Thiolation of Symmetrical and Unsymmetrical Diketopiperazines

Bettina M. Ruff, ${ }^{a}$ Sabilla Zhong ${ }^{a}$, Martin Nieger ${ }^{b}$ and Stefan Bräse* ${ }^{a}$
${ }^{a}$ Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, D-76131 Karlsruhe; Tel: (+49) 721 608-48581; E-mail: braese@kit.edu
${ }^{b}$ Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 University of Helsinki, Finland

General

${ }^{1}$ H NMR spectra were recorded on a Bruker Avance $300(300 \mathrm{MHz})$, a Bruker AM $400(400 \mathrm{MHz})$ or a Bruker Avance $600(600 \mathrm{MHz})$ spectrometer as solutions. Chemical shifts are expressed in parts per million (ppm, δ) downfield from tetramethylsilane (TMS) and are referenced to chloroform (7.26 ppm) as internal standards. All couplings constants are absolute values and J values are expressed in Hertz (Hz). The spectra were analyzed according to first order and the descriptions of signals include: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. Diastereotopic methylene protons were assigned with H_{A} and H_{B}, where H_{A} was used for the more downfield shifted proton. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance $300(75 \mathrm{MHz})$ or a Bruker AM $400(100$ MHz) spectrometer as solutions. Chemical shifts are expressed in parts per million (ppm, δ) downfield from tetramethylsilane (TMS) and are referenced to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ as internal standards. The signal structure was analyzed by DEPT and is described as follows: $+=$ primary or tertiary C -atom (positive signal), $-=$ secondary C -atom (negative signal) and $\mathrm{C}_{\mathrm{q}}=$ quaternary C -atom (no signal).

EI-MS (electron impact mass spectrometry) and FAB-MS (fast atom bombardment mass spectrometry) were performed by using a Finnigan MAT $90(70 \mathrm{eV})$. The molecular fragments are quoted as the relation between mass and charge $(\mathrm{m} / \mathrm{z})$, the intensities as a percentaged value relative to the intensity of the base signal (100%). The abbreviation $[\mathrm{M}]^{+}$refers to the molecule ion. ESI-MS was performed by using an Agilent 6230 TOF LC/MS.

IR (infrared spectroscopy) data were recorded on FT-IR Bruker IFS 88 and are reported as follows: frequency of absorption $\left(\mathrm{cm}^{-1}\right)$, intensity of absorption ($\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{br}=\mathrm{broad}$).

Elemental analysis was performed by using Elementar Vario Microcube. Descriptions were done at room temperature, and the following abbreviations were used: calc. (theoretical value), found (measured value). Information is given in mass percent.

Optical rotations were determined on a Perkin Elmer 241 polarimeter at $20^{\circ} \mathrm{C}$ with a glass cuvette $(1=1$ $\mathrm{dm})$ and the D line of sodium. The values were calculated according to the following formula: $[\alpha]_{\mathrm{D}}{ }^{20}=$ $\alpha / \beta \times \mathrm{d}$ with $\mathrm{D}=$ sodium D line $(\lambda=589.3 \mathrm{~nm}) ; \alpha=$ average of the obtained optical rotations; $\mathrm{d}=$ length of the cuvette (in dm, $d=1$); $\beta=$ concentration in g / ml. Information is given as, e.g. $[\alpha]_{\mathrm{D}}{ }^{20}=-64.8(\mathrm{c}=$ $0.58, \mathrm{CHCl}_{3}$) with $\mathrm{c}=$ concentration in $\mathrm{g} / 100 \mathrm{~mL}$.

Reactions were monitored by silica gel coated aluminium plates (Merck, silica gel 60, F_{254}). Detection was performed by examination under UV light (254 nm) and by staining with molybdato phosphate (5% phosphor molybdic acid in ethanol) or ninhydrine solution (3% ninhydrine in ethanol). Solvents, reagents and chemicals were purchased from Aldrich, Fluka, ABCR and Acros. Tetrahydrofuran was distilled from sodium/potassium prior to use. Dichloromethane was distilled from calcium hydride. Toluene was distilled from sodium. All reactions involving moisture sensitive reactants were executed under argon atmosphere using oven dried glassware. All other solvents, reagents and chemicals were used as purchased unless stated otherwise.

Experimental

General Procedures:

General Procedure (GP 1): Synthesis of mono-(methylthio)diketopiperazines

To a solution of DKP $\mathbf{1}\{\mathbf{x y}\}(1.00$ equiv.) in dry THF was added NaHMDS (1.0 m in THF, 6.00 equiv.) at $-78{ }^{\circ} \mathrm{C}$. The mixture was allowed to stir for 1 h . Then, S-methyl methanesulfonothioate ($\mathbf{1 2}, 2.50$ equiv.) in dry THF was added and the mixture was stirred for 2 h while it was allowed to warm up to room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over MgSO_{4} and the solvent was evaporated under reduced pressure. Purification by column chromatography afforded the title compounds.

General Procedure (GP 2): Synthesis of bis-(methylthio)diketopiperazines

To a solution of sulfur (8.00 equiv.) in dry THF was added NaHMDS (1.0 m in THF, 3.00 equiv.) at room temperature. Then, DKP $\mathbf{1}\{\mathbf{x y}\}$ (1.00 equiv.) in dry THF and more NaHMDS (1.0 m in THF, 3.00 equiv.) were added and the mixture was stirred for 0.5 h at room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic extracts were dried over MgSO_{4} and the solvent was evaporated under reduced pressure. The residue was dissolved in degassed THF/EtOH (1:1) and NaBH_{4} (25.0 equiv.) was added. The mixture was stirred for 45 min at room temperature. Then, MeI (50.0 equiv.) was added and it was stirred overnight. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic extracts were dried over MgSO_{4} and the solvent was evaporated under reduced pressure. Purification by column chromatography afforded the title compounds.

General Procedure (GP 3): Synthesis of epithiodiketopiperazines

To a solution of sulfur (8.00 equiv.) in dry THF was added NaHMDS (1.0 m in THF, 3.00 equiv.) at room temperature. Then, DKP $\mathbf{1}\{\mathbf{x y}\}(1.00$ equiv.) in dry THF and more NaHMDS (1.0 m in THF, 3.00 equiv.) were added and the mixture was stirred for 0.5 h at room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic extracts were dried over MgSO_{4} and the solvent was evaporated under reduced pressure. The residue was dissolved in degassed THF/EtOH (1:1) and NaBH_{4} (25.0 equiv.) was added. The mixture was stirred for 45 min at room temperature. Then, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The combined organic extracts were stirred with KI_{3} solution for $10 \mathrm{~min}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added and it was extracted with EtOAc. The combined organic extracts were dried over MgSO_{4} and the solvent was evaporated under reduced pressure. Purification by column chromatography afforded the title compounds.

Syntheses:

(rac)-(5a,10a)-dideuterium-octahydrodipyrrolo[1,2-a:1',2'-d]pyrazine-5,10-dione

rac

To a solution of DKP $\mathbf{1}\{\mathbf{a a}\}(20.0 \mathrm{mg}, 103 \mu \mathrm{~mol})$ in dry THF (3 mL) was added NaHMDS (1.0 m in THF, 6.00 equiv.) or a freshly prepared LDA solution ($472 \mu \mathrm{~L}$, $618 \mu \mathrm{~mol}, 6.00$ equiv.) at $-78^{\circ} \mathrm{C}$. The mixture was allowed to stir for 1 h . Then $\mathrm{D}_{2} \mathrm{O}$ $(0.6 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h while it was allowed to warm up to room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic extracts were dried over MgSO_{4} and the solvent was evaporated under reduced pressure. The title compound was obtained as colorless thick oil.
$\boldsymbol{R}_{\mathbf{f}}=0.10(\mathrm{EtOAc}) .-{ }^{\mathbf{1}} \mathbf{H}$ NMR (250 MHz, DMSO- d_{6}): $\delta=1.37-2.11\left(\mathrm{~m}, 8 \mathrm{H}, 1-\mathrm{H}_{2}, 2-\mathrm{H}_{2}, 6-\mathrm{H}_{2}, 7-\mathrm{H}_{2}\right)$, $3.21-3.45\left(\mathrm{~m}, 4 \mathrm{H}, 3-\mathrm{H}_{2}, 8-\mathrm{H}_{2}\right) \mathrm{ppm} .-\operatorname{IR}(\mathrm{ATR}): \tilde{v}=3374(\mathrm{~m}), 1624(\mathrm{~m}), 1408(\mathrm{~m}), 1085(\mathrm{w}), 860(\mathrm{w})$, 665 (w), 470 (w) - MS (EI): m/z (\%): 196 (81) [M] ${ }^{+}$, 140 (17), 72 (100), 44 (98). - HRMS $\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: calc. 196.1181; found 196.1181.
(5aS,6aS,10aS,12aS)-dodecahydropyrrolo[1',2':4,5]pyrazino[1,2-a]indole-5,12-dione (1\{ab\})

L-Proline ($100 \mathrm{mg}, 870 \mu \mathrm{~mol}$) was suspended in toluene (3 mL). Triethylamine $(482 \mu \mathrm{~L}, 3.47 \mathrm{mmol}, 4.00$ equiv.) and methyl dichlorophosphite ($82.5 \mu \mathrm{~L}, 869$ $\mu \mathrm{mol})$ were added and the mixture was stirred at $35{ }^{\circ} \mathrm{C}$ overnight. Then, L-octahydroindole-2-carboxylic acid ($162 \mathrm{mg}, 955 \mu \mathrm{~mol}, 1.10$ equiv.) and toluene $(2 \mathrm{~mL})$ were added. After irradiation under closed-vessel microwave conditions at $145{ }^{\circ} \mathrm{C}$ for 1 h , the solution was filtered, and the precipitate was washed with hot toluene $(50 \mathrm{~mL})$. The filtrate was evaporated under reduced pressure and the resulting crude product was purified by column chromatography (EtOAc). The title compound was obtained as colorless solid ($54.0 \mathrm{mg}, 25 \%$).
$\boldsymbol{R}_{\mathbf{f}}=0.16(\mathrm{EtOAc}) .-\mathbf{m p}: 137^{\circ} \mathrm{C} .-\left[\boldsymbol{\alpha}_{\mathbf{D}}{ }^{\mathbf{2 0}}=-37.1\left(\mathrm{c}=0.17, \mathrm{CHCl}_{3}\right) .-{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta\right.$ $=0.93-1.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.10-1.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46-1.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.58-2.09\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.14-2.43 (m, 5H, CH $2,6 \mathrm{a}-\mathrm{H}), 3.46-3.60\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}_{2}\right), 3.98\left(\mathrm{dt},{ }^{3} J=10.6,12.1 \mathrm{~Hz}, 1 \mathrm{H}, 10 \mathrm{a}-\mathrm{H}\right), 4.09(\mathrm{t}$, ${ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{a}-\mathrm{H}$ or $\left.12 \mathrm{a}-\mathrm{H}\right), 4.21\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{a}-\mathrm{H}\right.$ or $\left.12 \mathrm{a}-\mathrm{H}\right) \mathrm{ppm} .-{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=20.8\left(-, \mathrm{CH}_{2}\right), 23.4\left(-, \mathrm{CH}_{2}\right), 23.6\left(-, \mathrm{CH}_{2}\right), 25.9\left(-, C \mathrm{H}_{2}\right), 27.4\left(-, \mathrm{CH}_{2}\right), 27.5\left(-, C \mathrm{H}_{2}\right)$, $28.6\left(-, \mathrm{CH}_{2}\right), 36.1(+, \mathrm{C}-6 \mathrm{a}), 45.1(-, \mathrm{C}-3), 56.5(+, \mathrm{C}-10 \mathrm{a}), 60.6(+, \mathrm{C}-5 \mathrm{a}, \mathrm{C}-12 \mathrm{a}), 166.7\left(\mathrm{C}_{\mathrm{q}}, C=\mathrm{O}\right)$, $167.2\left(\mathrm{C}_{\mathrm{q}}, C=O\right) \mathrm{ppm} .-$ IR (ATR): $\tilde{v}=3853$ (vs), 3442 (vs), 2925 (vs), 1653 (s), 1445 (vs), 1261 (vs), 1158 (vs), 1077 (vs), 800 (vs), 663 (vs), 611 (vs) cm ${ }^{-1} .-\operatorname{MS}$ (EI): m / z (\%): 248 (95) [M] $]^{+}, 124$ (42), 113
(22), 98 (21), 97 (38), 85 (65), 83 (17), 71 (33), 70 (100), 69 (44), 57 (94), 55 (35), 43 (31), 41 (23). HRMS $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$: calc. 248.1525; found 248.1522.
($3 R, 6 R$)-1,3,4,6-tetramethyl-3,6-bis(methylthio)piperazine-2,5-dione ($\mathbf{1}\{\mathbf{d d}\}$)

N-Methyl-L-Alanine ($300 \mathrm{mg}, 2.91 \mathrm{mmol}$) was suspended in toluene (8 mL). Triethylamine ($1.64 \mathrm{~mL}, 11.6 \mathrm{mmol}, 4.00$ equiv.) and methyl dichlorophosphite ($141 \mu \mathrm{l}$, $1.45 \mathrm{mmol}, 0.50$ equiv.) were added and the mixture was stirred at $35^{\circ} \mathrm{C}$ overnight. After irradiation under closed-vessel microwave conditions at $145{ }^{\circ} \mathrm{C}$ for 1 h , the solution was filtered, and the precipitate was washed with hot toluene (50 mL). The filtrate was evaporated under reduced pressure and the resulting crude product was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$. The title compound was obtained as colorless solid (83.7 mg , $34 \%)$.
$\boldsymbol{R}_{\mathbf{f}}=0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right) .-\mathbf{m p}: 9{ }^{\circ} \mathrm{C} .-[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+62.6\left(\mathrm{c}=0.38, \mathrm{CHCl}_{3}\right) .-{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.49\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.89\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.89\left(\mathrm{q},{ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right) \mathrm{ppm} .-$ ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.0\left(+, 2 \times \mathrm{CHCH}_{3}\right), 32.0\left(+, 2 \times \mathrm{NCH}_{3}\right), 58.1(+, 2 \times \mathrm{CH}), 166.8\left(\mathrm{C}_{\mathrm{q}}\right.$, $2 \times C=O)$ ppm. - IR (ATR): $\tilde{v}=2984(\mathrm{~s}), 2931(\mathrm{~s}), 1650(\mathrm{~m}), 1484(\mathrm{~m}), 1450(\mathrm{~m}), 1405(\mathrm{~m}), 1369(\mathrm{~m})$, 1330 (m), 1298 (m), 1255 (m), 1172 (m), 1089 (m), 1063 (m), 1035 (m), 896 (s$), 748$ (m), 737 (m), 704 (m), $630(\mathrm{~s}), 498(\mathrm{~m}) \mathrm{cm}^{-1} .-\operatorname{MS}(E I): m / z(\%): 170$ (100) [M] ${ }^{+}, 127$ (54), 85 (17), 58 (45), 42 (18). HRMS $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$: calc. 170.1055; found 170.1057.

10a-(methylthio)octahydrodipyrrolo[1,2-a:1',2'-d]pyrazine-5,10-dione (2\{aa\})

S-Me and $\alpha-\mathrm{H}=\mathrm{cis}$

Prepared according to GP 1, starting from DKP $\mathbf{1}\{\mathbf{a a}\}(50.0 \mathrm{mg}, 257 \mu \mathrm{~mol}$). Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 1: 5$) afforded the title compound ($10.3 \mathrm{mg}, 17 \%$, scalemic mixture) as yellow oil.
$\boldsymbol{R}_{\mathbf{f}}=0.15(\mathrm{cHex} / \mathrm{EtOAc} 1: 5) .-{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.91-2.13(\mathrm{~m}, 4 \mathrm{H}$, $\left.2-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{2}\right), 2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.26-2.45\left(\mathrm{~m}, 4 \mathrm{H}, 1-\mathrm{H}_{2}, 2-\mathrm{H}_{\mathrm{B}}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.48-3.65\left(\mathrm{~m}, 4 \mathrm{H}, 3-\mathrm{H}_{2}, 8-\right.$ H_{2}), 4.41-4.49 (m, 1H, H-5a) ppm. - ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9\left(+, \mathrm{SCH}_{3}\right), 20.8(-, \mathrm{C}-2)$, 23.1 (-, C-7), 27.9 (-, C-6), 33.9 (-, C-1), 45.4 (-, C-3, C-8), 59.9 (+, C-5a), 59.9 (-, C-5a), 72.5 (Cq, C10a), $164.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{O}\right), 167.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{O}\right) \mathrm{ppm}$. - IR (film): $\tilde{v}=2956(\mathrm{~m}), 2924(\mathrm{~m}), 1664$ (s), 1417 (s), 1340 (m), 1207 (m), 1158 (m), 1009 (w), 198 (w), 638 (w) cm ${ }^{-1}$ - MS (FAB, matrix: 3-NBA): $m / z(\%)$: 241(1) $[\mathrm{M}+\mathrm{H}]^{+}, 193$ (8) $\left[\mathrm{M}^{+}-\mathrm{SCH}_{3}\right], 165(7), 133$ (100). - HRMS $\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\right)$: calc. 193.0977; found 193.0979.

5a,10a-bis(methylthio)octahydrodipyrrolo[1,2-a:1',2'-d]pyrazine-5,10-dione (3\{aa\})

$\mathrm{S}-\mathrm{Me}=c i s$

Prepared according to GP 2, starting from DKP $\mathbf{1}\{\mathbf{a a}\}(200 \mathrm{mg}, 1.03 \mathrm{mmol})$. Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 1: 5$) afforded the title compound ($153 \mathrm{mg}, 52 \%$, scalemic mixture) as colorless solid.
$\boldsymbol{R}_{\mathbf{f}}=0.30(c \mathrm{Hex} / \mathrm{EtOAc} 1: 5) .-\mathbf{m p}: 126{ }^{\circ} \mathrm{C} .-{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.88-2.06\left(\mathrm{~m}, 4 \mathrm{H}, 1-\mathrm{H}_{\mathrm{A}}, 2-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{\mathrm{A}}\right), 2.10-2.19(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SCH} 3), 2.18-2.31\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{B}}, 7-\mathrm{H}_{\mathrm{B}}\right)$, $2.35-2.47\left(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}_{\mathrm{B}}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.45-3.71\left(\mathrm{~m}, 4 \mathrm{H}, 3-\mathrm{H}_{2}, 8-\mathrm{H}_{2}\right) \mathrm{ppm} .-{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $14.3\left(+, 2 \times \mathrm{SCH}_{3}\right), 19.7(-, \mathrm{C}-2, \mathrm{C}-7), 33.9(-, \mathrm{C}-1, \mathrm{C}-6), 45.1(-, \mathrm{C}-3, \mathrm{C}-8), 71.1(\mathrm{C}, \mathrm{C}-5 \mathrm{a}, \mathrm{C}-10 \mathrm{a})$, $164.6\left(\mathrm{C}_{\mathrm{q}}, 2 \times C=\mathrm{O}\right) \mathrm{ppm} .-$ IR (ATR): $\tilde{v}=3499(\mathrm{~m}), 2922(\mathrm{~s}), 1660(\mathrm{~s}), 1415(\mathrm{~m}), 1340(\mathrm{~m}), 1200(\mathrm{~m})$, 1150 (w), 1018 (w), 672 (w) cm ${ }^{-1}$. - MS (FAB, matrix: 3-NBA): m/z (\%): 239 (100) [$\left.\mathrm{M}^{+}-\mathrm{SCH}_{3}\right], 211$ (17), 192 (68) $\left[\mathrm{M}^{+}-2 \times \mathrm{SCH}_{3}\right], 164$ (19), 133 (63), 95 (44), 81 (30). - HRMS $\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}\right)$: calc. 239.0854; found 239.0853. - elemental analysis $\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\right)$: calc. C 50.32, H 6.33, N 9.78, S 22.39; found C 50.49, H 6.46, N 9.63, S 21.45.
(4aS, $6 \mathrm{a} R, 7 \mathrm{aS}, 11 \mathrm{a} S, 13 \mathrm{a} R, 14 \mathrm{a} S$)-6a, 13a-bis(methylthio)hexadecahydropyrazino[1,2-a:4,5-a']diindol-6,13dione $(\mathbf{3}\{\mathbf{b b}\})+(4 \mathrm{aS}, 6 \mathrm{aS}, 7 \mathrm{aS}, 11 \mathrm{aS}, 13 \mathrm{a} R, 14 \mathrm{a} S)$-13a-(methylthio)hexadecahydropyrazino[1,2-a:4,5-a']di-indol-6,13-dione ($\mathbf{2}\{\mathbf{b b}\}$)

Prepared according to GP 2, starting from DKP $\mathbf{1}\{\mathbf{b b}\} \quad(50.0 \quad \mathrm{mg}, \quad 165 \quad \mu \mathrm{~mol})$. Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 7: 1$) afforded the title compounds ($\mathbf{3}\{\mathbf{b b}\}: 19.7 \mathrm{mg}, \mathbf{3 0 \%}$; $\mathbf{2}\{\mathbf{b} \mathbf{b}\}$: $28.5 \mathrm{mg}, 50 \%$) as colorless solid and colorless oil.

Alternative synthesis of $\mathbf{2}\{\mathbf{b} \mathbf{b}\}$: Prepared according to GP 1, starting from DKP $\mathbf{1}\{\mathbf{b b}\}(50.0 \mathrm{mg}, 165$ $\mu \mathrm{mol})$. Column chromatography ($\mathrm{cHex} / \mathrm{EtOAc} 7: 1$) afforded the title compound ($28.3 \mathrm{mg}, 50 \%$) as colorless oil.
$\mathbf{3}\{\mathbf{b b}\}: \boldsymbol{R}_{\mathbf{f}}=0.28(\mathrm{cHex} / \mathrm{EtOAc} 7: 1) .-\mathbf{m p}: 153{ }^{\circ} \mathrm{C} .-[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-3.7\left(\mathrm{c}=0.46, \mathrm{CHCl}_{3}\right) .-{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.79-0.90\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}_{\mathrm{A}}, 11-\mathrm{H}_{\mathrm{A}}\right), 2.27-2.36\left(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{H}_{\mathrm{A}}, 3-\mathrm{H}_{\mathrm{A}}, 9-\mathrm{H}_{\mathrm{A}}, 10-\mathrm{H}_{\mathrm{A}}\right), 1.51-$ $1.67\left(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{H}_{\mathrm{B}}, 3-\mathrm{H}_{\mathrm{B}}, 9-\mathrm{H}_{\mathrm{B}}, 10-\mathrm{H}_{\mathrm{B}}\right), 1.67-1.80\left(\mathrm{~m}, 4 \mathrm{H}, 1-\mathrm{H}_{2}, 8-\mathrm{H}_{2}\right), 2.14-2.19\left(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}_{\mathrm{A}}, 14-\mathrm{H}_{\mathrm{A}}\right)$, $2.20\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{SCH}_{3}\right), 2.27-2.35\left(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}_{\mathrm{B}}, 14-\mathrm{H}_{\mathrm{B}}\right), 2.56-2.68\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}_{\mathrm{B}}, 11-\mathrm{H}_{\mathrm{B}}\right), 2.87-3.04(\mathrm{~m}$, $2 \mathrm{H}, 7 \mathrm{a}-\mathrm{H}, 14 \mathrm{a}-\mathrm{H}), 4.01-4.12(\mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{a}-\mathrm{H}, 11 \mathrm{a}-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.0(+$, SCH_{3}), 21.1 (-, C-2, C-9), 23.3 (-, C-3, C-10), 25.3 (-, C-1, C-8), 27.0 (-, C-4, C-11), 32.2 (+, C-7a, C14a), 36.4 (-, C-7, C-14), 57.9 (+, C-4a, C-11a), 71.3 (C $\mathrm{C}_{\mathrm{q}}, \mathrm{C}-6 \mathrm{a}, \mathrm{C}-13 \mathrm{a}$), $166.3\left(\mathrm{C}_{\mathrm{q}}, 2 \times \mathrm{C=O}\right) \mathrm{ppm} .-$ IR
(film): $\tilde{v}=3490$ (w), 2924 (vs), 2855 (s), 1726 (m), 1666 (vs), 1390 (vs), 1346 (s), 1171 (m), 1067 (m), $726(\mathrm{~m}) \mathrm{cm}^{-1} .-$ MS (EI): $\mathrm{m} / z(\%): 394$ (2.5) [M] ${ }^{+}, 347$ (58), 300 (100), 279 (42), 250 (31), 167 (42), 149 (90), 96 (79), 82 (98), 55 (85), 43 (50). - HRMS ($\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$): calc. 394.1749; found 394.1752.
$\mathbf{2}\{\mathbf{b b}\}: \boldsymbol{R}_{\mathbf{f}}=0.11(c \mathrm{Hex} / E t O A c \quad 7: 1) .-[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+5.7\left(\mathrm{c}=0.43, \mathrm{CHCl}_{3}\right) .-{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=0.82-1.03\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}_{\mathrm{A}}, 11-\mathrm{H}_{\mathrm{A}}\right), 1.08-1.84\left(\mathrm{~m}, 12 \mathrm{H}, 1-\mathrm{H}_{2}, 2-\mathrm{H}_{2}, 3-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}\right), 2.00-2.12$ $\left(\mathrm{m}, 2 \mathrm{H}, 7-\mathrm{H}_{\mathrm{A}}, 14-\mathrm{H}_{\mathrm{A}}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.99-2.31\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{B}}\right), 2.33-2.46\left(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}_{\mathrm{B}}, 7 \mathrm{a}-\mathrm{H}, 11-\right.$ H_{B}), 2.48-2.59 (m, 1H, 14-HB), 2.77-2.89 (m, 1H, 14a-H), 3.95-4.05 (m, 2H, 4a-H, 11a-H), $4.67\left(d d,{ }^{3} J\right.$ $=7.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1\left(+, \mathrm{SCH}_{3}\right), 20.7,21.0,23.3$, 23.4, 25.3, 25.8 ($6 \times-$ C-1, C-2, C-3, C-8, C-9, C-10), 27.2, 27.3 ($2 \times-$ C-4, C-11), 29.0 (,- C-7), 32.9 (+, C-14a), $35.3(-, \mathrm{C}-14), 35.9(+, \mathrm{C}-7 \mathrm{a}), 56.4,57.0(2 \times+, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-11 \mathrm{a}), 59.9(+, \mathrm{C}-6 \mathrm{a}), 72.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-\right.$ 13a), $164.8\left(\mathrm{C}_{\mathrm{q}}, C=\mathrm{O}\right), 168.5\left(\mathrm{C}_{\mathrm{q}}, C=\mathrm{O}\right) \mathrm{ppm} .-$ IR (film): $\tilde{v}=2922(\mathrm{w}), 2854(\mathrm{w}), 1657(\mathrm{~m}), 1396(\mathrm{~m})$, 1346 (w), 1168 (w), 820 (w), 728 (w), 710 (w) cm ${ }^{-1}$. - MS (FAB, matrix: 3-NBA): m/z (\%): 349 (15) $[\mathrm{M}+\mathrm{H}]^{+}, 301$ (100), 273 (28), 167 (25), 149 (57). - HRMS $\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}^{+}\right)$: calc. 349.1944; found 349.1949 .
($2 R, 5 \mathrm{a} R, 7 R, 10 \mathrm{a} R$)-2,7-Bis(benzyloxy)-5a,10a-bis(methylthio)octahydrodipyrrolo[1,2-a:1',2'-d]pyrazine-5,10-dione ($\mathbf{3}\{\mathbf{c c}\}$)

Prepared according to GP 2, starting from DKP $\mathbf{1}\{\mathbf{c c}\}(100 \mathrm{mg}, 246 \mu \mathrm{~mol})$. Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 1: 1$) afforded the title compound $(28.6 \mathrm{mg}, 23 \%)$ as yellow oil.
$\boldsymbol{R}_{\mathbf{f}}=0.29\left(c \mathrm{Hex} /\right.$ EtOAc 1:1). $-[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-40.1\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right)-{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.15$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{SCH}_{3}$), $2.30\left(\mathrm{dd},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{2} J=15.0 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.63\left(\mathrm{dd},{ }^{3} J=1.6 \mathrm{~Hz},{ }^{2} J=15.0 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 1-\mathrm{H}_{\mathrm{B}}, 6-\mathrm{H}_{\mathrm{B}}$), $3.47\left(\mathrm{dd},{ }^{3} \mathrm{~J}=3.4 \mathrm{~Hz},{ }^{2} J=12.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}, 8-\mathrm{H}_{\mathrm{A}}\right), 4.02-4.08(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 7-\mathrm{H})$, $4.12\left(\mathrm{dd},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{2} J=12.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}, 8-\mathrm{H}_{\mathrm{B}}\right), 4.37-4.46\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 7.10-7.23(\mathrm{~m}$, $\left.10 \mathrm{H}, H_{\mathrm{Ph}}\right) \mathrm{ppm} .-{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.1\left(+, 2 \times \mathrm{SCH}_{3}\right), 40.8(-, \mathrm{C}-1, \mathrm{C}-6), 51.5(-, \mathrm{C}-3$, $\mathrm{C}-8), 69.5\left(\mathrm{q}, \mathrm{CSCH}_{3}\right), 71.5\left(-, \mathrm{OCH}_{2} \mathrm{Ph}\right), 73.7(+, \mathrm{C}-2, \mathrm{C}-7), 127.6\left(+, C_{\mathrm{Ar}}\right), 127.8\left(+, C_{\mathrm{Ar}}\right), 128.5(+$, $\left.C_{\text {Ar }}\right), 137.5\left(\mathrm{C}_{\mathrm{q}}, C_{\text {Ar }}\right), 164.3\left(\mathrm{C}_{\mathrm{q}}, 2 \times C=\mathrm{O}\right) \mathrm{ppm} .-\operatorname{IR}(\mathrm{film}): \tilde{v}=3485(\mathrm{w}), 3031(\mathrm{~m}), 2921(\mathrm{~s}), 1667(\mathrm{~s})$, 1415 (s), 1362 (s) 1101 (s) 912 (m), 736 (s), 699 (s) cm^{-1}. - MS (FAB, matrix: 3-NBA): m/z (\%): 451 (16) $\left[\mathrm{M}^{+}-\mathrm{SCH}_{3}\right], 405$ (19) $\left[\mathrm{M}+\mathrm{H}^{+}-2 \times \mathrm{SCH}_{3}\right], 297$ (9), 189 (8), 91 (100). - HRMS $\left(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}\right)$: calc. 451.1692; found 451.1695 .

1,3,4,6-tetramethyl-3,6-bis(methylthio)piperazine-2,5-dione (3\{dd\})

$\mathrm{S}-\mathrm{Me}=c i s$

Prepared according to GP 2, starting from DKP $\mathbf{1}\{\mathbf{d d}\}(34.2 \mathrm{mg}, 201 \mu \mathrm{~mol})$. Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 5: 1$) afforded the title compound ($21.5 \mathrm{mg}, 41 \%$, scalemic mixture) as colorless solid.
$\boldsymbol{R}_{\mathbf{f}}=0.05(c \mathrm{Hex} / \mathrm{EtOAc} 5: 1) .-\mathbf{m p}: 59^{\circ} \mathrm{C} .-{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.84(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{CCH}_{3}$), $2.21\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SCH}_{3}\right), 3.13\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right) \mathrm{ppm} .-{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.6(+, 2$ $\left.\times \mathrm{SCH}_{3}\right), 25.3\left(+, 2 \times \mathrm{CCH}_{3}\right), 30.0\left(+, 2 \times \mathrm{NCH}_{3}\right), 68.0\left(\mathrm{C}_{\mathrm{q}}, 2 \times \mathrm{CC}=\mathrm{O}\right), 165.7\left(\mathrm{C}_{\mathrm{q}}, 2 \times \mathrm{C=O}\right) \mathrm{ppm} .-\mathbf{I R}$ (ATR): $\tilde{v}=2990$ (vs), 2923 (vs), 1646 (s), 1413 (s), 1365 (s), 1239 (s), 1226 (s), 1112 (s), 1073 (s), 967 (s), 908 (s), 768 (s$), 715$ (vs), 699 (s$), 666$ (s$), 571$ (s$), 524$ (s$), 439$ (s$) \mathrm{cm}^{-1}$. - MS (EI): m/z (\%): 262 (1) $[\mathrm{M}]^{+}, 215$ (98), 178 (21), 168 (77), 141 (21), 140 (100). 139 (44), 56 (89). - HRMS ($\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$): calc. 262.0809; found 262.0807.
(5aR, $6 \mathrm{aS}, 10 \mathrm{a} S, 12 \mathrm{a} R$)-5a,12a-bis(methylthio)dodecahydropyrrolo[1',2':4,5]pyrazino[1,2-a]indole-5,12dione ($\mathbf{3}\{\mathbf{a b}\}$)

Prepared according to GP 2, starting from DKP $\mathbf{1}\{\mathbf{a b}\}(54.9 \mathrm{mg}, 221 \mu \mathrm{~mol}$). Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 5: 1$) afforded the title compound (15.6 mg , 21%) as pink solid.
$\boldsymbol{R}_{\mathbf{f}}=0.13(c \mathrm{Hex} / E t O A c 5: 1) .-\mathbf{m p}: 147{ }^{\circ} \mathrm{C} .-[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-31.5\left(\mathrm{c}=0.38, \mathrm{CHCl}_{3}\right) .-{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}): $\delta=0.83-0.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.04-4.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49-1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.80(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.94-2.04 (m, 2H, CH2), 2.11-2.17 (m, 1H, CH2), $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right)$, 2.26-2.39 (m, 2H, CH $)_{2}$), 2.48-2.59 (m, 2H, CH H_{2}), 2.94-3.04 (m, 1H, 6a-H), 3.52-3.60 (m, 1H, $3-\mathrm{H}_{\mathrm{A}}$), 3.70-3.79 (m, 1H, 3-HB), 4.04-4.12 (m, 1H, 10a-H) ppm. - ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.6(-$, $\left.\mathrm{SCH}_{3}\right), 14.9\left(-, \mathrm{SCH}_{3}\right), 19.8\left(+, \mathrm{CH}_{2}\right), 21.2\left(+, \mathrm{CH}_{2}\right), 23.2\left(+, \mathrm{CH}_{2}\right), 25.3\left(+, \mathrm{CH}_{2}\right), 27.0\left(+, \mathrm{CH}_{2}\right), 32.3(-$, C-6a), $34.8\left(+, \mathrm{CH}_{2}\right), 35.5\left(+, \mathrm{CH}_{2}\right), 45.2(+, \mathrm{C}-3), 57.7(-, \mathrm{C}-10 \mathrm{a}), 71.1,71.4\left(2 \times \mathrm{C}_{\mathrm{q}}, \mathrm{C}-5 \mathrm{a}, \mathrm{C}-12 \mathrm{a}\right)$, $165.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{O}\right.$), 165.9 ($\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{O}$) ppm. - IR (ATR): $\tilde{v}=2924$ (vw), 2349 (vw), 1659 (w), 1398 (vw), 1260 (vw), 1156 (vw), 1015 (vw), 967 (vw), 712 (vw), 613 (vw) cm ${ }^{-1}$. - MS (FAB, matrix: 3-NBA): m/z (\%): 341 (4) $[\mathrm{M}]^{+}, 293$ (85) $\left[\mathrm{M}^{+}-\mathrm{SCH}_{3}\right], 246$ (100) $\left[\mathrm{M}^{+}-2 \times \mathrm{SCH}_{3}\right], 165$ (31), 95 (41). - HRMS $\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}\right)$: calc. 293.1324; found 293.1327.
(4aS,6aR,7aS,11aS,13aR,14aS)-dodecahydro-6a,13a-epidithiopyrazineo[1,2-a:4,5-a']diindol-6,13(1H,7H)-dione (4\{bb\})

Prepared according to GP 3, starting from DKP $\mathbf{1}\{\mathbf{b b}\}(150 \mathrm{mg}, 496 \mu \mathrm{~mol})$. Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 7: 1$) afforded the title compound ($58.2 \mathrm{mg}, 32 \%$) as colorless solid.
$\boldsymbol{R}_{\mathbf{f}}=0.34\left(c \mathrm{Hex} /\right.$ EtOAc 5:1). $-\mathbf{m p}: 172{ }^{\circ} \mathrm{C} .-[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-130.3(\mathrm{c}=0.35$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.10-1.26\left(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{H}_{\mathrm{A}}, 3-\mathrm{H}_{\mathrm{A}}, 9-\mathrm{H}_{\mathrm{A}}, 10-\mathrm{H}_{\mathrm{A}},\right), 1.30-1.42(\mathrm{~m}$, $\left.2 \mathrm{H}, 4-\mathrm{H}_{\mathrm{A}}, 11-\mathrm{H}_{\mathrm{A}}\right), 1.52-1.65\left(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{H}_{\mathrm{B}}, 3-\mathrm{H}_{\mathrm{B}}, 9-\mathrm{H}_{\mathrm{B}}, 10-\mathrm{H}_{\mathrm{B}}\right), 1.68-1.81\left(\mathrm{~m}, 4 \mathrm{H}, 1-\mathrm{H}_{2}, 8-\mathrm{H}_{2}\right), 2.02-$ $2.10\left(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}_{\mathrm{A}}, 14-\mathrm{H}_{\mathrm{A}}\right), 2.10-2.19\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}_{\mathrm{B}}, 11-\mathrm{H}_{\mathrm{B}}\right), 2.80-2.94(\mathrm{~m}, 2 \mathrm{H}, 7 \mathrm{a}-\mathrm{H}, 14 \mathrm{a}-\mathrm{H}), 2.95-3.05$ $\left(\mathrm{m}, 2 \mathrm{H}, 7-\mathrm{H}_{\mathrm{B}}, 14-\mathrm{H}_{\mathrm{B}}\right), 4.10-4.22(\mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{a}-\mathrm{H}, 11 \mathrm{a}-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.7$ (-, C-3, C-10), 22.8 (-, C-2, C-9), 25.2 (-, C-1, C-8), 27.7 (-, C-4, C-11), 34.1 (-, C-7, C-14), 35.7 (+, C-7a, C-14a), 57.8 (+, C-4a, C-11a), 76.3 (Cq $, ~ C-6 a, ~ C-13 a), ~ 163.6\left(\mathrm{C}_{\mathrm{q}}, 2 \times C=\mathrm{O}\right) \mathrm{ppm} .-$ IR (ATR): $\tilde{v}=$ 2921 (w), 2854 (w), 1679 (m), 1377 (m), 1346 (w), 1179 (w), 716 (w), 621 (w) cm^{-1}. - MS (EI): m/z (\%): 364 (0.21) $[M]^{+}, 300$ (100), 219 (67), 139 (6), 81 (22). - HRMS $\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\right)$: calc. 364.1279; found 364.1278. - Elemental analysis $\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\right)$: calc. C 59.31, H 6.64, N 7.68, S 17.59; found C 58.55, H 6.56, N 7.45, S 17.43.
($2 R, 5 \mathrm{a} R, 7 R, 10 \mathrm{a} R$)-2,7-Bis(benzyloxy)tetrahydro-5a,10a-epidithiodipyrrolo[1,2-a:1',2'-d]pyrazine-5,10(1H,6H)-dione (4\{cc\})

Prepared according to GP 3, starting from DKP $\mathbf{1}\{\mathbf{c c}\}(150 \mathrm{mg}, 369 \mu \mathrm{~mol})$. Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 1: 1$) afforded the title compound ($72.8 \mathrm{mg}, 42 \%$) as yellow solid.
$\boldsymbol{R}_{\mathbf{f}}=0.23(c \mathrm{Hex} / \mathrm{EtOAc} 1: 1) .-\mathbf{m p}: 105^{\circ} \mathrm{C} .-[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-250.7\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) .-{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}) : $\delta=2.49\left(\mathrm{dd},{ }^{3} J=2.7 \mathrm{~Hz},{ }^{2} J=15.4 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}\right), 3.21\left(\mathrm{dd},{ }^{3} J=6.0 \mathrm{~Hz},{ }^{2} J=15.4 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, 1-\mathrm{H}_{\mathrm{B}}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.80\left(\mathrm{dd},{ }^{3} J=6.0 \mathrm{~Hz},{ }^{2} J=12.4 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}, 8-\mathrm{H}_{\mathrm{A}}\right), 3.90\left(\mathrm{dd},{ }^{3} J=2.7 \mathrm{~Hz},{ }^{2} J=12.4\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}, 8-\mathrm{H}_{\mathrm{B}}\right), 4.35\left(\mathrm{tt},{ }^{3} \mathrm{~J}=2.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{2}, 7-\mathrm{H}_{2}\right), 4.56\left(\mathrm{~d},{ }^{2} J=2.4 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times\right.$ $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 7.28-7.38\left(\mathrm{~m}, 10 \mathrm{H}, H_{\mathrm{Ph}}\right) \mathrm{ppm} .-{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=37.8(-, \mathrm{C}-1, \mathrm{C}-6), 51.0(-$, $\mathrm{C}-3, \mathrm{C}-8), 71.6\left(-, \mathrm{OCH}_{2} \mathrm{Ph}\right), 75.0\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-5 \mathrm{a}, \mathrm{C}-10 \mathrm{a}\right), 75.3(+, \mathrm{C}-2, \mathrm{C}-7), 127.7\left(+, C_{\mathrm{Ph}}\right), 128.1\left(+, C_{\mathrm{Ph}}\right)$, $128.6\left(+, C_{\mathrm{Ph}}\right), 137.1\left(\mathrm{C}_{\mathrm{q}}, 2 \times C_{\mathrm{Ph}}\right), 163.3\left(\mathrm{C}_{\mathrm{q}}, 2 \times C=\mathrm{O}\right) \mathrm{ppm} .-\operatorname{IR}(\mathrm{ATR}): \tilde{v}=3029(\mathrm{vw}), 2861(\mathrm{vw})$, 1683 (m), 1379 (w), 1095 (w), 734 (w), 696 (w) cm ${ }^{-1}$. - MS (FAB, matrix: 3-NBA): m / z (\%): 469 (4) $[\mathrm{M}]^{+}, 421$ (4), 405 (43), 224 (15), 154 (30), 136 (36), 197 (16), 91 (100). - HRMS ($\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}+\mathrm{H}^{+}$): calc. 469.1256; found 469.1254.

1,4,5,7-tetramethyl-2,3-dithia-5,7-diazabicyclo[2.2.2]octane-6,8-dione (4\{dd\})

S-S = cis $\quad \boldsymbol{R}_{\mathbf{f}}=0.35(c \mathrm{Hex} / E t O A c 5: 1) .-\mathbf{m p}: 135{ }^{\circ} \mathrm{C} .-[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-14.3\left(\mathrm{c}=0.27, \mathrm{CHCl}_{3}\right) .-{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.01\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{cCH}_{3}\right), 3.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right) \mathrm{ppm} .-{ }^{13} \mathbf{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=19.0\left(+, 2 \times \mathrm{CCH}_{3}\right), 27.5\left(+, 2 \times \mathrm{NCH}_{3}\right), 71.8\left(\mathrm{C}_{\mathrm{q}}, 2 \times \mathrm{CC}=\mathrm{O}\right), 166.0\left(\mathrm{C}_{\mathrm{q}}, 2 \times \mathrm{C}=\mathrm{O}\right) \mathrm{ppm} .-$ IR (ATR): $\tilde{v}=2920$ (m), 2852 (w), 1681 (w), 1613 (w), 1461 (w), 1415 (w), 1377 (w), 1072 (vw), 888 (vw), 634 (vw) $\mathrm{cm}^{-1} .-\operatorname{MS}(E S I): m / z: 169\left[\mathrm{M}^{+}-\mathrm{SS}+\mathrm{H}^{+}\right] .-$HRMS (ESI, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}$): calc. 169.0977; found 169.0802.
(5aR,6aS,10aS,12aR)-octahydro-5a,12a-epidithiopyrrolo[1',2':4,5]pyrazino[1,2-a]indole-5,12(1H,6H)dione (4\{ab\})

Prepared according to GP 3, starting from DKP $\mathbf{1}\{\mathbf{a b}\}(27.1 \mathrm{mg}, 109 \mu \mathrm{~mol})$. Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 5: 1$) afforded the title compound $(5.4 \mathrm{mg}$, 16%) as colorless oil.

$$
\boldsymbol{R}_{\mathbf{f}}=0.09(c \mathrm{Hex} / \mathrm{EtOAc} 5: 1) .-[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-104.7\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right) .-{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}
$$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.14-1.25\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$), 1.69-1.87 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$), 2.07.-2.38 (m, $6 \mathrm{H}, \mathrm{CH}_{2}$), $2.85-3.10(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}, 6 \mathrm{a}-\mathrm{H}), 3.54-3.66\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}\right), 3.81-3.90\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}\right), 4.10-4.24(\mathrm{~m}, 1 \mathrm{H}$, 10a-H) ppm. $-{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=20.8\left(-, \mathrm{CH}_{2}\right), 22.8\left(-, \mathrm{CH}_{2}\right), 23.5\left(-, \mathrm{CH}_{2}\right), 25.2(-$, $\left.C \mathrm{H}_{2}\right), 27.8\left(-, \mathrm{CH}_{2}\right), 32.3\left(-, C \mathrm{H}_{2}\right), 34.0\left(-, C \mathrm{H}_{2}\right), 35.8(+, \mathrm{C}-6 \mathrm{a}), 45.9(-, \mathrm{C}-3), 57.9(+, \mathrm{C}-10 \mathrm{a}), 77.2\left(\mathrm{C}_{\mathrm{q}}\right.$, C-5a, C-12a), 163.0, $163.9\left(2 \times\right.$ C $\left._{q}, ~ C-5 a, ~ C-12 a\right) ~ p p m . ~-~ I R ~(A T R): ~ \tilde{v}=2923(m), 2853(\mathrm{w}), 1687(\mathrm{~m})$, 1444 (w), 1376 (m), 1346 (w), 1311 (w), 1182 (w), 752 (w), 697 (w), 667 (w) cm ${ }^{-1}$. - MS (ESI): m/z: $247\left[\mathrm{M}^{+}-\mathrm{SS}+\mathrm{H}^{+}\right]$. - HRMS (ESI, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}$): calc. 247.1447; found 247.1222.

(rac)-10a,10'a-bis(methylthio)octahydro-1H,1'H-5a,5'a-bidipyrrolo[1,2-a:1',2'-d]pyrazine$5,5 ', 10,10^{\prime}\left(6 \mathrm{H}, 6^{\prime} \mathrm{H}, 10 \mathrm{aH}, 10^{\prime} \mathrm{aH}\right)$-tetraone (14)

Prepared according to GP 1 starting from DKP $\mathbf{1}\{\mathbf{a a \}}(50.0 \mathrm{mg}, 257 \mu \mathrm{~mol})$, using LDA (6.00 equiv.) as a base instead of NaHMDS. Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 1: 5$) afforded the title compound ($44.0 \mathrm{mg}, 71 \%$) as yellow solid.
$\boldsymbol{R}_{\mathbf{f}}=0.20(\mathrm{cHex} / \mathrm{EtOAc} 1: 5) .-{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.90(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{SCH}_{3}\right), 1.96-2.25\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 2.32-2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.93-3.01(\mathrm{~m}, 4 \mathrm{H}$, CH_{2}), 3.34-3.47 (m, 4H, CH2), 3.73-3.81 (m, 4H, CH2 ppm. $-{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9$ $\left(+, 2 \times \mathrm{SCH}_{3}\right), 19.0,22.5\left(-, 4 \times \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 31.8,31.9\left(-, 4 \times \mathrm{CCH}_{2}\right), 44.8,49.3\left(-, 4 \times \mathrm{NCH}_{2}\right), 74.4$, $75.9\left(\mathrm{C}_{\mathrm{q}}, 2 \times C S, C C\right), 163.9,165.5\left(\mathrm{C}_{\mathrm{q}}, 4 \times C=\mathrm{O}\right) \mathrm{ppm} .-\operatorname{IR}(\mathrm{drift}): \tilde{v}=3378(\mathrm{w}), 2984(\mathrm{w}), 1650(\mathrm{~m})$, 1385 (m), 1240 (m), 1052 (m), 825 (w) cm ${ }^{-1} .-$ MS (EI): m/z (\%): 478 (0.27) [M] ${ }^{+}, 192$ (15), 169 (8), 84 (69), 66 (100). - HRMS (ESI, $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}+\mathrm{H}^{+}$): calc. 479.1787; found 479.1500.
(5aS,6aS,10aS)-2,3,5a,6,6a, 7,8,9,10,10a-decahydropyrrolo[1',2':4,5]pyrazino[1,2-a]indole-5,12-dione $(16)+(5 \mathrm{a} R, 6 \mathrm{a} S, 10 \mathrm{a} S)-2,3,5 \mathrm{a}, 6,6 \mathrm{a}, 7,8,9,10,10 \mathrm{a}$-decahydropyrrolo[1',2':4,5]pyrazino[1,2-a]indole-5,12dione (epi-16)

Prepared according to GP 1, starting from DKP $\mathbf{1}\{\mathbf{a b}\}$ (29.7 mg, $120 \mu \mathrm{~mol})$. Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 1: 5$) afforded the title compounds (25.8 mg , 87%) as yellow oil (mixture of diastereomers 2:1).
$\boldsymbol{R}_{\mathbf{f}}=0.14(c \mathrm{Hex} / \mathrm{EtOAc} 1: 5) .-[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-36.2\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right) .-{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{\mathrm{a}}: \delta=$ $0.78-2.26\left(\mathrm{~m}, 13 \mathrm{H}, 2-\mathrm{H}_{2}, 6-\mathrm{H}_{2}, 6 \mathrm{a}-\mathrm{H}, 7-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}\right), 3.83-3.94,4.03-4.16,4.24-4.39,4.42-$ $4.50\left(4 \times \mathrm{m}, 4 \mathrm{H}, 3-\mathrm{H}_{2}, 5 \mathrm{a}-\mathrm{H}, 10 \mathrm{a}-\mathrm{H}\right), 6.10-6.15(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{\mathrm{b}}: \delta=$ 20.3, $21.1\left(-, \mathrm{CH}_{2}\right)$, 22.4, $23.2\left(-, \mathrm{CH}_{2}\right)$, 25.5, $26.0\left(-, \mathrm{CH}_{2}\right)$, 25.8, $27.3\left(-, \mathrm{CH}_{2}\right)$, 28.2, $28.5\left(-, \mathrm{CH}_{2}\right)$, 30.1, $31.1\left(-, \mathrm{CH}_{2}\right), 34.7,35.8(+, \mathrm{C}-6 \mathrm{a}), 45.1,45.3(-, \mathrm{C}-3), 56.5,57.1$ (+, C-10a), 58.3, $61.5(+, \mathrm{C}-5 \mathrm{a})$, 118.2, 118.3 (+, C-1), 135.2, $136.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-12 \mathrm{a}\right), 155.0,156.0,163.3,163.4\left(2 \times \mathrm{C}_{\mathrm{q}}, C=\mathrm{O}\right) \mathrm{ppm} .-\operatorname{IR}$ (film): $\tilde{v}=3473$ (m), 2927 (s), 2857 (m), 2241 (w), 1667 (s), 1433 (m), 1281 (m), 1186 (m), 915 (m), $730(\mathrm{~m}) \mathrm{cm}^{-1} .-\operatorname{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}(\%): 246$ (7) $[\mathrm{M}]^{+}, 152$ (9), 86 (74), 84 (100), 47 (27). - HRMS $\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: calc. 246.1368; found 246.1367.

[^0]5a,8,8a,13,13a,15a,16,16a-octahydro-(5aS,7aS,8aS,13aS,15aS,16aS)-pyrazino[1",2":1,5;4",5":1',5']di-pyrrolo[2,3-b:2',3'-b']diindole-7,15(5H,7aH)-dione (23)

Amino acid 22 ($220 \mathrm{mg}, 796 \mu \mathrm{~mol}$) was suspended in toluene (4 mL). Triethylamine $(0.45 \mu \mathrm{~L}, 3.19 \mathrm{mmol}, 4.00$ equiv. $)$, methyl dichlorophosphite ($54 \mu \mathrm{~L}, 557 \mu \mathrm{~mol}, 0.70$ equiv.) and 1,3dimethylimidazolium dimethylphosphate (5 drops) were added and the mixture was stirred at $30^{\circ} \mathrm{C}$ overnight. After irradiation under closed-vessel microwave conditions at $145{ }^{\circ} \mathrm{C}$ for 1 h , the solution was filtered, and the precipitate was washed with hot toluene (25 mL). The filtrate was evaporated under reduced pressure and the resulting crude product was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$. The title compound was obtained as colorless solid ($65.1 \mathrm{mg}, 32 \%$).
$\boldsymbol{R}_{\mathbf{f}}=0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right) .-\mathbf{m p}: 215{ }^{\circ} \mathrm{C} .-[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-53.1\left(\mathrm{c}=0.36, \mathrm{CHCl}_{3}\right) .-{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.32\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.46\left(\mathrm{ddd},{ }^{3} J=8.1,{ }^{3} J=10.2,{ }^{2} J=13.8 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, 8-\mathrm{H}_{\mathrm{A}}, 16-\mathrm{H}_{\mathrm{A}}\right), 3.07\left(\mathrm{ddd},{ }^{3} J=1.1,{ }^{3} J=2.5,{ }^{2} J=13.8 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{H}_{\mathrm{B}}, 16-\mathrm{H}_{\mathrm{B}}\right), 3.80\left(\mathrm{t},{ }^{3} J=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $8 \mathrm{a}-\mathrm{H}, 16 \mathrm{a}-\mathrm{H}), 4.13\left(\mathrm{dd},{ }^{3} \mathrm{~J}=2.5,{ }^{3} \mathrm{~J}=10.2 \mathrm{~Hz}, 2 \mathrm{H}, 7 \mathrm{a}-\mathrm{H}, 15 \mathrm{a}-\mathrm{H}\right), 4.16-4.24,4.29-4.37(2 \times \mathrm{m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $6.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 5 \mathrm{a}-\mathrm{H}, 13 \mathrm{a}-\mathrm{H}\right), 6.95-6.99\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.08-7.14\left(\mathrm{~m}, 6 \mathrm{H}, H_{\mathrm{Ar}}\right) \mathrm{ppm}$. ${ }^{-13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.5\left(+, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.4(-, \mathrm{C}-8, \mathrm{C}-16), 44.6(+, \mathrm{C}-8 \mathrm{a}, \mathrm{C}-16 \mathrm{a}), 60.0$ (+, C-7a, C-15a), $61.9\left(-, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 76.8(+, \mathrm{C}-5 \mathrm{a}, \mathrm{C}-13 \mathrm{a}), 116.7,123.3,124.3,128.4(4 \times+, \mathrm{C}-1, \mathrm{C}-2$,
 $\mathrm{CO}_{2} \mathrm{Et}$), 165.9 ($\mathrm{C}_{\mathrm{q}}, \mathrm{C}-7, \mathrm{C}-15$) ppm. - IR (ATR): $\tilde{v}=2981$ (vw), 1714 (w), 1606 (vw), 1483 (w), 1463 (vw), 1409 (w), 1374 (w), 1358 (vw), 1326 (w), 1263 (vw), 1225 (vw), 1176 (vw), 1143 (vw), 1098 (vw), 1051 (vw), 1022 (vw), 866 (vw), 741 (vw), 657 (vw), 555 (vw), 439 (vw) $\mathrm{cm}^{-1} . ~-~ M S ~(E I): ~ m / z ~(\%): 516$ (100) $[\mathrm{M}]^{+}, 472$ (1), 426 (1), 327 (2), 314 (8), 258 (4), 242 (21), 231 (21), 202 (72), 158 (28), 130 (54), 117 (15). - HRMS $\left(\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6}\right)$: calc. 516.2009; found 516.2010.

15a-(methylthio)-5a, $8,8 \mathrm{a}, 13,13 \mathrm{a}, 15 \mathrm{a}, 16,16 \mathrm{a}$-octahydro-($5 \mathrm{a} S, 7 \mathrm{aS}, 8 \mathrm{aS}, 13 \mathrm{a} S, 15 \mathrm{a}, 16 \mathrm{a} S$)-pyrazino-[1",2":1,5;4",5":1',5']dipyrrolo[2,3-b:2',3'-b']diindole-7,15(5H,7aH)-dione (24)

Prepared according to GP 2, starting from DKP 23 (37.4 mg , $72.4 \mu \mathrm{~mol}$). Column chromatography ($c \mathrm{Hex} / \mathrm{EtOAc} 1: 1$) afforded the title compound ($9.5 \mathrm{mg}, 23 \%$) as an orange oil.
$\boldsymbol{R}_{\mathbf{f}}=0.27(c \mathrm{Hex} / E t O A c 1: 1) .-\left[\alpha_{\mathbf{D}}{ }^{\mathbf{2 0}}=-23.9\left(\mathrm{c}=0.23, \mathrm{CHCl}_{3}\right) .-\right.$ ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.34\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.59-2.71\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}_{\mathrm{A}}\right), 2.75\left(\mathrm{ddd},{ }^{3} J=3.0,{ }^{3} J=\right.$ $\left.5.7,{ }^{2} J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}_{\mathrm{B}}\right), 2.88\left(\mathrm{dd},{ }^{3} J=9.0,{ }^{2} J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}_{\mathrm{A}}\right), 3.01\left(\mathrm{dd},{ }^{3} J=3.7,{ }^{2} J=\right.$ $\left.14.4 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}_{\mathrm{B}}\right), 3.83-3.88(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 3.92-3.97(\mathrm{~m}, 1 \mathrm{H}, 16 \mathrm{a}-\mathrm{H}), 4.20-4.42(\mathrm{~m}, 4 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.66\left(\mathrm{dd},{ }^{3} J=5.7,{ }^{3} J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, 7 \mathrm{a}-\mathrm{H}\right), 6.17\left(\mathrm{~d},{ }^{3} J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}\right), 6.28\left(\mathrm{~d},{ }^{3} J=\right.$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{a}-\mathrm{H}), 6.93-6.99\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.04-7.14\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.26-7.32\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right) \mathrm{ppm} .-$ ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.5\left(+, \mathrm{SCH}_{3}\right), 14.5\left(-, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.7(-, \mathrm{C}-8), 38.4(-, \mathrm{C}-16)$, $42.6(+, \mathrm{C}-16 \mathrm{a}), 43.5(+, \mathrm{C}-8 \mathrm{a}), 58.6(+, \mathrm{C}-7 \mathrm{a}), 62.1,62.2\left(2 \times-, 2 \times \mathrm{H}_{2} \mathrm{CH}_{3}\right), 71.2(\mathrm{C}, \mathrm{C}-15 \mathrm{a}), 77.4(+$, $\mathrm{C}-5 \mathrm{a}), 77.5(+, \mathrm{C}-13 \mathrm{a}), 116.3,116.5,123.5,123.6,124.0,124.2\left(6 \times+, 6 \times C \mathrm{H}_{\mathrm{Ar}}\right), 128.5\left(+, 2 \times C \mathrm{H}_{\mathrm{Ar}}\right)$, $131.9,132.1,140.3,140.4\left(4 \times \mathrm{C}_{\mathrm{q}}, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{~b}, \mathrm{C}-12 \mathrm{a}, \mathrm{C}-16 \mathrm{~b}\right), 153.1,153.2\left(2 \times \mathrm{C}_{\mathrm{q}}, \mathrm{CO}_{2} \mathrm{Et}\right), 163.1$, $166.9\left(2 \times \mathrm{C}_{\mathrm{q}}, \mathrm{C}-7, \mathrm{C}-15\right) \mathrm{ppm}$. - IR (ATR): $\tilde{v}=2923(\mathrm{w}), 1682(\mathrm{~m}), 1605(\mathrm{vw}), 1482(\mathrm{~m}), 1462(\mathrm{w})$, 1406 (m), 1374 (m), 1356 (w), 1318 (m), 1298 (w), 1262 (m), 1222 (w), 1176 (w), 1142 (m), 1098 (w), 1053 (m), 1022 (w), 909 (vw), 870 (vw), 743 (m), 647 (w), 613 (vw), 557 (vw), 444 (vw) cm ${ }^{-1}$. - MS (FAB, matrix: 3-NBA): m / z (\%): 563 (6) $[\mathrm{M}+\mathrm{H}]^{+}, 515$ (13), 469 (3), 443 (1), 391 (2), 327 (4), 281 (7), 221 (11), 202 (47), 109 (82), 97 (88), 95 (100). - HRMS $\left(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{SN}_{4} \mathrm{O}_{6}+\mathrm{H}^{+}\right)$: calc. 563.1964; found 563.1963.

Spectral data

ppm (t1)

ppm (t1)

ppm (t1)

ppm (t1)

ppm (t1)

ppm (t1)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

4\{cc\}

ppm (t1)

ppm (t1)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

ppm (t1)

ppm (t1)

ppm (t1)

ppm (t1)

ppm (t1)

ppm (t1)

ppm (t1)

ppm (t1)

[^0]: ${ }^{a}$ Integrals do not match due to the mixture of epimers.
 ${ }^{\mathrm{b}}$ Every carbon atom has two signals in a $2: 1$ ratio.

