Electronic Supplementary Information (File. 1)

Chemical generation of *o*-quinone monoimines for the rapid construction of 1,4-benzoxazine derivatives

Naganjaneyulu Bodipati and Rama Krishna Peddinti*

Department of Chemistry, Indian Institute of Technology, Roorkee-247 667, Uttarakhand, India.

Table of Contents

General Information	S-2
Experimental Procedures & Characterization Data	. S-2 – S-11
X-ray Crystallographic Data	S-12 – S-13
Computational Studies	S-13 – S-18

General Information

Unless otherwise noted, chemicals were purchased from Sigma-Aldrich and Acros Organics at the highest purity grade available and were used without further purification. Solvents were distilled by using P_2O_5 and sodium benzophenone ketyl radical. All Diels-Alder reactions were carried out under dry conditions employing oven- and flame-dried glassware with dry solvents.

NMR spectra were recorded on Brüker AMX-500 instrument using TMS as the internal standard with chemical shifts given in ppm relative to TMS. High-resolution mass spectra (HRMS) were recorded on Waters-HAB213, microOTOF-Q II-10262 and Jeol JMS600H spectrometers. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, dt = doublet of triplet, qd = quartet of doublet, m = multiplet, br = broad.

Experimental Procedures

General procedure for compounds 7a-10a

A solution of DAIB (1.2 equiv.) in dichloromethane (2 mL) was added drop wise to a solution of 5-nitro-2-aminophenol (1a, 1 mmol) and alkyl vinyl ether 3 or 4 or 6 (5 mmol) or phenyl vinyl sulphide (5, 2 mmol) in dichloromethane (6 mL) at 0 $^{\circ}$ C. The reaction mixture was stirred at the same temperature. After completion the reaction the solvent was removed under reduced pressure and the crude reaction mixture was loaded directly on silica gel column (100-200 mesh). The product was eluted by using ethyl acetate in hexanes.

General procedure for compounds 7b-f - 10b-f

A solution of DAIB (1.2 equiv.) in tetrahydrfuran (4 mL) was added drop wise to a mixture of 2-aminophenol derivative **1b-1f** (1 mmol), potassium bicarbonate (3 mmol) and alkyl vinyl ether **3** or **4** or **6** (5 mmol) or phenyl vinyl sulphide (**5**, (2 mmol) in tetrahydrfuran (2 mL) at 0 °C. The reaction mixture was stirred at the same temperature. After completion the reaction the solvent was removed under reduced pressure and the crude reaction mixture was loaded directly on silica gel column (100-200 mesh). The product was eluted by using ethyl acetate in hexanes.

Characterization of benzoxazine derivatives

Benzoxazine derivative 7a: Reaction time 3 h; m.p. 62-63 ^oC; IR (film) v_{max} : 3324, 3050, 2947, 1669, 1602, 1515, 1453, 1288, 1160, 966, 834 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.77 (dd, J = 2.5, 8.5 Hz, 1H), 7.72 (d, J = 2.5 Hz, 1H), 6.53 (d, J = 8.5 Hz, 1H), 5.27 (t, J = 2.0 Hz, 1H), 4.53 (br, 1H), 3.85 (td, J = 3.0, 6.5 Hz, 1H), 3.62 (td, J = 3.0, 6.5 Hz 1H), 3.52 (td, J = 2.5, 12.5 Hz, 1H), 3.47 (qd, J = 2.0, 12.0 Hz, 1H), 1.56-1.51 (m, 2H), 1.31-1.24 (m, 2H), 0.86 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 140.1, 138.9, 138.4, 119.3, 113.5, 112.5, 93.6, 68.3, 44.2, 31.3, 19.0, 13.6; HRMS (ES+, *m/z*), calcd for C₁₂H₁₆N₂O₄ [M+Na]⁺: 275.1008, found 275.1002.

Benzoxazine derivative 8a: Reaction time 2 h; IR (film) v_{max} :

3386, 3080, 2963, 2868, 1664, 1599, 1537, 1414, 1269, 1111, 1021, 967, 874 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.71 (dd, J O₂N MHz): δ 140.3, 138.7, 138.1, 119.3, 113.3, 112.4, 93.5, 64.1, 44.0, 14.8; HRMS (ES+, *m/z*), calcd for C₁₀H₁₂N₂O₄ [M+Na]⁺: 247.0695, found 247.0699.

Benzoxazine derivative 9a: Reaction time 4 h; IR (film) v_{max} : 3382, 3021, 2804, 1610, 1517, 1478, 1438, 1264, 1169, 971, 827, 708 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.81 (dd, J = 2.5, 9.0 Hz, 1H), 7.75 (d, J = 2.5 Hz, 1H), 7.53-7.52 (m, 2H), 7.37-7.33 (m, 3H), 6.61 (d, J = 9.0 Hz, 1H), 5.69 (t, J = 3.0 Hz, 1H), 4.68 (br, 1H), 3.86 (dd, J = 3.0, 12.0 Hz, 1H), 3.66 (dt, J = 3.0, 3.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 146.9, 142.3, 133.1, 117.0, 115.1, 110.4, 95.0, 64.4, 44.0, 15.0; HRMS (ES+, m/z), calcd for C₁₄H₁₂N₂O₃S [M+Na]⁺: 311.0467, found 311.0468.

Benzoxazine derivative 10a:¹ Reaction time 0.5 h; m.p. 86-87 °C; IR (film) v_{max} : 3356, 3051, 2935, 2869, 1673, 1600, 1529, 1485, 1421, 1254, 1020, 972, 878 cm⁻¹; ¹H NMR (DMSO-d₆, 500 MHz): δ 6.26 (dd, J = 2.5, 8.5 Hz, 1H), 6.07 (d, J = 2.5 Hz, 1H), 5.23 (d, J = 9.0 Hz, 1H), 3.90 (d, J = 3.5 Hz, 1H), 2.67-2.59 (m, 2H), 2.52-2.49 (m, 1H), 0.86-0.80 (m, 1H), 0.32-0.25 (m, 1H); ¹³C NMR (DMSO-d₆, 125 MHz): δ 140.6, 138.9, 136.4, 120.2, 112.5, 112.0, 96.1, 67.7, 52.9, 30.5; HRMS (ES+, *m/z*), calcd for C₁₀H₁₀N₂O₄ [M+Na]⁺: 245.0539, found 245.0537.

Benzoxazine derivative 7b: Reaction time 3 h; IR (film) v_{max}: 3380, 3054, 2871, 2958, 2224, 1606, 1586, 1505, 1461, 1308, 1214, 1089, 1023, 897, 808 cm⁻¹; ¹H NMR (CDCl₃,

500 MHz): δ 6.97 (dd, *J* = 2.0, 8.5 Hz, 1H), 6.86 (d, *J* = 2.0 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 5.24 (t, *J* = 2.5 Hz, 1H), 4.02 (br, 1H), 3.84 (td, *J* = 6.5, 9.5 Hz, 1H), 3.62 (td, *J* = 6.5, 9.5 Hz, 1H), 3.39-3.32 (m, 2H), 1.57 1.51 (m, 2H), 1.33-1.24 (m, 2H), 0.86 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 145.2, 133.7, 123.4, 119.5, 118.5, 117.9, 104.6, 94.9, 68.6, 44.1, 31.4, 19.0, 13.7; HRMS (FAB+, *m/z*), calcd for C₁₃H₁₆N₂O₂ [M]⁺: 232.1212, found 232.1216.

Benzoxazine derivative 8b:¹ Reaction time 2 h; IR(film) v_{max} :

3387, 3064, 2977, 2917, 2223, 1606, 1504, 1449, 1373, 1313, ^N 1207, 1119, 1087, 937, 881 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ

6.97 (dd, J = 2.0, 8.5 Hz, 1H), 6.86 (d, J = 2.0 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 5.26 (t, J = 2.5 Hz, 1H), 3.92 (qd, J = 7.0, 9.5 Hz, 1H), 3.69 (qd, J = 7.0 10.0 Hz, 1H), 3.91-3.32 (m, 2H), 1.21 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 145.2, 133.7, 123.4, 119.5, 118.5, 117.9, 104.6, 94.8, 64.4, 44.1, 15.0; HRMS (FAB+, m/z), calcd for C₁₁H₁₂N₂O₂ [M+H]⁺: 205.0977, found 205.0972.

Benzoxazine derivative 9b:¹ Reaction time 4 h; IR (film) v_{max} : 3391, 3054, 2923, 1588, 1500, 1445, 1338, 1299, 1028, 932, 800 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.52-7.51 (m, 2H), 7.37-7.31 (m, 3H), 7.01 (dd, J = 2.0, 8.0 Hz, 1H), 6.90 (d, J = 2.0 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 5.70 (t, J = 3.0 Hz,1H), 3.75 (dd, J = 3.0, 12.0 Hz, 1H), 3.57 (dd, J = 3.5, 12.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 145.0, 133.5, 132.8, 132.5, 129.1, 128.1, 123.6, 119.4, 118.5, 118.5, 105.3, 81.9, 29.4; HRMS (FAB+, m/z), calcd for C₁₅H₁₂N₂OS [M+H]⁺: 269.0749, found 269.0746.

Benzoxazine derivative 10b: Reaction time 1 h; IR (film) v_{max} : 3357, 3062, 2916, 1602, 1585, 1502, 1316, 1291, 1259, 1108, 902, 851 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.98 (dd, J = 2.0, 8.5 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 2.0 Hz, 1H), 5.37 (d, J = 4.0 Hz, 1H), 4.30 (dt, J = 4.0 Hz, 1H), 4.30 (d 4.0, 9.0 Hz, 1H), 4.20 (br, 1H), 4.09-4.04 (m, 2H), 2.25-2.18 (m, 1H), 1.89 (qd, J = 9.0, 12.5Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz); δ 145.1, 131.2, 123.2, 119.4, 117.8, 117.3, 104.6, 96.4, 68.0, 53.8, 29.3; HRMS (ESI, m/z), calcd for C₁₁H₁₀N₂O₂ [M+Na]⁺: 225.064, found 225.0652.

 $(CDCl_3, 500 \text{ MHz})$: $\delta 6.58 \text{ (s, 2H)}, 5.34 \text{ (t, } J = 2.5 \text{ Hz}, 1\text{H}), 3.85-3.82 \text{ (m, 1H)}, 3.84 \text{ (s, 3H)},$ 3.64 (td, J = 6.5, 10.0 Hz, 1H), 3.38-3.32 (m, 2H), 1.56-1.48 (m, 2H), 1.27-1.21 (m, 2H), 0.82 $(t, J = 7.5 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (\text{CDCl}_3, 125 \text{ MHz}): \delta 149.2, 134.2, 134.1, 119.5, 113.0, 105.7,$ 103.9, 94.4, 68.5, 56.1, 44.0, 31.3, 19.0, 13.6; HRMS (FAB+, m/z), calcd for C₁₄H₁₈N₂O₃ [M+H]⁺: 263.1396, found 263.1398.

Benzoxazine derivative 8c:¹ Reaction time 2 h; IR (film) v_{max} : 3365, 3037, 2958, 2930, 2221, 1658, 1602, 1588, 1496, 1465, 1377,1352, 1241, 1211, 1176, 1083, 1029, 936, 877, 796 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.56 (s, 2H), 5.33 (t, J = 2.5 Hz, 1H), 3.88 (qd, J = 7.0, 10.0

Hz, 1H), 3.82 (s, 3H), 3.69 (qd, J = 7.0, 10.0 Hz, 1H), 3.35-3.28 (m, 2H), 1.17 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 149.1, 134.2, 134.0, 119.5, 112.9, 105.6, 103.8, 94.4, 64.3, 56.1, 43.9, 14.9; HRMS (FAB+, m/z), calcd for C₁₂H₁₄N₂O₃ [M+H]⁺: 235.1083, found 235.1088.

Benzoxazine derivative 9c:¹ Reaction time 4 h; IR (film) v_{max} : 3381, 3063, 2954, 1593, 1500, 1454, 1331, 1295, 1021, 932, 800

cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.55-7.52(m, 2H), 7.32-7.18 (m, 2H), 6.62-6.59 (m, 2H), 5.75 (t, *J* = 2.5 Hz, 1H), 4.23 (br, 1H), 3.83 (s, 3H), 3.71 (dd, *J* = 3.0, 12.0 Hz, 1H), 3.56 (dd, *J* = 2.5, 12.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 149.7, 134.0, 133.8, 132.8, 132.6, 129.0, 128.0, 119.4, 112.6, 106.0, 104.5, 81.9, 56.2, 45.0; HRMS (FAB+, *m/z*), calcd for C₁₆H₁₄N₂O₂S [M+H]⁺: 299.0854, found 299.0852.

Benzoxazine derivative 10c:¹ Reaction time 1 h; IR (film) v_{max} :

3398, 3087, 2988, 2223, 1595, 1521, 1493, 1352, 1239, 1123, 1053, 907, 831 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.58 (d, *J* = 1.5 Hz, 1H), 6.55 (d, *J* = 1.5 Hz, 1H), 5.33 (d, *J* = 3.5 Hz, 1H), 4.28 (dt, *J* =

4.0, 9.0 Hz, 1H), 4.11-4.00 (m, 2H), 3.82 (s, 3H), 2.22-2.16 (m, 1H), 1.86 (qd, *J* =9.0, 12.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 148.9, 133.8, 131.9, 119.5, 111.5, 105.2, 104.0, 96.1, 67.9, 56.0, 53.8, 29.3; HRMS (FAB+, *m/z*), calcd for C₁₂H₁₂N₂O₃ [M+H]⁺: 233.0926, found 233.0921.

Benzoxazine derivative 7d: Reaction time 8 h; IR (film) v_{max} : 3380, 3054, 2871, 2958, 2224, 1606, 1586, 1505, 1461, 1308, 1214, 1089, 1023, 897, 808 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.97 (dd, J = 2.0, 8.5 Hz, 1H), 6.86 (d, J = 2.0 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 5.24 (t, J = 2.5 Hz, 1H), 4.02 (br, 1H), 3.84 (td, J = 6.5, 9.5 Hz, 1H), 3.62 (td, J = 6.5, 9.5 Hz, 1H), 3.39-3.32 (m, 2H), 1.57 1.51 (m, 2H), 1.33-1.24 (m, 2H), 0.86 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 145.2, 133.7, 123.4, 119.5, 118.5, 117.9, 104.6, 94.9, 68.6, 44.1, 31.4, 19.0, 13.7; HRMS (FAB+, m/z), calcd for C₁₃H₁₆N₂O₂ [M+H]⁺: 233.129, found 233.1294. **Benzoxazine derivative 8d:** Reaction time 7 h; IR(film) v_{max}: 3387,

3064, 2977, 2917, 2223, 1606, 1504, 1449, 1373, 1313, 1207, 1119, 1087, 937, 881 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.97 (dd, J =

2.0, 8.5 Hz, 1H), 6.86 (d, J = 2.0 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 5.26 (t, J = 2.5 Hz, 1H), 3.92 (qd, J = 7.0, 9.5 Hz, 1H), 3.69 (qd, J = 7.0, 10.0 Hz, 1H), 3.91-3.32 (m, 2H), 1.21 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 145.2, 133.7, 123.4, 119.5, 118.5, 117.9, 104.6, 94.8, 64.4, 44.1, 15.0; HRMS (FAB+, m/z), calcd for C₁₁H₁₂N₂O₂ [M+H]⁺: 205.0977, found 205.0972.

Benzoxazine derivative 9d:¹ Reaction time 8 h; IR (film) v_{max} : 3391, 3054, 2923, 1588, 1500, 1445, 1338, 1299, 1028, 932, 800 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.52-7.51 (m, 2H), 7.37-7.31 (m, 3H), 7.01 (dd, J = 2.0, 8.0 Hz, 1H), 6.90 (d, J = 2.0 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 5.70 (t, J = 3.0 Hz,1H), 3.75 (dd, J = 3.0, 12.0 Hz, 1H), 3.57 (dd, J = 3.5, 12.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 145.0, 133.5, 132.8, 132.5, 129.1, 128.1, 123.6, 119.4, 118.5, 118.5, 105.3, 81.9, 29.4; HRMS (FAB+, m/z), calcd for C₁₅H₁₂N₂OS [M+H]⁺: 269.0749, found 269.0752.

Benzoxazine derivative 10d: Reaction time 4 h; IR (film) v_{max} : 3357, 3062, 2916, 1602, 1585, 1502, 1316, 1291, 1259, 1108, 902, 851 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.98 (dd, J = 2.0, 8.5 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 2.0 Hz, 1H), 5.37 (d, J = 4.0 Hz, 1H), 4.30 (dt, J = 4.0, 9.0 Hz, 1H), 4.20 (br, 1H), 4.09-4.04 (m, 2H), 2.25- 2.18 (m, 1H), 1.89 (qd, J = 9.0, 12.5Hz, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz): δ 145.1, 131.2, 123.2, 119.4, 117.8, 117.3, 104.6, 96.4, 68.0, 53.8, 29.3; HRMS (FAB+, *m/z*), calcd for C₁₁H₁₀N₂O₂ [M+H]⁺: 203.0821, found 203.0826.

Benzoxazine derivative 7e:¹ Reaction time 3 h; IR

(film) v_{max} : 3356, 2988, 2943, 2360, 1699, 1597, 1488,

1439, 1307, 1208, 1113, 1050, 983, 846, 726 cm⁻¹; ¹H

NMR (CDCl₃, 500 MHz): δ 7.40 (dd, J = 2.0, 8.0 Hz, 1H), 7.33 (d, J = 2.0 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 5.23 (t, J = 3.0 Hz, 1H), 3.87-3.83 (m, 1H), 3.83 (s, 3H), 3.61 (td, J = 7.0, 10.0 Hz, 1H), 3.37-3.30 (m, 2H), 1.57-1.52 (m, 2H), 1.31-1.24 (m, 2H), 0.85 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.1, 145.8, 132.7, 123.4, 121.3, 117.2, 116.9, 95.1, 68.4, 51.8, 44.4, 31.4, 19.1, 13.7; HRMS (FAB+, m/z), calcd for C₁₄H₁₉NO₄ [M+H]⁺: 266.1392, found 266.1398.

Benzoxazine derivative 8e: Reaction time 2 h; IR (film) v_{max} : 3365, 2992, 2363, 1696, 1592, 1479, 1438, 1208, 1113, 1050, 983, 846, 726 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.41 (dd, J = 2.0, 9.5 Hz, 1H), 7.33 (dd, J = 1.5 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 5.25 (t, J = 2.5 Hz, 1H), 3.95-3.89 (m, 1H), 3.84 (s, 3H), 3.72-3.65 (m, 1H), 3.38-3.31 (m, 2H), 1.24 (br, 1H), 1.21 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.0, 145.8, 132.6, 123.5, 121.3, 117.2, 116.9, 95.0, 64.2, 51.8, 44.4, 15.0; HRMS (FAB+, *m/z*), calcd for C₁₂H₁₅NO₄ [M+H]⁺: 238.1079, found 238.1081.

Benzoxazine derivative 9e:¹ Reaction time 5 h; IR (film) ν_{max}: 3355, 2982, 2361, 1699, 1597, 1421, 1208, 1052, 974, 841, 726 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.59-7.55 (m, 2H), 7.48 (dd, J = 2.0, 8.5 Hz, 1H), 7.41 (d, J = 2.0 Hz, 1H), 7.38-7.32 (m, 4H), 6.90 (d, J = 8.5 Hz, 1H), 3.90 (s, 3H), 3.77 (dd, J = 3.0, 12.0 Hz, 1H), 3.59 (dd, J = 3.5, 12.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.0, 145.3, 133.2, 132.5, 132.3, 129.0, 127.8, 123.9, 121.3, 117.5, 117.2, 82.0, 51.8, 45.2; HRMS (FAB+, m/z), calcd for C₁₆H₁₅NO₃S [M+H]⁺: 302.0851, found 302.0855.

Benzoxazine derivative 10e:¹ Reaction time 1 h; IR (film) ν_{max}: 3362, 2991, 1721, 1696, 1594, 1479, 1438, 1208, 1050, 983, 846, 726 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz); δ 7.36 (dd, *J* = 2.0,

8.5 Hz, 1H), 7.31 (d, J = 2.0 Hz, 1H), 6.84 (d, J = 8.5 Hz, 1H), 5.37 (d, J = 4.0 Hz, 1H), 4.26 (dt, J = 4.0, 9.0 Hz, 1H), 4.06-4.00 (m, 2H), 3.83 (s, 3H), 2.19-2.10 (m, 1H), 1.87 (qd, J = 9.0, 12.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.03, 145.5, 130.3, 123.6, 120.8, 116.7, 115.8, 96.5, 67.9, 54.0, 51.8, 29.2; HRMS (FAB+, m/z), calcd for C₁₂H₁₃NO₄ [M+H]⁺: 236.0923, found 236.0924.

Benzoxazine derivative 7f:¹ Reaction time 3 h; IR (film) v_{max} : 3398, 3087, 2988, 2853, 2223, 1595, 1521, 1493, 1407, 1372, 1352, 1239, 1172, 1123, 1053, 955, 907, 803 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.94 (dd, J = 1.5, 7.0 Hz, 1H), 6.87 (d, J = 8.5 Hz, 1H), 6.86 (d, J = 2.0 Hz, 1H), 5.23 (t, J = 2.5 Hz, 1H), 3.86 (td, J = 7.0, 10.0 Hz, 1H), 3.63 (td, J =7.0, 10.0 Hz, 1H), 3.39-3.32 (m, 2H), 1.60-1.54 (m, 2H), 1.34-1.27 (m, 2H), 0.87 (t, J = 7.5Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 144.0, 133.0, 125.4, 123.6, 117.3, 116.1, 112.6, 94.8, 68.5, 44.3, 31.5, 19.1, 13.7; HRMS (FAB+, m/z), calcd for C₁₃H₁₆F₃NO₂ [M+H]⁺: 276.1211, found 276.1216. **Benzoxazine derivative 8f:**¹ Reaction time 3 h; IR (film) v_{max} : 3387, 3066, 2983, 1618, 1594, 1498, 1334, 1207, 1118, 939, 880 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.94 (dd, J = 1.5, 8.5 Hz, 1H), 6.86 (d, J = 8.5 Hz, 1H), 6.85 (d, J = 2.0 Hz, 1H), 5.25 (t, J = 2.5 Hz, 1H), 3.92 (qd, J = 7.5, 10.0 Hz, 1H), 3.69 (qd, J = 7.0, 9.5 Hz, 1H), 3.37-3.31 (m, 2H), 1.21 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 144.0, 133.0, 125.4, 123.6, 117.2, 116.1, 112.6, 94.6, 64.2, 44.3, 15.0; HRMS (FAB+, m/z), calcd for C₁₁H₁₂F₃NO₂ [M+H]⁺: 248.0898, found 248.0892.

Benzoxazine derivative 9f: Reaction time 6 h; IR (film) v_{max} :

3362, 3073, 2940, 2841, 1613, 1486, 1465, 1211, 1062, 865, 820 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.56-7.53 (m, 2H), 7.36-7.31

(m, 3H), 6.99 (d, J = 8.0 Hz, 1H), 6.92 (s, 1H), 6.90-6.88 (m, 1H), 5.71 (t, J = 3.0 Hz, 1H), 4.04 (br, 1H), 7.50 (dd, J = 3.0, 12.5 Hz, 1H), 3.57 (dd, J = 3.5, 12.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 143.8, 133.2, 132.8, 132.4, 129.1, 127.9, 124.5, 123.2, 117.9, 116.3, 112.4, 81.8, 45.3; HRMS (FAB+, m/z), calcd for C₁₅H₁₂F₃NOS [M+H]⁺: 312.067, found 312.0679.

Benzoxazine derivative 10f:¹ Reaction time 2 h; IR (film) v_{max} :

3373, 3083, 2920, 2847, 1610, 1496, 1453, 1411, 1341, 1211, 1053, 894, 811 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.93-6.89 (m, 2H),

6.83 (d, J = 1.0 Hz, 1H), 5.37 (d, J = 3.5 Hz, 1H), 4.29 (dt, J = 4.0, 9.0 Hz, 1H), 4.08-4.03 (m, 2H), 2.23-2.16 (m, 1H), 1.91 (qd, J = 8.5, 12.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 143.8, 130.8, 125.4, 124.2, 117.1, 115.7, 111.2, 96.3, 67.9, 54.0, 29.5; HRMS (FAB+, m/z), calcd for C₁₁H₁₀F₃NO₂ [M+H]⁺: 246.0742, found 246.0744.

X-ray Crystallographic Data

Formula	$C_{12}H_{16}N_2O_4$
Formula Wt.	252.27
Crystal habit	Blocks
Crystal color	Orange
Crystal system	Triclinic
Space group	Pī
a (´)	8.418(2)
<i>b</i> (´)	8.861(2)
c (´)	9.944(2)
α (deg)	64.890(10)
β (deg)	88.070(10)
γ (deg)	71.110(10)
V (´³)	630.8(2)
Ζ	2
D_{calc} (g cm ⁻³)	1.328
<i>T</i> (K)	298(2)
λ (Mo-K α)	0.71073
μ (mm ⁻¹)	0.101
2θ range (deg)	50.52
Limiting indices <i>F(000)</i>	$\begin{array}{c} -10 \leq h \geq 10 \\ -10 \leq k \geq 10 \\ -11 \leq l \geq 11 \\ 268 \end{array}$
No. of Reflns. Measured	6142
No. Unique Reflns. $[R(int)]$	2271
No.of Reflns. used	2092
No. of Parameters	197
GOF on F ²	1.055
RI [I>2 σ (I)]	0.0474

wR2	0.1258
Final diff. Fourier	0.229,
map (e ⁻ .Å ⁻³) max, min	-0.207

Figure 1. ORTEP diagram of X-ray crystal structure of 7a

Computational Studies

All computations were performed using the Gaussian 09^2 program package, at the B3LYP/6-31-G(d) level of theory³. Reactants and products structures were optimized using the B3LYP functional and the 6-31-G(d) basis set. The stationary points were characterized by frequency calculations in order to verify that TSs had one and only one imaginary frequency. Distances and bond lengths are given in Å. The relative energies are given in kcal mol⁻¹.

Relative energy relative to **1b** + **4** 12.70 Kcal/mol

Total energy -686.2145657 au.

Relative energy relative to **1b** + **4** 20.39 Kcal/mol

Figure 3. Transition structure of counter regio isomer of 8b

Cartesian coordinates with the computed total energies

TS-1 of **8b**

-686.226814 au.

С	-3.123186000	-0.150768000	-0.031744000
С	-2.672221000	-1.492515000	0.245684000
С	-1.347076000	-1.807887000	0.219054000
С	-0.340239000	-0.826814000	-0.144209000
С	-0.822383000	0.529357000	-0.485958000
С	-2.210493000	0.836062000	-0.341375000
0	0.884310000	-1.073430000	-0.125536000
С	2.194371000	0.828454000	0.902557000

С	1.415265000	1.946854000	0.687067000
Ν	0.105493000	1.401112000	-0.885879000
0	3.272897000	0.619411000	0.163741000
С	3.943754000	-0.650991000	0.343980000
С	4.993877000	-0.777644000	-0.741449000
С	-4.520414000	0.147656000	0.028762000
Ν	-5.659416000	0.383846000	0.085357000
Η	-3.416756000	-2.243942000	0.491841000
Η	-0.998230000	-2.810117000	0.448027000
Η	-2.552351000	1.849079000	-0.541052000
Η	1.984572000	0.115256000	1.694413000
Η	1.822241000	2.748553000	0.081955000
Η	0.681404000	2.209714000	1.439869000
Η	-0.331524000	2.326417000	-0.994176000
Η	3.190119000	-1.439841000	0.279607000
Η	4.397397000	-0.662037000	1.344203000
Η	5.530612000	-1.725478000	-0.626997000
Η	5.719342000	0.040094000	-0.684026000
Η	4.525443000	-0.760834000	-1.729865000

TS-2 of regio isomer of 8b

-686.2145657 au.

С	-2.334524000	-0.087423000	0.064705000
С	-2.113092000	-0.684052000	-1.222276000
С	-0.932054000	-1.316805000	-1.501338000
С	0.067377000	-1.500019000	-0.483906000
С	-0.168427000	-0.909153000	0.834747000
С	-1.365084000	-0.157114000	1.047025000
0	1.173814000	-2.079612000	-0.712127000
С	2.843526000	-0.949519000	-0.147289000
С	2.511479000	-0.010361000	0.826314000
Ν	0.822124000	-1.058451000	1.714839000
С	-3.564872000	0.601786000	0.314899000
Ν	-4.564477000	1.166025000	0.508568000
0	2.079368000	1.247621000	0.582362000
С	1.861586000	1.667361000	-0.778497000
С	1.234700000	3.048249000	-0.732314000
Η	-2.894927000	-0.608534000	-1.971628000
Η	-0.739779000	-1.753302000	-2.476559000
Η	-1.533452000	0.310550000	2.013508000
Η	2.947306000	-0.686375000	-1.190548000
Η	3.329273000	-1.856697000	0.181256000
Η	2.907722000	-0.101164000	1.829579000
Η	0.644445000	-0.447645000	2.523520000
Η	1.208226000	0.954600000	-1.292796000
Η	2.828352000	1.687028000	-1.300621000
Η	1.076630000	3.420053000	-1.750128000

Η	1.885506000	3.751056000	-0.202933000
Η	0.268027000	3.015652000	-0.220803000

Benzoxazine derivative 8b

-686.3243273 au.

-3.337514000	0.796308000	0.035613000
-3.110069000	-0.558135000	0.327789000
-1.805779000	-1.039686000	0.359083000
-0.729371000	-0.192658000	0.098062000
-0.944889000	1.170423000	-0.209181000
-2.255211000	1.650034000	-0.233386000
0.527752000	-0.730664000	0.132430000
1.647163000	0.179847000	0.118197000
1.384880000	1.325760000	-0.852566000
0.160566000	1.992828000	-0.438208000
2.762583000	-0.508386000	-0.309110000
3.255079000	-1.494758000	0.609395000
4.539328000	-2.065768000	0.035985000
-4.672537000	1.313623000	0.002962000
-5.757354000	1.734909000	-0.024755000
-3.946431000	-1.217550000	0.531250000
-1.596501000	-2.080281000	0.585090000
-2.439821000	2.695622000	-0.463275000
1.771868000	0.560323000	1.144790000
1.339681000	0.904149000	-1.868853000
2.219165000	2.030764000	-0.805153000
-0.047258000	2.849802000	-0.935220000
2.500488000	-2.278192000	0.746464000
3.433980000	-1.020928000	1.587195000
4.947636000	-2.825926000	0.710639000
5.289204000	-1.279298000	-0.096680000
4.351890000	-2.531035000	-0.936843000
	$\begin{array}{r} -3.337514000\\ -3.110069000\\ -1.805779000\\ -0.729371000\\ -0.944889000\\ -2.255211000\\ 0.527752000\\ 1.647163000\\ 1.384880000\\ 0.160566000\\ 2.762583000\\ 3.255079000\\ 4.539328000\\ -4.672537000\\ -5.757354000\\ -3.946431000\\ -1.596501000\\ -2.439821000\\ 1.339681000\\ 2.219165000\\ -0.047258000\\ 2.500488000\\ 3.433980000\\ 4.947636000\\ 5.289204000\\ 4.351890000\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Regio isomer of 8b

-686.3181633 au.

С	-2.009947000	0.828416000	1.739235000
С	-2.079863000	-0.536933000	2.057138000
С	-0.920404000	-1.306058000	2.012515000
С	0.293014000	-0.731605000	1.645252000
С	0.377946000	0.638939000	1.314190000
С	-0.784278000	1.410695000	1.374750000
0	1.399086000	-1.535490000	1.558446000
С	2.651862000	-0.857260000	1.704786000
С	2.785452000	0.363900000	0.787490000

Ν	1.610126000	1.179901000	0.962316000
С	-3.190272000	1.639117000	1.784512000
Ν	-4.149229000	2.297805000	1.820168000
0	3.113099000	0.056784000	-0.558055000
С	2.162650000	-0.689678000	-1.328217000
С	2.682968000	-0.747793000	-2.755138000
Η	-3.027569000	-0.981561000	2.339301000
Η	-0.936355000	-2.364285000	2.252714000
Η	-0.742652000	2.468234000	1.130512000
Η	3.420134000	-1.590683000	1.456112000
Η	2.777334000	-0.540842000	2.749578000
Η	3.660239000	0.934170000	1.121984000
Η	1.608097000	2.079294000	0.500920000
Η	1.180794000	-0.198102000	-1.295985000
Η	2.042596000	-1.699588000	-0.915493000
Η	1.990285000	-1.313173000	-3.388169000
Η	3.662013000	-1.236644000	-2.789430000
Η	2.789270000	0.260177000	-3.169116000

4-cyano-*o*-quinone monoimine (2b)

-453.8138318 au.

С	-1.019196000	0.758972000	0.000755000
С	-1.028743000	-0.710378000	-0.000825000
С	0.108714000	-1.437911000	-0.006522000
С	1.419610000	-0.779423000	-0.011428000
С	1.424168000	0.751579000	-0.008564000
С	0.146329000	1.457243000	-0.002765000
С	-2.281511000	1.438202000	0.006849000
Ν	-3.317790000	1.966475000	0.011874000
0	2.481916000	-1.386785000	-0.014888000
Ν	2.522520000	1.414328000	-0.011403000
Η	-1.997940000	-1.200701000	0.002106000
Η	0.096803000	-2.523044000	-0.008144000
Η	0.170356000	2.541852000	-0.001109000
Η	3.301464000	0.737038000	-0.015585000

Ethyl vinyl ether (4)

-232.4332375 au.

С	-1.910221000	-1.047404000	0.003021000
С	-1.678859000	0.269543000	0.002703000
0	-0.487921000	0.920137000	0.001565000
С	0.693871000	0.118053000	0.000959000
С	1.890770000	1.052352000	0.000001000
Η	-2.935252000	-1.399697000	0.003566000
Η	-1.127315000	-1.796657000	0.002413000

Η	-2.489185000	0.994225000	0.002885000
Η	0.693474000	-0.531055000	-0.886451000
Η	0.694597000	-0.530691000	0.888632000
Η	2.821092000	0.473991000	-0.000479000
Η	1.881134000	1.693226000	0.887309000
Η	1.879991000	1.692859000	-0.887559000

Notes & References:

1) The proton attached to the nitrogen atom is merged with the base line.

2) Frisch, M. J.; et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.

3) (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652. (b) Lee, C.; Yang, W.; Parr, R. Phys. Rev. B **1988**, 37, 785–789.