Supplementary Information

Parallel-stranded DNA: Enhancing duplex stability by the 'G-clamp' and a pyrrolo-dC derivative

Xin Ming,¹ Ping Ding,^{1,2} Peter Leonard,¹ Simone Budow¹ and Frank Seela^{1,2}*

¹Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany and ²Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany

Corresponding author:

Prof. Dr. Frank Seela

Phone: +49 (0)251-53406-500

Fax: +49 (0)251-53406-587

E-mail: <u>Frank.Seela@uni-osnabrueck.de</u> Home page: <u>www.seela.net</u>

Table of Contents

Table S1.	¹ H- ¹³ C-coupling constants of compounds 6 , 13 and 15	2
Table S2.	Molecular masses of oligonucleotides determined by mass spectrometry	3
Figure S1.	LC-ESI-MS chromatogram of ODN-28	4
Figure S2.	LC-ESI-MS chromatogram of ODN-29.	5
Figure S3.	Maldi-TOF mass spectrum of ODN-33.	6
Figure S4.	Maldi-TOF mass spectrum of ODN-34	7
Figure S5.	Maldi-TOF mass spectrum of ODN-35	8
Figure S6.	Melting curves of parallel stranded duplexes 27.30, 28.30, 29.30, 28.31	9
Figure S7.	Melting curves of parallel stranded duplexes 24 •26, 32 •33, 34 •33, 35 •33, 32 •36, 34 •36 and 35 •36	10-11
Figure S8.	Melting curves of antiparallel stranded duplexes 24•25, 32•37, 34•37 and 35•37	12
Figure S9.	¹ H-NMR spectrum of compound 6	13
Figure S10.	¹³ C-NMR spectrum of compound 6	14
Figure S11.	DEPT-135 spectrum of compound 6	15
Figure S12.	¹ H- ¹³ C-gated decoupled spectrum of compound 6	16
Figure S13.	¹ H-NMR spectrum of compound 13	17
Figure S14.	¹³ C-NMR spectrum of compound 13	18
Figure S15.	DEPT-135 spectrum of compound 13	19
Figure S16.	¹ H- ¹³ C-gated decoupled spectrum of compound 13	20
Figure S17.	¹ H-NMR spectrum of compound 15	21
Figure S18.	¹³ C-NMR spectrum of compound 15	22
Figure S19.	DEPT-135 spectrum of compound 15	23
Figure S20.	¹ H- ¹³ C-gated decoupled spectrum of compound 15	24
Figure S21.	³¹ P-NMR spectrum of compound 5	25
Figure S22.	¹ H-NMR spectrum of the DMT-protected G-clamp	
Figure S23.	¹³ C-NMR spectrum of the DMT-protected G-clamp	27
Figure S24.	¹ H-NMR spectrum of compound 16	28
Figure S25.	¹³ C-NMR spectrum of compound 16	29
Figure S26.	³¹ P-NMR spectrum of compound 16	

¹ U ¹³ C coupling constants	J [Hz]			
H- C coupling constants	6	13	15	
${}^{1}J(C4, H-C4)$	187.4	-	182.6	
² <i>J</i> (C4a, H-C4)	3.6	-	-	
³ <i>J</i> (C7a, H-C4)	7.1	-	7.5	
$^{1}J(C5, H-C5)$	185.4	-	178.8	
2 <i>J</i> (C4a, H-C5)	3.6	-	-	
³ <i>J</i> (C7a, H-C5)	7.1	-	7.5	
2 <i>J</i> (C6, H-C5)	5.0	-	9.8	
¹ <i>J</i> (C1', H-C1')	173.5	-	174.6	
¹ <i>J</i> (C3', H-C3')	147.3	-	148.1	
¹ <i>J</i> (C4', H-C4')	146.3	-	146.3	
¹ <i>J</i> (C5', H-C5')	139.4	-	141.3	
¹ <i>J</i> (C1'', H-C1'')	-	142.1	142.1	
¹ <i>J</i> (C2'', H-C2'')	-	129.8	130.1	
¹ <i>J</i> (C3", H-C3")	-	139.1	139.3	

Table S1. ¹H-¹³C-coupling constants of compounds 6, 13 and 15.^{a,b}

^a Measured in DMSO-*d*₆ at 298 K. ^b Systematic numbering.

	Sequence	Mol. Wt. (calc.)	Mol. Wt. (found)
ODN-28	5'-d(TCTC 3 CTCTC)-3'	3038	3038 ^a
ODN-29	5'-d(TCTC4CTCTC)-3'	3037	3037 ^a
ODN-33	5'-d(TT1 TTT TTT TAT TAA AAT TTA T1A A)-3'	7665	7664 ^b
ODN- 34	5'-d(AA 3 AAA AAA ATA ATT TTA AAT A 3 T T)-3'	7945	7948 ^c
ODN-35	5'-d(AA4 AAA AAA ATA ATT TTA AAT A4T T)-3'	7944	7944 ^c

Table S2. Molecular masses of oligonucleotides determined by mass spectrometry.

^a Measured by LC-ESI-TOF mass spectrometry. ^b Measured by MALDI-TOF mass spectrometry in the linear negative mode. ^c Measured by MALDI-TOF mass spectrometry in the linear positive mode.

Figure S1. LC-ESI-MS chromatogram of ODN-28.

Figure S2. LC-ESI-MS chromatogram of ODN-29.

Applied Biosystems Voyager System 6327

Figure S3. Maldi-TOF mass spectrum of ODN-33.

Figure S4. Maldi-TOF mass spectrum of ODN-34.

Figure S5. Maldi-TOF mass spectrum of ODN-35.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figure S6. Melting curves of parallel stranded duplexes obtained from cooling (black square) and heating (red circle) experiments monitored at 260 nm and measured in 0.1 M NaCl, 10 mM MgCl₂, 10 mM Na-cacodylate (pH 7.0) with 5 μ M + 5 μ M single-strand concentration. (a) Duplex **27-30**; (b) duplex **28-30**; (c) duplex **29-30** and (d) duplex **28-31**.

Figure S7. Melting curves of parallel stranded duplexes obtained from cooling (black square) and heating (red circle) experiments monitored at 260 nm and measured in 0.1 M NaCl, 10 mM MgCl₂, 10 mM Na-cacodylate (pH 7.0) with 5 μ M + 5 μ M single-strand concentration. (a) Duplex **24-26**; (b) duplex **32-33**; (c) duplex **34-33**; (d) duplex **35-33**; (e) duplex **32-36**; (f) duplex **34-36** and (g) duplex **35-36**.

Figure S8. Melting curves of antiparallel stranded duplexes obtained from cooling (black square) and heating (red circle) experiments monitored at 260 nm and measured in 0.1 M NaCl, 10 mM MgCl₂, 10 mM Na-cacodylate (pH 7.0) with 5 μ M + 5 μ M single-strand concentration. (a) Duplex **24-25**; (b) duplex **32-37**; (c) duplex **34-37** and (d) duplex **35-37**.

Figure S9. ¹H-NMR spectrum of 3-(2-deoxy- β -D-*erythro*-pentofuranosyl)-6-ethynyl-furo[2,3-*d*]pyrimidin-2(3*H*)-one (6).

Figure S10. ¹³C-NMR spectrum of $3-(2-\text{deoxy}-\beta-D-\text{erythro-pentofuranosyl})-6-\text{ethynyl-furo}[2,3-d]$ pyrimidin-2(3*H*)-one (6).

Figure S11. DEPT-135 spectrum of 3-(2-deoxy-β-D-*erythro*-pentofuranosyl)-6-ethynyl-furo[2,3-*d*]pyrimidin-2(3*H*)-one (**6**).

Figure S12. ¹H-¹³C-gated decoupled spectrum of 3-(2-deoxy- β -D-*erythro*-pentofuranosyl)-6-ethynyl-furo[2,3-*d*]pyrimidin-2(3*H*)-one (6).

Figure S13. ¹H-NMR spectrum of *N*-(3-(4-ethynyl-1*H*-1,2,3-triazol-1-yl)propyl)-2,2,2-trifluoroacetamide (**13**).

Figure S14. ¹³C-NMR spectrum of *N*-(3-(4-ethynyl-1*H*-1,2,3-triazol-1-yl)propyl)-2,2,2-trifluoroacetamide (13).

Figure S15. DEPT-135 spectrum of *N*-(3-(4-ethynyl-1*H*-1,2,3-triazol-1-yl)propyl)-2,2,2-trifluoroacetamide (13).

Figure S16. 1 H- 13 C-gated decoupled spectrum of *N*-(3-(4-ethynyl-1*H*-1,2,3-triazol-1-yl)propyl)-2,2,2-trifluoroacetamide (13).

Figure S17. ¹H-NMR spectrum of trifluoroacetamide protected pyrrolo-dC analogue with DMT (15).

Figure S18. ¹³C-NMR spectrum of trifluoroacetamide protected pyrrolo-dC analogue with DMT (15).

Figure S19. DEPT-135 spectrum of trifluoroacetamide protected pyrrolo-dC analogue with DMT (15).

Figure S20. ¹H-¹³C-gated decoupled spectrum of trifluoroacetamide protected pyrrolo-dC analogue with DMT (**15**).

Figure S21. ³¹P-NMR spectrum of phosphoramidite 5.

Figure S22. ¹H-NMR spectrum of the DMT-protected G-clamp.

Figure S23. ¹³C-NMR spectrum of the DMT-protected G-clamp.

Figure S24. ¹H-NMR spectrum of phosphoramidite 16.

Figure S25. ¹³C-NMR spectrum of phosphoramidite 16.

Figure S26. ³¹P-NMR spectrum of phosphoramidite 16.