p*-chloroaniline (129 mg, 1.01 mmol)

benzyl alcohol (210 µL, 2.03 mmol)

1,2,4,5-tetramethylbenzene (126 mg, 0.94 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (39 mg, 0.049 mmol)

|             |        |                     | Areas                |                    |         | Conversion          |                      |
|-------------|--------|---------------------|----------------------|--------------------|---------|---------------------|----------------------|
| time        | BnOH   | <i>p</i> -H-aniline | <i>p</i> -CI-aniline | Tetramethylbenzene | BnOH    | <i>p</i> -H-aniline | <i>p</i> -CI-aniline |
| 0 - no cat. | 209006 | 88519               | 88270                | 144515             | -0.0126 | 0.0060              | 0.0015               |
| 0 - cat.    | 232327 | 100245              | 99506                | 162671             | 0.0000  | 0.0000              | 0.0000               |
| 30 min      | 213482 | 89702               | 94107                | 160869             | 0.0708  | 0.0951              | 0.0437               |
| 1 h         | 175181 | 71243               | 80309                | 143274             | 0.1439  | 0.1931              | 0.0837               |
| 2 h         | 144877 | 54172               | 71734                | 141569             | 0.2835  | 0.3791              | 0.1716               |
| 3 h         | 149759 | 51815               | 79557                | 174394             | 0.3987  | 0.5179              | 0.2542               |
| 4 h         | 117712 | 39141               | 66249                | 158382             | 0.4796  | 0.5990              | 0.3162               |
| 5 h         | 109630 | 34877               | 64241                | 168820             | 0.5453  | 0.6648              | 0.3779               |
| 6 h         | 101105 | 30170               | 60989                | 179698             | 0.6061  | 0.7276              | 0.4452               |
| 7 h         | 63000  | 17900               | 39426                | 129122             | 0.6584  | 0.7750              | 0.5008               |



## Competition experiment 13, methyl *p*-aminobenzoate vs. aniline

 $K_2CO_3$  (15 mg, 0.11 mmol) aniline (90 µL, 1 mmol) methyl *p*-aminobenzoate (152 mg, 1.0 mmol) benzyl alcohol (210 µL, 2.03 mmol) naphthalene (125 mg, 0.98 mmol) [Cp\*IrCl<sub>2</sub>]<sub>2</sub> (40 mg, 0.05 mmol)

|             |        | Areas               |                         |             | Conversion |                     |                         |
|-------------|--------|---------------------|-------------------------|-------------|------------|---------------------|-------------------------|
| time        | BnOH   | <i>p</i> -H-aniline | <i>p-</i> COOMe-aniline | Naphthalene | BnOH       | <i>p</i> -H-aniline | <i>p</i> -COOMe-aniline |
| 0 - no cat. | 493982 | 206935              | 218743                  | 370208      | -0.0259    | -0.0058             | -0.0206                 |
| 0 - cat.    | 297596 | 127156              | 132455                  | 228796      | 0.0000     | 0.0000              | 0.0000                  |
| 30 min      | 252779 | 107859              | 117237                  | 208190      | 0.0665     | 0.0678              | 0.0273                  |
| 1 h         | 150220 | 62258               | 71807                   | 135941      | 0.1504     | 0.1759              | 0.0876                  |
| 2 h         | 193466 | 71720               | 106919                  | 206935      | 0.2812     | 0.3764              | 0.1075                  |
| 3 h         | 127141 | 41371               | 77424                   | 161178      | 0.3935     | 0.5381              | 0.1702                  |
| 4 h         | 93886  | 26075               | 61894                   | 137378      | 0.4746     | 0.6585              | 0.2218                  |
| 5 h         | 106262 | 24251               | 76572                   | 177230      | 0.5390     | 0.7538              | 0.2537                  |
| 6 h         | 83955  | 15578               | 63510                   | 165311      | 0.6095     | 0.8304              | 0.3364                  |
| 7 h         | 158634 | 23359               | 129457                  | 357468      | 0.6588     | 0.8824              | 0.3744                  |
| 8 h         | 65853  | 8194                | 51799                   | 179693      | 0.7182     | 0.9180              | 0.5021                  |



16

### Competition experiment 14, p-aminobenzonitrile vs. p-chloroaniline

K<sub>2</sub>CO<sub>3</sub> (14 mg, 0.10 mmol)

*p*-chloroaniline (124 mg, 0.97 mmol)

*p*-aminobenzonitrile (119 mg, 1.0 mmol)

benzyl alcohol (210 µL, 2.03 mmol)

### 1,2,4,5-tetramethylbenzene (132 mg, 0.98 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (39 mg, 0.049 mmol)

|             |        | Areas                |              |                    |         | Conversior           | )                    |
|-------------|--------|----------------------|--------------|--------------------|---------|----------------------|----------------------|
| time        | BnOH   | <i>p</i> -CI-aniline | p-CN-aniline | Tetramethylbenzene | BnOH    | <i>p</i> -CI-aniline | <i>p</i> -CN-aniline |
| 0 - no cat. | 233314 | 93183                | 103012       | 166550             | -0.0034 | 0.0058               | 0.0001               |
| 0 - cat.    | 178896 | 72108                | 79263        | 128135             | 0.0000  | 0.0000               | 0.0000               |
| 30 min      | 214225 | 82386                | 99233        | 166475             | 0.0783  | 0.1206               | 0.0364               |
| 1 h         | 201588 | 71375                | 99824        | 170991             | 0.1556  | 0.2583               | 0.0562               |
| 2 h         | 118369 | 33458                | 68688        | 119250             | 0.2890  | 0.5014               | 0.0688               |
| 3 h         | 116703 | 23827                | 78155        | 141923             | 0.4110  | 0.7017               | 0.1098               |
| 4 h         | 113251 | 16425                | 85178        | 160923             | 0.4959  | 0.8186               | 0.1443               |
| 5 h         | 97388  | 8353                 | 80651        | 163787             | 0.5741  | 0.9094               | 0.2040               |
| 6 h         | 68706  | 3219                 | 61793        | 136057             | 0.6383  | 0.9580               | 0.2658               |
| 7 h         | 74327  | 2888                 | 72650        | 167028             | 0.6813  | 0.9693               | 0.2969               |
| 8 h         | 63142  | 1989                 | 63461        | 157813             | 0.7134  | 0.9776               | 0.3499               |



17

# Competition experiment 15, *p*-(dimethylamino)aniline vs. *p*-anisidine

K<sub>2</sub>CO<sub>3</sub> (14 mg, 0.10 mmol)

*p*-anisidine (122 mg, 0.99 mmol)

*p*-(dimethylamino)aniline (135 mg, 0.99 mmol)

benzyl alcohol (210 µL, 2.03 mmol)

### 1,2,4,5-tetramethylbenzene (132 mg, 0.98 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (39 mg, 0.049 mmol)

|             |        |                       | Areas                               |                    |         | Conversio             | n                                   |
|-------------|--------|-----------------------|-------------------------------------|--------------------|---------|-----------------------|-------------------------------------|
| time        | BnOH   | <i>p</i> -MeO-aniline | <i>p</i> -NMe <sub>2</sub> -aniline | Tetramethylbenzene | BnOH    | <i>p</i> -MeO-aniline | <i>p</i> -NMe <sub>2</sub> -aniline |
| 0 - no cat. | 194107 | 81284                 | 93998                               | 140054             | -0.0199 | 0.0060                | -0.0213                             |
| 0 - cat.    | 146101 | 62771                 | 70648                               | 107509             | 0.0000  | 0.0000                | 0.0000                              |
| 15 min      | 231065 | 100203                | 111051                              | 173475             | 0.0199  | 0.0107                | 0.0258                              |
| 30 min      | 196023 | 86241                 | 92017                               | 150397             | 0.0409  | 0.0179                | 0.0689                              |
| 45 min      | 234581 | 104980                | 107067                              | 184316             | 0.0635  | 0.0245                | 0.1160                              |
| 1 h         | 185058 | 84790                 | 82286                               | 150286             | 0.0939  | 0.0337                | 0.1668                              |
| 75 min      | 174824 | 81623                 | 75079                               | 146444             | 0.1215  | 0.0454                | 0.2198                              |
| 90 min      | 210558 | 100370                | 87288                               | 181959             | 0.1485  | 0.0553                | 0.2700                              |
| 105 min     | 135580 | 67000                 | 53411                               | 123328             | 0.1910  | 0.0695                | 0.3410                              |
| 2 h         | 170809 | 88012                 | 62926                               | 166598             | 0.2455  | 0.0952                | 0.4252                              |
| 150 min     | 170965 | 93984                 | 55340                               | 185493             | 0.3218  | 0.1322                | 0.5460                              |
| 3 h         | 102274 | 61037                 | 26934                               | 126408             | 0.4046  | 0.1730                | 0.6758                              |
| 4 h         | 89794  | 60893                 | 13643                               | 152671             | 0.5672  | 0.3169                | 0.8640                              |
| 5 h         | 83232  | 60963                 | 6097                                | 202967             | 0.6982  | 0.4856                | 0.9543                              |
| 6 h         | 42241  | 30267                 | 1720                                | 140723             | 0.7791  | 0.6316                | 0.9814                              |



### **Primary KIE determination**

Compounds loads:

K<sub>2</sub>CO<sub>3</sub> (15 mg, 0.11 mmol)

aniline (180 µL, 2 mmol)

benzyl alcohol (105 µL, 1 mmol)

*p*-methoxybenzyl alcohol (125 µL, 1 mmol)

naphthalene (125 mg, 0.98 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (40 mg, 0.05 mmol)



 $k_{\rm D}/k_{\rm OMe} = 0.207$  $k_{\rm OMe}/k_{\rm H} = 1.944$  $k_{\rm H}/k_{\rm D} = 2.48$ 

# Primary KIE determination with benzyl alcohol α,α-d<sub>2</sub> vs. *p*-chlorobenzyl alcohol

K<sub>2</sub>CO<sub>3</sub> (14 mg, 0.10 mmol)

aniline (186 mg, 2 mmol)

benzyl alcohol  $\alpha, \alpha$ -d<sub>2</sub> (110 mg, 1 mmol)

*p*-chlorobenzyl alcohol (142 mg, 1 mmol)

naphthalene (129 mg, 1 mmol)

[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (40 mg, 0.05 mmol)

|             |         | Areas             |             | Conv    | ersion            |
|-------------|---------|-------------------|-------------|---------|-------------------|
| Time        | d2-BnOH | <i>p</i> -Cl-BnOH | Naphthalene | d2-BnOH | <i>p</i> -Cl-BnOH |
| 0 - no cat. | 154477  | 104752            | 217235      | 0       | 0                 |
| 30 min      | 188203  | 124221            | 278685      | 0.0503  | 0.0756            |
| 1h          | 98966   | 63562             | 176199      | 0.2101  | 0.2519            |
| 2h          | 91076   | 51902             | 198512      | 0.3548  | 0.4578            |
| 3h          | 52796   | 27193             | 190094      | 0.6094  | 0.7033            |
| 4h          | 36222   | 19047             | 232507      | 0.7809  | 0.8301            |
| 6h          | 21170   | 11555             | 214654      | 0.8613  | 0.8884            |
|             | 13724   | 7816              | 252091      | 0.9234  | 0.9357            |
| 8h          | 8135    | 5101              | 261655      | 0.9563  | 0.9596            |



There seems to be a slight curvature which may arise from loss of deuterium from benzyl alcohol  $\alpha, \alpha$ -d<sub>2</sub>. When only the first part of the curve is plotted the difference in reactivity is significantly higher (1.37).



Using these data one can again determine the kinetic isotope effect (KIE) as follows:

 $k_{\rm Cl}/k_D = 1.37$  $k_{\rm Cl}/k_{\rm H} = 0.71$  $k_{\rm H}/k_{\rm D} = 1.94$ 

GC-MS data from primary KIE determination, benzyl alcohol  $\alpha$ , $\alpha$ -d<sub>2</sub> vs. *p*-chlorobenzyl alcohol



GC-MS data showing that the benzyl alcohol  $\alpha$ , $\alpha$ -d<sub>2</sub> (m/z=110) loses its deuterium content during the reaction.



GC-MS data showing that the undeuterated *p*-chlorobenzyl alcohol (m/z=142) increases its deuterium content during the reaction (m/z=144).

```
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is \textcircled{O} The Royal Society of Chemistry 2012
```



GC-MS data showing the data for the unsubstituted product. Here, the deuterium content is high (m/z=184) and also remains relatively high during the reaction which illustrates that the final reduction to the amine is virtually irreversible.



GC-MS data for the chloro-substituted amine product. Here, the deuterium content is low in the beginning (m/z=217), but gradually increases (m/z=218).

To estimate the degree of reversibility of the initial alcohol oxidation we decided to plot the conversion of benzyl alcohol measured by GC-FID (i.e. total amount irrespective of deuterium content) versus the decrease of the m/z=110 signal.



Since the experiment was run under competetion conditions one will not obtain absolute kinetics or reaction orders, but it is still clear that the disappearance of the benzyl alcohol is faster than the deuterium exchange of the unreacted benzyl alcohol  $\alpha, \alpha$ -d<sub>2</sub>.

The same type of analysis was carried out for *p*-chlorobenzyl alcohol.



Also here the disappearance of the total amount of *p*-chlorobenzyl alcohol is significantly faster than the proton/deuterium exchange.

#### **Racemisation experiment**

In an oven-dried Schlenk tube were placed  $K_2CO_3$  (4 mg, 0.03 mmol), (*R*)-1-deutero-1phenylethanol (29 mg, 0.24 mmol, 81% *ee*), acetophenone (30 mg, 0.24 mmol) and dry toluene (0.5 mL). The mixture was placed in an oil bath preheated to 110 °C and a GC sample was taken out. Then, [Cp\*IrCl<sub>2</sub>]<sub>2</sub> (10 mg, 0.0125 mmol) was added. After addition of the catalyst, a GC sample was taken out immediately. Then, GC samples were taken out after 30 min, 1h, 2h, 3h, 4h, 5h. At that time, GC analysis showed 8% *ee* (Column: Chrompack CP Chirasil-Dex CB 0.25 mm x 25 m column), the reaction mixture was cooled down to rt and subjected to column chromatography (hexane/Et<sub>2</sub>O 4/1), which yielded 10 mg of 1-phenylethanol. The <sup>1</sup>H content was determined by NMR to be 6%.

#### **Computational study**

The description of the computational method is included in the main text of the manuscript.

Two available crystal structures (Refcode: DCPMIR, ARADAY01)<sup>1</sup> were used to access the accuracy of the applied computational method (B3LYP in combination with an effective core potential for iridium). Below is shown an overlay of the crystal structure (blue) with the calculated structure (red) (figure S1 and S2). The superimposition was performed for atoms heavier than hydrogen to avoid the otherwise dominating influence of the methyl rotation. For the DCPMIR structure the RMSD was 0.0951 Å, indicating an acceptable overall structural similarity. The largest errors in the computational structure was found to be overly long Ir-Cl and Ir-Cpstar bonds, in both cases on the order of 0.04-0.05Å which we are confident will not influence the overall conclusions reached in this study. For ARADAY01 structure the RMSD was calculated to 0.1112 Å, slightly higher than for the DCPMIR structure, which to some degree can be assigned to the lack of symmetry in the crystal structure, resulting in three slightly different experimental Ir-Cl bond lengths.



Figure S1 Overlay of X-ray structure (blue, DCPMIR) with a structure energy minimized using DFT/B3LYP (red). RMSD for non-hydrogen atoms were 0.0951 Å.



**Figure S2** Overlay of X-ray structure (blue, ARADAY01) with a structure energy minimized using DFT/B3LYP (red). RMSD for non-hydrogen atoms were 0.1112 Å.

<sup>(1) (</sup>a) DCPMIR: M. R. Churchill, S. A. Julis, Inorg. Chem., 1977, 16, 1488-1494; (b) ARADAY01: M. Maekawa,

Y. Suenaga, T. Kuroda-Sowa, M. Munakata, Anal. Sci., 2004, 20, x11-x12.

#### XYZ Coordinates and energies for calculated complexes.

```
Ir2 Cpstar2 Cl4 dimer
E \ scf \ (B3LYP/6-31G^*) = -2830.59978674074 a.u.
E \operatorname{scf} (M06/6-31G^*) = -2829.81044552623 \text{ a.u.}
E Gibbs = -2830.216703 a.u.
E = -2830.61290539357 a.u.
ZPE = 284.281 \text{ kcal/mol}
          1.40005
 Ir
                         0.37059
                                        1.23409
Cl
          0.89402
                         0.65138
                                       -1.21286
Cl
          2.29532
                        -1.82983
                                        0.72157
  С
          1.62705
                         2.52420
                                        1.59077
  С
          0.85782
                         1.95299
                                        2.65529
  С
          1.67389
                         0.92366
                                        3.30701
  С
          2.96791
                         0.91049
                                        2.65687
  С
          2.93350
                         1.85913
                                        1.56464
  С
          1.17530
                         3.62153
                                        0.67575
  С
         -0.53458
                         2.35245
                                        3.04001
  С
          1.28292
                         0.13599
                                        4.52097
  С
          4.13877
                         0.06023
                                        3.04173
 С
          4.07428
                         2.20625
                                        0.65664
 Cl
         -0.89402
                        -0.65138
                                        1.21286
 Ir
         -1.40005
                        -0.37059
                                       -1.23409
 Cl
         -2.29532
                         1.82983
                                       -0.72157
                                       -1.59077
 С
         -1.62705
                        -2.52420
  С
         -0.85782
                        -1.95299
                                       -2.65529
  С
         -1.67389
                        -0.92366
                                       -3.30701
  С
         -2.96791
                        -0.91049
                                       -2.65687
  С
         -2.93350
                        -1.85913
                                       -1.56464
  С
         -1.17530
                        -3.62153
                                       -0.67575
  С
          0.53458
                                       -3.04001
                        -2.35245
  С
         -1.28292
                        -0.13599
                                       -4.52097
  С
         -4.13877
                        -0.06023
                                       -3.04173
  С
         -4.07428
                        -2.20625
                                       -0.65664
 Η
          1.34367
                         4.59826
                                       1.14913
 Η
          1.72316
                         3.60239
                                       -0.26907
 Η
          0.11269
                         3.52498
                                        0.43770
 Η
         -0.50400
                         3.22553
                                        3.70612
 Η
         -1.13063
                         2.60464
                                        2.15875
 Η
         -1.05086
                        1.54395
                                        3.56257
 Η
          1.50616
                        0.70201
                                        5.43575
 Η
          0.21320
                        -0.08966
                                        4.51680
 Η
          1.82221
                        -0.81338
                                        4.56793
 Η
          4.78769
                        0.61343
                                        3.73455
 Η
          3.81757
                        -0.86185
                                        3.53054
 Η
          4.72744
                        -0.22290
                                        2.16648
                        3.03834
                                        1.07261
 Η
          4.65888
          4.74401
 Η
                        1.35356
                                        0.52142
          3.71507
 Η
                         2.50709
                                       -0.33115
 Η
         -1.34367
                        -4.59826
                                       -1.14913
                        -3.52498
 Η
         -0.11269
                                       -0.43770
 Η
         -1.72316
                        -3.60239
                                       0.26907
 Η
         0.50400
                        -3.22553
                                       -3.70612
 Η
          1.05086
                        -1.54395
                                       -3.56257
                                       -2.15875
 Η
          1.13063
                        -2.60464
         -1.50616
                        -0.70201
                                       -5.43575
 Η
                                       -4.56793
 Η
         -1.82221
                         0.81338
 Η
         -0.21320
                         0.08966
                                       -4.51680
 Η
         -4.78769
                        -0.61343
                                       -3.73455
 Η
         -4.72744
                         0.22290
                                       -2.16648
 Η
         -3.81757
                         0.86185
                                       -3.53054
 Η
                        -3.03834
                                       -1.07261
         -4.65888
 Η
         -3.71507
                        -2.50709
                                        0.33115
  Η
         -4.74401
                        -1.35356
                                       -0.52142
```

Ir\_Cpstar\_Cl2\_monomer E\_scf (B3LYP/6-31G\*) = -1415.28792421121 a.u. E\_scf (M06/6-31G\*) = -1414.88095256718 a.u. E\_solv = -1415.30056115991 a.u. E\_Gibbs = -1415.106428 a.u. ZPE = 141.716 kcal/mol

| Ir | 0.39820  | -1.01633 | 2.61002  |
|----|----------|----------|----------|
| Cl | -0.63653 | 1.05498  | 2.99589  |
| Cl | -1.46621 | -1.75061 | 1.38498  |
| С  | 1.45057  | -2.18357 | 4.08374  |
| С  | 1.54926  | -2.88281 | 2.81052  |
| С  | 2.19672  | -1.99446 | 1.88771  |
| С  | 2.55569  | -0.76390 | 2.60715  |
| С  | 2.12572  | -0.89802 | 3.96951  |
| С  | 0.84485  | -2.73833 | 5.33588  |
| Н  | 0.02626  | -3.42662 | 5.11200  |
| Н  | 0.45216  | -1.94357 | 5.97481  |
| Н  | 1.60580  | -3.28870 | 5.90648  |
| С  | 1.05554  | -4.26603 | 2.51486  |
| Н  | 1.86512  | -4.99771 | 2.63636  |
| Н  | 0.67524  | -4.33866 | 1.49280  |
| Н  | 0.23986  | -4.54860 | 3.18488  |
| С  | 2.52100  | -2.28716 | 0.45522  |
| Н  | 2.50047  | -1.37841 | -0.15204 |
| Н  | 1.80840  | -2.99368 | 0.02373  |
| Н  | 3.52638  | -2.72302 | 0.37747  |
| С  | 3.30575  | 0.39444  | 2.02503  |
| Н  | 3.06854  | 1.32364  | 2.54808  |
| Н  | 3.06557  | 0.53495  | 0.96781  |
| Н  | 4.38766  | 0.22175  | 2.10580  |
| С  | 2.32407  | 0.10408  | 5.06568  |
| Н  | 3.31164  | -0.02268 | 5.52850  |
| Н  | 1.56763  | -0.00544 | 5.84662  |
| Н  | 2.25040  | 1.12540  | 4.68360  |

Ir\_Cpstar\_PhNH2\_PhCO\_alcohol (1a)
E\_scf (B3LYP/6-31G\*) = -1128.41741204488 a.u.
E\_scf (B3LYP/6-31G\*) = -1128.44109688036 a.u.
E\_scf (M06/6-31G\*) = -1127.60152790116 a.u.
E\_scf (M06/6-31G+\*) = -1127.62253578181 a.u.
E\_solv = -1128.45406105785 a.u.
E\_Gibbs = -1128.006407 a.u.
ZPE = 294.228 kcal/mol

| С | 0.00000  | 0.00000  | 0.00000  |
|---|----------|----------|----------|
| С | 0.00000  | 0.0000   | 1.43103  |
| С | 1.40146  | 0.0000   | 1.86230  |
| С | 2.24660  | 0.07147  | 0.69317  |
| С | 1.39718  | 0.02007  | -0.45977 |
| С | -1.20377 | 0.03132  | -0.89094 |
| Н | -2.07611 | -0.41383 | -0.40673 |
| Н | -1.02458 | -0.49969 | -1.82974 |
| Н | -1.45053 | 1.07215  | -1.14035 |
| С | -1.20178 | 0.02521  | 2.32562  |
| Н | -1.54442 | 1.05736  | 2.47263  |
| Н | -0.97736 | -0.39750 | 3.30828  |
| Н | -2.02708 | -0.55056 | 1.89831  |
| С | 1.86661  | 0.05002  | 3.28395  |
| Н | 2.88131  | -0.34161 | 3.39256  |
| Н | 1.20618  | -0.51528 | 3.94706  |
| Н | 1.87273  | 1.09276  | 3.63048  |
| С | 3.73735  | 0.22634  | 0.68986  |
| Н | 4.19438  | -0.24346 | -0.18385 |

| Н      | 4.19553                 | -0.21122           | 1.58130                                                |
|--------|-------------------------|--------------------|--------------------------------------------------------|
| Η      | 3.99767                 | 1.29308            | 0.67377                                                |
| С      | 1.83180                 | 0.13100            | -1.88939                                               |
| Н      | 1 86230                 | 1 18775            | -2 18829                                               |
| ц      | 1 1 2 0 0 0             | _0 20000           | -2 56210                                               |
| п      | 1.13000                 | -0.38088           | -2.30210                                               |
| Н      | 2.82812                 | -0.28984           | -2.04364                                               |
| Н      | 0.40988                 | -4.94895           | 1.69834                                                |
| Ir     | 0.98652                 | -1.81531           | 0.70769                                                |
| С      | -0.39297                | -4.53738           | 1.04253                                                |
| 0      | -0.42352                | -3.11818           | 1.08343                                                |
| н      | -1 35621                | -4 85830           | 1 46247                                                |
| C      | 0.04611                 | -6 22067           | -2 02054                                               |
| C      | 0.04611                 | -0.23007           | -2.92034                                               |
| С      | 0.6/145                 | -6.84106           | -1.82925                                               |
| С      | 0.53594                 | -6.28763           | -0.55202                                               |
| С      | -0.22743                | -5.12803           | -0.35162                                               |
| С      | -0.85892                | -4.53463           | -1.45654                                               |
| С      | -0.72124                | -5.08578           | -2.73064                                               |
| Н      | 0 15067                 | -6 66628           | -3 91422                                               |
| и<br>Ц | 1 26670                 | -7 73033           | -1 96840                                               |
| 11     | 1.20070                 | -7.75955           | -1.90040                                               |
| Н      | 1.01982                 | -6.76956           | 0.29673                                                |
| Н      | -1.46220                | -3.64338           | -1.30808                                               |
| Н      | -1.22102                | -4.62288           | -3.57778                                               |
| Ν      | 2.35352                 | -3.46136           | 0.33430                                                |
| Н      | 1.81993                 | -4.14065           | -0.22295                                               |
| Н      | 2 50895                 | -3 91469           | 1 23905                                                |
| C      | 6 08289                 | -2 80145           | -1 57363                                               |
| C      | 0.00209                 | -2.00145           | -1.37303                                               |
| C      | 6.02375                 | -2.92750           | -0.184/5                                               |
| С      | 4.79890                 | -3.13995           | 0.45179                                                |
| С      | 3.63510                 | -3.22284           | -0.31120                                               |
| С      | 3.68248                 | -3.10354           | -1.70182                                               |
| С      | 4,91140                 | -2.89375           | -2.32905                                               |
| н      | 7 03752                 | -2 64069           | -2 06627                                               |
| 11     | 6 02205                 | 2.04005            | 2.00027                                                |
| H      | 6.93205                 | -2.86795           | 0.40795                                                |
| Н      | 4./5630                 | -3.24887           | 1.53394                                                |
| Н      | 2.77058                 | -3.19029           | -2.28816                                               |
| Η      | 4.95286                 | -2.81096           | -3.41159                                               |
|        |                         |                    |                                                        |
| Ir Cps | tar PhNH2 PhCO E        | TS (1b)            |                                                        |
| E scf  | (B3LYP/6-31G*) =        | -1128.39698846     | 5890 a.u.                                              |
| E scf  | (B3LVP/6-31C+*)         | = -1128 4220140    | 877 = 11                                               |
| E oof  | (MOE/E-21C*)            | 1107 50/0172025    | 2 - 11                                                 |
| E_SCI  | $(MOC/C - 31G^{+}) = -$ | 1107 00000000      | ), a.u.                                                |
| E_SCI  | (MU6/6-31G+*) =         | -1127.605618663    | 302 a.u.                                               |
| E_solv | r = -1128.433844        | a.u.               |                                                        |
| E_Gibb | s = -1127.991528        | a.u.               |                                                        |
| ZPE =  | 291.649 kcal/mol        |                    |                                                        |
|        |                         |                    |                                                        |
| С      | 0.00000                 | 0.00000            | 0.0000                                                 |
| С      | 0.0000                  | 0.0000             | 1,45266                                                |
| Ċ      | 1 38333                 | 0 00000            | 1 89/58                                                |
| c      | 2 22456                 | 0.00000            | 0 72001                                                |
| C      | 2.23456                 | -0.06653           | 0./3801                                                |
| С      | 1.36631                 | -0.06655           | -0.44219                                               |
| С      | -1.22213                | 0.05248            | -0.86412                                               |
| Н      | -2.02942                | -0.56000           | -0.45253                                               |
| Н      | -1.01717                | -0.29656           | -1.87902                                               |
| Н      | -1.58474                | 1.08622            | -0.93156                                               |
| C      | -1 21483                | 0 14123            | 2 32189                                                |
| ч<br>ц | _1 /Q711                | 1 100/2            | 2 / 2715                                               |
| 11     | 1 0/070                 | 1.17742<br>0.05500 | 2.72/1J<br>2.20/21                                     |
| н      | -1.042/8                | -0.20032           | 3.32031                                                |
| Н      | -2.0/420                | -0.38262           | 1.89418                                                |
| С      | 1.84535                 | 0.09821            | 3.31746                                                |
| Н      | 2.80761                 | -0.39808           | 3.46523                                                |
| Н      | 1.12327                 | -0.34050           | 4.01040                                                |
| Н      | 1.96784                 | 1.15434            | 3.59155                                                |
| C.     | 3.73143                 | 0,03020            | 0.72396                                                |
| H      | 4.16781                 | -0.53573           | -0.10298                                               |
| **     |                         |                    | ~ • <del>-</del> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |

4.16791

Η

1.65136

-0.34901

| Н С Н Н Н Н Г С О Н С С С С С С Н Н Н Н Н И И Н Н С С С С                                        | 4.03920<br>1.84627<br>2.04107<br>1.10527<br>2.78057<br>1.06027<br>0.94801<br>-0.12315<br>-0.54630<br>-0.69249<br>1.25583<br>1.32932<br>0.87935<br>0.35756<br>0.27447<br>0.72251<br>1.60680<br>1.73455<br>0.93328<br>-0.17992<br>0.64567<br>2.01155<br>1.62146<br>1.67796<br>6.25030<br>5.58386<br>4.19109<br>3.46342<br>4.11891<br>5.51599<br>7.33573<br>6.15052<br>3.67133<br>3.54882<br>6.02555 | 1.07846<br>-0.00288<br>1.04130<br>-0.39818<br>-0.55467<br>-3.04056<br>-1.86274<br>-3.70175<br>-3.35689<br>-3.28700<br>-7.72502<br>-6.78483<br>-5.48408<br>-5.11120<br>-6.05709<br>-7.36269<br>-8.73979<br>-7.06953<br>-4.75479<br>-5.77470<br>-8.09820<br>-3.45437<br>-3.42902<br>-4.33435<br>-3.46448<br>-3.79305<br>-3.78458<br>-3.45273<br>-3.13599<br>-3.13791<br>-3.47119<br>-4.05946<br>-4.03923<br>-2.90912<br>-2.89552 | 0.61263<br>-1.86064<br>-2.13915<br>-2.56036<br>-1.99439<br>2.08487<br>0.77350<br>1.84727<br>0.62769<br>2.69269<br>2.49595<br>3.52941<br>3.32059<br>2.07326<br>1.04305<br>1.25888<br>2.66092<br>4.49635<br>4.12735<br>0.09746<br>0.46308<br>-0.32296<br>-1.26558<br>0.08301<br>-0.47075<br>0.71276<br>0.76400<br>-0.38065<br>-1.57068<br>-1.61049<br>-0.50499<br>1.68427<br>-2.46946 |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ir_Cpst<br>E_scf (<br>E_scf (<br>E_scf (<br>E_scf (<br>E_scf (<br>E_sclv =<br>E_Gibbs<br>ZPE = 2 | ar_PhNH2_PhCO_a<br>B3LYP/6-31G*) =<br>B3LYP/6-31G*) =<br>M06/6-31G*) = -<br>M06/6-31G*) =<br>= -1128.4518170<br>= -1128.009846<br>92.452 kcal/mol                                                                                                                                                                                                                                                 | aldehyde ( <b>1c</b> )<br>= -1128.4163045<br>= -1128.439963<br>-1127.598854904<br>-1127.60753286<br>01163 a.u.<br>5 a.u.                                                                                                                                                                                                                                                                                                       | 2236 a.u.<br>72608 a.u.<br>71 a.u.<br>739 a.u.                                                                                                                                                                                                                                                                                                                                      |
| С С С С С С И Н Н Н С Н Н Н С Н Н Н Н Н                                                          | 0.00000<br>0.00000<br>1.36388<br>2.20920<br>1.33988<br>-1.24291<br>-1.95309<br>-1.02741<br>-1.74091<br>-1.22897<br>-1.55524<br>-1.04656<br>-2.05853<br>1.83686<br>2.79673<br>1.12005<br>1.96619<br>3.70713<br>4.13411<br>4.14795                                                                                                                                                                  | 0.00000<br>0.00000<br>-0.16661<br>-0.08622<br>0.05303<br>-0.72174<br>-0.08829<br>1.02382<br>0.17840<br>1.22598<br>-0.08453<br>-0.43273<br>0.22282<br>-0.26488<br>-0.15264<br>1.29841<br>-0.07174<br>-0.67821<br>-0.40871                                                                                                                                                                                                       | 0.00000<br>1.46722<br>1.92223<br>0.74513<br>-0.43728<br>-0.83507<br>-0.52699<br>-1.89665<br>-0.72028<br>2.30948<br>2.28339<br>3.35459<br>1.93982<br>3.32920<br>3.51463<br>4.06393<br>3.50692<br>0.71398<br>-0.08905<br>1.65560                                                                                                                                                      |

4.01665

Н

0.55234

0.96906

| С  | 1.83753  | -0.06602 | -1.85020 |
|----|----------|----------|----------|
| Н  | 2.19863  | 0.94063  | -2.10054 |
| Н  | 1.05187  | -0.32255 | -2.56550 |
| Н  | 2.67505  | -0.75464 | -1.99376 |
| Н  | 1.82749  | -2.63973 | 2.13159  |
| Ir | 0.96507  | -1.93958 | 0.98050  |
| С  | -0.58636 | -3.38314 | 1.98110  |
| 0  | -0.83842 | -3.12305 | 0.74322  |
| Н  | -1.02107 | -2.73401 | 2.75304  |
| С  | 0.74695  | -7.21562 | 3.33635  |
| С  | 0.69662  | -6.13348 | 4.22097  |
| С  | 0.25770  | -4.88965 | 3.77629  |
| С  | -0.12176 | -4.71096 | 2.43663  |
| С  | -0.09152 | -5.80743 | 1.55742  |
| С  | 0.34326  | -7.05352 | 2.00881  |
| Н  | 1.08684  | -8.18657 | 3.68577  |
| Н  | 0.99713  | -6.26384 | 5.25654  |
| Н  | 0.21997  | -4.04752 | 4.46416  |
| Н  | -0.45540 | -5.68680 | 0.54051  |
| Н  | 0.35335  | -7.90186 | 1.33013  |
| Ν  | 1.71312  | -3.63296 | -0.18199 |
| Н  | 1.03837  | -3.75209 | -0.93922 |
| Н  | 1.58425  | -4.44103 | 0.43278  |
| С  | 5.66630  | -3.63400 | -1.71566 |
| С  | 5.44185  | -3.81606 | -0.34839 |
| С  | 4.14426  | -3.80680 | 0.16146  |
| С  | 3.06752  | -3.62167 | -0.70816 |
| С  | 3.27990  | -3.44977 | -2.07644 |
| С  | 4.58453  | -3.45199 | -2.57684 |
| Н  | 6.67929  | -3.64100 | -2.10705 |
| Н  | 6.28005  | -3.96697 | 0.32575  |
| Η  | 3.96837  | -3.93939 | 1.22584  |
| Η  | 2.43592  | -3.33245 | -2.75328 |
| Н  | 4.74931  | -3.32310 | -3.64263 |
|    |          |          |          |

Ir\_Cpstar\_H\_Hemiaminal\_bidentate (1d)
E\_scf (B3LYP/6-31G\*) = -1128.39961212675 a.u.
E\_scf (B3LYP/6-31G\*) = -1128.424523 a.u.
E\_scf (M06/6-31G\*) = -1127.583319 a.u.
E\_scf (M06/6-31G+\*) = -1127.604427 a.u.
E\_solv = -1128.43749216801 a.u.
E\_Gibbs = -1127.989254 a.u.
ZPE = 293.273 kcal/mol

| С | 0.32580  | -0.24470 | 2.00260  |
|---|----------|----------|----------|
| 0 | 0.05070  | 1.06630  | 2.55900  |
| Н | 1.37710  | -0.31040 | 1.72130  |
| Н | 0.87680  | 1.56330  | 2.67680  |
| Ν | -0.49080 | -0.25740 | 0.73910  |
| С | 1.43860  | -1.64840 | -2.77970 |
| С | 2.04660  | -0.66370 | -1.99860 |
| С | 1.42060  | -0.18920 | -0.84600 |
| С | 0.18680  | -0.72090 | -0.46100 |
| С | -0.42460 | -1.70800 | -1.23670 |
| С | 0.19940  | -2.16350 | -2.39910 |
| Н | 1.92780  | -2.01090 | -3.67870 |
| Н | 3.01010  | -0.25560 | -2.28980 |
| Н | 1.88990  | 0.60000  | -0.26420 |
| Н | -1.38280 | -2.12560 | -0.93430 |
| Н | -0.28200 | -2.93050 | -2.99850 |
| С | -0.78400 | -3.51520 | 4.55150  |
| С | -1.52900 | -2.33410 | 4.58350  |
| С | -1.16680 | -1.25220 | 3.78220  |
| С | -0.04840 | -1.35450 | 2.94370  |
| С | 0.70280  | -2.53690 | 2.91930  |
|   |          |          |          |

| C      | 0 33330  | -3 61580 | 3 72100  |
|--------|----------|----------|----------|
| U<br>U | -1 07050 | -4 25460 | 5.72100  |
| п      | -1.07030 | -4.33400 | J.17000  |
| H      | -2.39220 | -2.25320 | 5.23/80  |
| H      | -1.73930 | -0.32990 | 3.81490  |
| Н      | 1.57700  | -2.61530 | 2.27620  |
| H      | 0.91990  | -4.52950 | 3.70090  |
| Η      | -1.29610 | -0.86180 | 0.89680  |
| Ir     | -1.33730 | 1.79790  | 0.85990  |
| С      | -0.89380 | 2.97030  | -1.15500 |
| С      | -2.29240 | 2.58320  | -0.89270 |
| С      | -2.75010 | 3.32910  | 0.26940  |
| С      | -1.59400 | 3.96930  | 0.83440  |
| С      | -0.46390 | 3.78820  | -0.09790 |
| С      | -0.12320 | 2.55460  | -2.36960 |
| Н      | -0.28420 | 1.50070  | -2.61350 |
| Н      | 0.95140  | 2.71260  | -2.25140 |
| Н      | -0.45280 | 3.14430  | -3.23570 |
| С      | -3.16100 | 1.83630  | -1.86190 |
| Н      | -3.50440 | 2.50670  | -2.66150 |
| Н      | -4.04480 | 1.42230  | -1.37020 |
| Н      | -2.61740 | 1.01140  | -2.33220 |
| С      | -4.16650 | 3.44370  | 0.74930  |
| Н      | -4.21670 | 3.61260  | 1.82770  |
| Н      | -4.74300 | 2.54360  | 0.52250  |
| Н      | -4.65500 | 4.29140  | 0.25100  |
| С      | -1.57740 | 4.87790  | 2.02780  |
| Н      | -0.62540 | 4.82380  | 2.56500  |
| Н      | -2.37450 | 4.62870  | 2.73240  |
| Н      | -1.71870 | 5.92080  | 1.71370  |
| С      | 0.88470  | 4.42100  | 0.07380  |
| Н      | 0.85300  | 5.47600  | -0.22870 |
| Н      | 1.64570  | 3.92700  | -0.53540 |
| Н      | 1.21490  | 4.40080  | 1.11780  |
| Н      | -2.43190 | 1.06260  | 1.77820  |

Ir\_Cpstar\_H\_Hemiaminal\_Hshift (1e)
E\_scf (B3LYP/6-31G\*) = -1128.39958012802 a.u.
E\_scf (B3LYP/6-31G\*) = -1128.42452349778 a.u.
E\_scf (M06/6-31G\*) = -1127.60442655919 a.u.
E\_scf (M06/6-31G+\*) = -1127.60442655919 a.u.
E\_solv = -1128.43546989413 a.u.
E\_Gibbs = -1127.995229 a.u.
ZPE = 291.117 kcal/mol

| 0 0.04640 1.45230 2<br>U 0.55710 2.11540 | .80840 |
|------------------------------------------|--------|
|                                          | .82700 |
| H 0.55/10 -2.11540 0                     | 00110  |
| н -0.25010 2.17740 3                     | .38410 |
| N -0.34880 -0.33280 0                    | .52650 |
| C 1.17820 -0.99760 -3                    | .36900 |
| C 1.99410 -0.43500 -2                    | .38550 |
| C 1.48850 -0.18650 -1                    | .10790 |
| C 0.15960 -0.50690 -0                    | .82220 |
| C -0.66400 -1.07450 -1                   | .79660 |
| C -0.14890 -1.31610 -3                   | .07240 |
| н 1.57670 -1.19480 -4                    | .35990 |
| Н 3.03020 -0.19580 -2                    | .60780 |
| Н 2.11810 0.24410 -0                     | .33390 |
| н -1.68780 -1.33920 -1                   | .54850 |
| н -0.78360 -1.76810 -3                   | .82940 |
| C -0.77460 -2.40130 5                    | .36890 |
| C -1.73500 -1.63180 4                    | .70620 |
| C -1.53990 -1.24380 3                    | .38130 |
| C -0.37110 -1.63310 2                    | .69630 |

| С          | 0.56830                    | -2.44550             | 3.36520   |
|------------|----------------------------|----------------------|-----------|
| C          | 0.37780                    | -2.80980             | 4.69440   |
| Н          | -0.93310                   | -2.69660             | 6.40200   |
| Н          | -2.64880                   | -1.34460             | 5.21820   |
| Н          | -2.30430                   | -0.67560             | 2.86480   |
| Н          | 1.45610                    | -2.78290             | 2.83580   |
| Н          | 1.11920                    | -3.42260             | 5.19820   |
| Ir         | -1.22980                   | 1.59850              | 0.91180   |
| С          | -0.80690                   | 2.91770              | -1.07550  |
| С          | -2.18310                   | 2.43850              | -0.85270  |
| С          | -2.68940                   | 3.10190              | 0.34060   |
| С          | -1.57370                   | 3.76210              | 0.95490   |
| С          | -0.42380                   | 3.68670              | 0.03290   |
| С          | -0.01270                   | 2.66100              | -2.31700  |
| Н          | -0.17020                   | 1.65220              | -2.70340  |
| Н          | 1.05840                    | 2.80150              | -2.15710  |
| Н          | -0.32810                   | 3.36470              | -3.10020  |
| С          | -3.02660                   | 1.75290              | -1.88840  |
| Н          | -3.42070                   | 2.48600              | -2.60550  |
| Н          | -3.87800                   | 1.23960              | -1.43350  |
| Н          | -2.44840                   | 1.01600              | -2.45140  |
| С          | -4.11920                   | 3.13510              | 0.79520   |
| Н          | -4.20000                   | 3.26960              | 1.87690   |
| Н          | -4.64760                   | 2.21620              | 0.52980   |
| Н          | -4.63880                   | 3.97350              | 0.31250   |
| С          | -1.61580                   | 4.61910              | 2.18730   |
| Н          | -0.66550                   | 4.59520              | 2.73290   |
| Н          | -2.41330                   | 4.31020              | 2.86880   |
| Н          | -1.79790                   | 5.66780              | 1.91870   |
| С          | 0.89230                    | 4.36870              | 0.26110   |
| Н          | 0.80990                    | 5.44370              | 0.05240   |
| Н          | 1.67560                    | 3.96480              | -0.38490  |
| Н          | 1.22910                    | 4.26610              | 1.29790   |
| Н          | -2.36510                   | 0.81830              | 1.70720   |
| Н          | -0.21180                   | 0.63120              | 3.27270   |
| <b>-</b> a |                            | (1.6)                |           |
| Ir_Cps     | tar_PhNH2_PhCNPh_          | _imine ( <b>lt</b> ) | 050       |
| E_SCI      | $(B3LYP/6-3IG^*) =$        | -1339.58902420       | 1953 a.u. |
| E_SCI      | $(B3L1P/6-31G+^{\circ}) =$ | = -1339.6042/02      | 536 a.u.  |
| E_SCI      | $(M06/6-31G^{*}) = -1$     | 1220 607026705       | 5 a.u.    |
| E_SCI      | $(MU6/6-31G+^{\circ}) = -$ | -1338.60/236/93      | 92 a.u.   |
| E_SOLV     | 1339.02324053              | א לבכי d.u.          |           |
| TDE -      | 351 1631009.092019         | a.u.                 |           |
| UE11 —     | JJI.IUJ KCAI/MOI           |                      |           |
| C          | 0 00000                    | 0 00000              | 0 00000   |

| C | 0.00000  | 0.00000  | 0.00000  |
|---|----------|----------|----------|
| С | 0.00000  | 0.0000   | 1.46035  |
| С | 1.36893  | 0.0000   | 1.91410  |
| С | 2.21078  | -0.16407 | 0.74080  |
| С | 1.34296  | -0.11348 | -0.43396 |
| С | -1.21643 | 0.18715  | -0.85041 |
| Н | -2.06062 | -0.40740 | -0.49289 |
| Н | -1.03356 | -0.08279 | -1.89319 |
| Н | -1.52355 | 1.24189  | -0.82952 |
| С | -1.21215 | 0.24399  | 2.31117  |
| Н | -1.46320 | 1.31309  | 2.30389  |
| Н | -1.04138 | -0.04545 | 3.35151  |
| Н | -2.08349 | -0.30302 | 1.94032  |
| С | 1.83773  | 0.26027  | 3.31646  |
| Н | 2.81509  | -0.18882 | 3.50824  |
| Н | 1.13570  | -0.13063 | 4.05708  |
| Н | 1.92727  | 1.34225  | 3.48068  |
| С | 3.70883  | -0.05999 | 0.70407  |
| Н | 4.13992  | -0.67747 | -0.08808 |
| Н | 4.15634  | -0.37335 | 1.65069  |
| Н | 4.01023  | 0.97988  | 0.52111  |
|   |          |          |          |

| С  | 1.83857  | -0.09343            | -1.84799 |
|----|----------|---------------------|----------|
| Н  | 2.18025  | 0.91781             | -2.10603 |
| Н  | 1.05752  | -0.36873            | -2.56083 |
| Н  | 2.68833  | -0.76658            | -1.98895 |
| Н  | 1.99580  | -2.52464            | 2.13016  |
| Ir | 0.98745  | -1.97612            | 1.03586  |
| С  | -0.30328 | -3.34274            | 2.25955  |
| Ν  | -0.64040 | -3.46871            | 0.95114  |
| Н  | -0.91054 | -2.71568            | 2.92074  |
| С  | 1.77520  | -6.52732            | 4.25996  |
| С  | 1.59114  | -5.29452            | 4.89501  |
| С  | 0.91719  | -4.26536            | 4.24418  |
| С  | 0.42112  | -4.44925            | 2.94408  |
| С  | 0.58188  | -5.69915            | 2.32480  |
| С  | 1.26263  | -6.72859            | 2.97851  |
| Н  | 2.30108  | -7.32970            | 4.76959  |
| Н  | 1.97320  | -5.13930            | 5.90016  |
| Н  | 0.78279  | -3.30627            | 4.74061  |
| Н  | 0.13196  | -5.87127            | 1.35083  |
| Н  | 1.37479  | -7.69395            | 2.49212  |
| С  | -4.47380 | -2.72108            | -0.65124 |
| С  | -3.36479 | -2.90433            | -1.48290 |
| С  | -2.10399 | -3.10748            | -0.93276 |
| С  | -1.92076 | -3.12249            | 0.46161  |
| С  | -3.04203 | -2.95173            | 1.29255  |
| С  | -4.30500 | -2.75033            | 0.73321  |
| Н  | -5.46070 | -2.57590            | -1.07996 |
| Н  | -3.48660 | -2.90207            | -2.56270 |
| Н  | -1.24370 | -3.26980            | -1.57780 |
| Н  | -2.94428 | -3.02878            | 2.37087  |
| Н  | -5.16414 | -2.63644            | 1.38838  |
| Ν  | 1.86161  | -3.67995            | -0.04955 |
| Η  | 1.15849  | -3.92242            | -0.74705 |
| Н  | 1.82274  | -4.42945            | 0.64630  |
| С  | 5.72612  | -3.50065            | -1.77702 |
| С  | 5.57930  | -3.68504            | -0.39997 |
| С  | 4.30963  | -3.73609            | 0.17390  |
| С  | 3.18212  | -3.60748            | -0.63984 |
| С  | 3.31862  | -3.43273            | -2.01808 |
| С  | 4.59456  | -3.37653            | -2.58338 |
| H  | 6./1/31  | -3.46209            | -2.21898 |
| H  | 6.45639  | -3./9318            | U.23149  |
| H  | 4.19469  | -3.8/860<br>2 250/2 | 1.24348  |
| н  | Z.43681  | -3.35863            | -2.65123 |
| Н  | 4.699/4  | -3.24699            | -3.65658 |

Ir\_Cpstar\_PhNH2\_PhCNPh\_E\_TS (1g) E\_scf (B3LYP/6-31G\*) = -1339.56853055598 a.u. E\_scf (B3LYP/6-31G\*) = -1339.59760521943 a.u. E\_scf (M06/6-31G\*) = -1338.57672797674 a.u. E\_scf (M06/6-31G+\*) = -1338.60229782931 a.u. E\_solv = -1339.60311545421 a.u. E\_solv = -1339.60311545421 a.u. ZPE = 349.900 kcal/mol

| С | 0.0000   | 0.00000  | 0.00000  |
|---|----------|----------|----------|
| С | 0.00000  | 0.00000  | 1.45166  |
| С | 1.38334  | 0.00000  | 1.89360  |
| С | 2.23166  | -0.09170 | 0.73703  |
| С | 1.36013  | -0.10728 | -0.43542 |
| С | -1.21345 | 0.15165  | -0.86109 |
| Н | -2.02984 | -0.49750 | -0.53164 |
| Н | -1.00141 | -0.07586 | -1.90883 |
| Н | -1.57211 | 1.18857  | -0.81171 |
| С | -1.21461 | 0.19635  | 2.31025  |

| н       | -1 50731            | 1 25449              | 2 31734    |
|---------|---------------------|----------------------|------------|
| и<br>П  | _1 03128            | -0 10060             | 3 34647    |
| 11      | -1.03120            | -0.10000             | 1 02041    |
| п       | -2.00320            | -0.38437             | 1.95041    |
| C<br>II | 1.04020             | 0.14000              | 2.31311    |
| H       | 2.81352             | -0.33305             | 3.4/6/1    |
| H       | 1.12882             | -0.2/39/             | 4.02108    |
| Н       | 1.95880             | 1.21388              | 3.55422    |
| С       | 3.72906             | 0.00797              | 0.71134    |
| Н       | 4.16319             | -0.58903             | -0.09485   |
| Н       | 4.17177             | -0.33297             | 1.65089    |
| Н       | 4.03660             | 1.05118              | 0.55786    |
| С       | 1.84168             | -0.06428             | -1.85469   |
| Н       | 2.05000             | 0.97510              | -2.14153   |
| Н       | 1.09627             | -0.45539             | -2.55200   |
| Н       | 2.76813             | -0.62953             | -1.98391   |
| Н       | 1.35955             | -2.85449             | 2.17995    |
| Ir      | 0.94683             | -1.91375             | 0.85186    |
| С       | 0.10085             | -3.64197             | 2.16230    |
| Ν       | -0.48600            | -3.52730             | 0.90772    |
| Н       | -0.40621            | -3.17407             | 3.01450    |
| С       | 2.04101             | -7.34151             | 3.21062    |
| С       | 2.17033             | -6.22204             | 4.03973    |
| C       | 1 55442             | -5 02317             | 3 69349    |
| C       | 0 80128             | -4 92902             | 2 51262    |
| C       | 0.66471             | -6 05591             | 1 69078    |
| C       | 1 28611             | -7 25753             | 2 0/183    |
| U<br>U  | 2 52103             | - 9 27671            | 2.04103    |
| п       | 2.52195             | -0.27071             | 1 05670    |
| п       | 2.74900             | -0.20011             | 4.93070    |
| H       | 1.65533             | -4.15505             | 4.34299    |
| H       | 0.04378             | -5.99288             | 0.80185    |
| H       | 1.168/4             | -8.12977             | 1.40502    |
| C       | -4.64687            | -3.03511             | 0.35602    |
| C       | -3.75277            | -2.92/94             | -0.71362   |
| С       | -2.38451            | -3.06242             | -0.50264   |
| С       | -1.8/435            | -3.30284             | 0.78698    |
| С       | -2.78056            | -3.42658             | 1.85568    |
| С       | -4.15226            | -3.28937             | 1.63444    |
| H       | -5.71566            | -2.94013             | 0.18934    |
| H       | -4.12499            | -2.75112             | -1.71935   |
| Н       | -1.68775            | -3.00310             | -1.33513   |
| Н       | -2.43207            | -3.67929             | 2.85257    |
| Н       | -4.83743            | -3.40130             | 2.47046    |
| Ν       | 1.93928             | -3.52223             | -0.30688   |
| Н       | 1.40046             | -3.57636             | -1.17083   |
| Н       | 1.70632             | -4.37637             | 0.20648    |
| С       | 6.09508             | -3.45089             | -1.13997   |
| С       | 5.63833             | -3.73275             | 0.15027    |
| С       | 4.27260             | -3.74672             | 0.42838    |
| С       | 3.35962             | -3.48521             | -0.59595   |
| С       | 3.80605             | -3.21510             | -1.89018   |
| С       | 5.17724             | -3.19361             | -2.15784   |
| Н       | 7.16026             | -3.44044             | -1.35097   |
| Н       | 6.34825             | -3.94558             | 0.94442    |
| Н       | 3.91531             | -3.96649             | 1.43138    |
| Н       | 3.09149             | -3.04325             | -2.69264   |
| Н       | 5.52262             | -2.98810             | -3.16690   |
|         |                     |                      |            |
| Ir_Cps  | star_PhNH2_PhCNPh   | _amine ( <b>1h</b> ) |            |
| E_scf   | (B3LYP/6-31G*) =    | -1339.59766182       | 2466 a.u.  |
| E_scf   | (B3LYP/6-31G+*)     | = -1339.6256698      | 31375 a.u. |
| Escf    | $(M06/6-31G^*) = -$ | 1338.6045756043      | 3 a.u.     |

 $E_scf (M06/6-31G+*) = -1338.63014721474 a.u.$ 

 $\overline{ZPE} = 353.329 \text{ kcal/mol}$ 

E\_solv = -1339.63171811230 a.u. E\_Gibbs = -1339.095999 a.u.

| С       | 0.00000  | 0.00000  | 0.00000  |
|---------|----------|----------|----------|
| С       | 0.0000   | 0.0000   | 1.45548  |
| C       | 1 37919  | 0 00000  | 1 87782  |
| C       | 2 22226  | 0.01709  | 0 60954  |
| C       | 2.22330  | 0.01709  | 0.09034  |
| С       | 1.36768  | 0.02960  | -0.45654 |
| С       | -1.21640 | 0.08212  | -0.87054 |
| Н       | -2.07988 | -0.39939 | -0.40543 |
| Н       | -1.05068 | -0.37986 | -1.84751 |
| ц       | -1 17616 | 1 13578  | -1 0/30/ |
| C       | 1 10700  | 0.21700  | 2 2/271  |
| C       | -1.10/22 | 0.21799  | 2.343/1  |
| Н       | -1.31632 | 1.29326  | 2.52607  |
| Н       | -1.06847 | -0.27513 | 3.31162  |
| Н       | -2.10693 | -0.15945 | 1.89479  |
| С       | 1 85385  | 0 06723  | 3 29668  |
| U U     | 2 02050  | -0.20177 | 2 /1721  |
| п       | 2.03030  | -0.39177 | 3.41/31  |
| Н       | 1.15590  | -0.43070 | 3.9/433  |
| Н       | 1.93500  | 1.11687  | 3.61123  |
| С       | 3.71844  | 0.13630  | 0.69481  |
| Н       | 4.16280  | -0.31769 | -0.19420 |
| н       | 4 16618  | -0 34056 | 1 57046  |
| и<br>Ц  | 1 00699  | 1 10604  | 0 70002  |
| п       | 4.00088  | 1.19004  | 0.70092  |
| C       | 1.81848  | 0.12/63  | -1.88459 |
| Н       | 1.93554  | 1.17957  | -2.17527 |
| Н       | 1.09401  | -0.31955 | -2.57193 |
| Н       | 2.78557  | -0.35997 | -2.03728 |
| <br>ц   | 1 85631  | -1 68321 | 1 92692  |
| 11<br>T | 1.05051  | 1 05706  | 1.92092  |
| lr      | 0.99683  | -1.85706 | 0./4/60  |
| С       | 0.77785  | -4.75548 | 1.75562  |
| Ν       | 0.19500  | -3.39334 | 1.64754  |
| Н       | 0.36401  | -5.21530 | 2.66054  |
| C       | 0 12640  | -7 53783 | -1 50563 |
|         | 1 212540 | 7.00700  | 1.30303  |
| C       | 1.31250  | -7.56350 | -0.77205 |
| С       | 1.51297  | -6.64708 | 0.26179  |
| С       | 0.53006  | -5.69621 | 0.57999  |
| С       | -0.65931 | -5.68086 | -0.16246 |
| C       | -0 85713 | -6 59555 | -1 19733 |
|         | 0.03713  | 0.00050  | 2 21100  |
| Н       | -0.03210 | -8.24856 | -2.31180 |
| Н       | 2.08361  | -8.29317 | -1.00330 |
| Н       | 2.43933  | -6.67559 | 0.83309  |
| Н       | -1.43528 | -4.96156 | 0.07750  |
| н       | -1 78574 | -6 57630 | -1 76162 |
| C       | 2 26120  | 2 09760  | 2 02222  |
| C       | -3.30139 | -2.90709 | 3.92232  |
| С       | -3.38514 | -2.83036 | 2.53594  |
| С       | -2.20846 | -2.94523 | 1.79599  |
| С       | -0.99119 | -3.23092 | 2.43186  |
| С       | -0 97420 | -3 39217 | 3 82665  |
| C       | -2 15164 | -2 26272 | 1 56252  |
| C       | -2.13104 | -3.20372 | 4.30332  |
| Н       | -4.2//// | -2.90065 | 4.49866  |
| Н       | -4.32312 | -2.62755 | 2.02576  |
| Н       | -2.22113 | -2.83382 | 0.71504  |
| Н       | -0.03563 | -3.60645 | 4.33193  |
| <br>ц   | -2 12311 | -3 38316 | 5 6/312  |
| 11      | -2.12311 | -3.30310 | 0.52502  |
| N       | 2.100/5  | -3.25/98 | -0.53593 |
| Н       | 1.75722  | -3.04255 | -1.47303 |
| Н       | 1.77260  | -4.21470 | -0.35736 |
| С       | 6.34911  | -3.25435 | -0.63285 |
| C       | 5 67475  | -3 47709 | 0 57018  |
| C       | 1 20111  | -2 46000 | 0 61100  |
| C       | 4.20114  | -3.40063 | 0.01190  |
| С       | 3.55874  | -3.23563 | -0.56171 |
| С       | 4.22545  | -3.01828 | -1.76828 |
| С       | 5.62223  | -3.02100 | -1.79964 |
| н       | 7.43471  | -3.26278 | -0.65894 |
| л.<br>Ц | 6 03E06  | -3 65050 | 1 10000  |
| п       | 0.20020  | -3.00000 | 1 55005  |
| Н       | 3./5896  | -3.60629 | 1.55327  |
| Н       | 3.66219  | -2.86365 | -2.68674 |
| Н       | 6.13705  | -2.85073 | -2.74070 |
|         |          |          |          |

### **Calculation of theoretical KIE**

The calculation of the theoretical KIE was performed using the Hessian calculated in gas phase for the complexes **1a** and **1b**. To allow comparison with experimental results the Gibbs free energy was evaluated at T=383 K (=110 °C, bp. of toluene).

This gave the following results:

| Ir_Cpstar_PhNH2_PhCO_E_TS_freq_D_383K                  | -1128.020753 a.u. |
|--------------------------------------------------------|-------------------|
| Ir_Cpstar_PhNH2_PhCO_E_TS_alcohol_min_full_freq_D_383K | -1128.036312 a.u. |
| Ir_Cpstar_PhNH2_PhCO_E_TS_freq_H_383K                  | -1128.018455 a.u. |
| Ir_Cpstar_PhNH2_PhCO_E_TS_alcohol_min_full_freq_H_383K | -1128.032809 a.u. |

From this we find an activation energy of 37.7 kJ/mol (proton) and 40.9 kJ/mol (deuterium). This difference in energy of 3.2 kJ/mol corresponds to a difference in reaction rate of 2.70 when using a Boltzmann expression evaluated at T=383K.

Performing a similar analysis using differences in zero-point energies (ZPE) resulted in a calculated KIE of 2.73, thus documenting that the observed effect arises mainly from differences in bond strengths, as expected.

#### **IRC scan calculations**

An IRC scan calculations was carried out for a representative beta-hydride elimination. Below are shown three structures, one close to the TS and one from either end of the IRC scan.



Figure 2 IRC step close to alcohol (reverse 8)



Figure 3 IRC step close to aldehyde (forward 10)

| Ir_Cpstar_PhNH2_PhCO_Z_TS_freq_IRC |            |              |             |              |
|------------------------------------|------------|--------------|-------------|--------------|
|                                    |            |              | Relative    |              |
|                                    |            | Energy       | Energy      | C-H distance |
| point #                            | Rxn. Coord | (Hartree)    | (kJ/mol)    | (Å)          |
| 1                                  | -0.73626   | -1128.396029 | -3.056082   | 1.2255       |
| 2                                  | -0.65277   | -1128.395951 | -2.851293   | 1.2328       |
| 3                                  | -0.56745   | -1128.395834 | -2.5441095  | 1.2465       |
| 4                                  | -0.47493   | -1128.395753 | -2.331444   | 1.2628       |
| 5                                  | -0.38124   | -1128.395566 | -1.8404755  | 1.2836       |
| 6                                  | -0.28677   | -1128.395292 | -1.1210885  | 1.3122       |
| 7                                  | -0.19188   | -1128.395147 | -0.740391   | 1.3447       |
| 8                                  | -0.09845   | -1128.394992 | -0.3334385  | 1.3787       |
| 9                                  | 0          | -1128.394865 | 0           | 1.4168       |
| 10                                 | 0.0985     | -1128.394939 | -0.194287   | 1.4576       |
| 11                                 | 0.19593    | -1128.395221 | -0.934678   | 1.4977       |
| 12                                 | 0.29299    | -1128.395594 | -1.9139895  | 1.5393       |
| 13                                 | 0.39092    | -1128.396177 | -3.444656   | 1.5819       |
| 14                                 | 0.49       | -1128.396882 | -5.2956335  | 1.6257       |
| 15                                 | 0.58962    | -1128.39782  | -7.7583525  | 1.6702       |
| 16                                 | 0.68936    | -1128.398881 | -10.544008  | 1.7151       |
| 17                                 | 0.78924    | -1128.400004 | -13.4924445 | 1.7601       |
| 18                                 | 0.88913    | -1128.401199 | -16.629917  | 1.8053       |
| 19                                 | 0.98897    | -1128.4024   | -19.7831425 | 1.8503       |

| Table 1 Data from the IRC | scan of a representative | beta-hydride abstraction |
|---------------------------|--------------------------|--------------------------|
|                           |                          |                          |



Figure 4 Relative energy vs. IRC coordinate for beta-hydride elimination



Figure 5 Relative energy vs. C-H distance (Å) for the C-H bond which is being broken/formed.

An IRC scan calculations was also carried out for a representative imine reduction. Below are shown three structures, one close to the TS and one from either end of the IRC scan.



Figure 7 IRC step close to amine (reverse 10)



Figure 8 IRC step close to imine (forward 10)

#### Table 2 Data from the IRC scan of a representative imine reduction.

| Ir_Cpstar_PhNH2_PhC | NPh_E_TS_freq_IRC |              |                 |                  |
|---------------------|-------------------|--------------|-----------------|------------------|
|                     |                   |              | Relative Energy |                  |
| point #             | Rxn. Coord        | Energy       | (kJ/mol)        | C-H distance (Å) |
| 1                   | -0.98799          | -1339.57239  | -10.13443       | 1.1959           |
| 2                   | -0.88993          | -1339.572094 | -9.357282       | 1.2075           |
| 3                   | -0.79105          | -1339.571785 | -8.5460025      | 1.2223           |
| 4                   | -0.69218          | -1339.571285 | -7.2332525      | 1.2436           |
| 5                   | -0.5929           | -1339.570842 | -6.070156       | 1.2699           |
| 6                   | -0.49347          | -1339.570255 | -4.5289875      | 1.3008           |
| 7                   | -0.39442          | -1339.569458 | -2.436464       | 1.3351           |
| 8                   | -0.29581          | -1339.568979 | -1.1788495      | 1.371            |
| 9                   | -0.19697          | -1339.568619 | -0.2336695      | 1.4082           |
| 10                  | -0.09925          | -1339.568471 | 0.1549045       | 1.4459           |
| 11                  | 0                 | -1339.56853  | 0               | 1.4848           |
| 12                  | 0.09949           | -1339.568723 | -0.5067215      | 1.5245           |
| 13                  | 0.19774           | -1339.569016 | -1.275993       | 1.5633           |
| 14                  | 0.29625           | -1339.569574 | -2.741022       | 1.6028           |
| 15                  | 0.39577           | -1339.570303 | -4.6550115      | 1.6429           |
| 16                  | 0.49535           | -1339.571208 | -7.031089       | 1.6829           |
| 17                  | 0.595             | -1339.572316 | -9.940143       | 1.7232           |
| 18                  | 0.6947            | -1339.573534 | -13.138002      | 1.7631           |
| 19                  | 0.79414           | -1339.574751 | -16.3332355     | 1.8032           |
| 20                  | 0.89404           | -1339.575982 | -19.565226      | 1.8434           |
| 21                  | 0.99404           | -1339.577239 | -22.8654795     | 1.8833           |



Figure 9 Relative energy vs. IRC coordinate for imine reduction.



Figure 10 Relative energy vs. C-H distance (Å) for the C-H bond which is being broken/formed.

#### Dihedral scan, cis-imine to trans-imine

To estimate the possibility of *cis* to *trans* isomerization of the intermediate imine, a dihedral scan calculation was carried out (B3LYP/6-31G\*, gas phase). It is clear that the barrier is very high, which can be ascribed to the very strong electrostatic interaction between the hydride and the proton on the phenyl group of the imine.



Figure 11 Energy profile for the dihedral scan.

| dihedral angle | Energy (Ha) | Relative Energy |
|----------------|-------------|-----------------|
| 10.00          | -1128.41    | 0.00            |
| 42.00          | -1128.40    | 19.96           |
| 74.00          | -1128.38    | 80.27           |
| 106.00         | -1128.36    | 125.03          |
| 138.00         | -1128.39    | 51.14           |
| 170.00         | -1128.40    | 18.84           |

Below are shown the structures obtained during the scan from *cis*-imine to *trans*-imine:



Figure 12 Structures obtained in the dihedral scan from cis-imine (top-left) to trans-imine (bottom right).