Supporting information for

Synthesis of Pyrrolyldipyrrinato BF₂ Complexes by Oxidative Nucleophilic Substitution of Boron Dipyrromethene with Pyrrole

Min Zhang, Erhong Hao*, Jinyuan Zhou, Changjiang Yu, Guifeng Bai, Fengyun Wang and

Lijuan Jiao*

Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of

Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal

University, Wuhu, China 241000

Fax: (+) (+86) 553-388-3517

E-mail: jiao421@mail.ahnu.edu.cn, haoehong@mail.ahnu.edu.cn

Contents:

1. Figure S1 and Scheme S1-S3S2
2. Copies of ¹ H NMR, ¹³ C NMR for all new compoundsS4
3. High resolution mass spectroscopies for all new compoundsS24
4. UV-vis and Fluorescence spectroscopies for all the compoundsS32
5. Table S1
6. Experimental Fluorescence Decay Curve of BODIPYs 1a-h in DCMS42

1. Figure S1 and Scheme S1-S3

Figure S1. X-Ray structures of BODIPYs 6. C grey, N blue, O red, B yellow, F bright-green.

Scheme S1. One-pot synthesis of BODIPY 2a.

Scheme S2. Possible mechanism for formation of BODIPY **1** via oxidative nucleophilic substitution.

Scheme S3. Failed attempt to synthesize the double-substituted BODIPY C.

2. Copies of ¹H NMR, ¹³C NMR for all new compounds

3. High resolution mass spectroscopies for all new compounds

449.33359

468.33682

551.50470

579.53589

580.53918

607.56738

2973291.5

4643372.0

3718662.0

5526243.0

11807922.0

16860522.0

0.11

0.16

0.13

0.60

0.20

0.42

449.33281

468.33729

551.47786

579.48401

580.49183

607.49016

0.77

-0.46

26.84

51.88

47.35

77.23

C₂₃H₄₅N₃B³⁷ClF₂

C₂₀ H₄₄ N₇ B³⁷Cl F₂

C 30 H 58 N 6 B F 2

C30 H58 N8 B F2

C30 H59 N8 B F2

C30 H58 N10 B F2

2011-8-12 13:07:42

2011-8-12 13:11:28

2011-8-12 13:18:57

20110812 APCI JLJ 13#32 RT: 0.46							
T: FTMS + c APCI corona Full ms [100.00-800.00]							
m/z	Intensity	Relative	Theo. Mass	Delta	Composition		
				(mmu)			
354.17776	17713906.0	6.35	354.17682	0.95	С12 Н19 О N 9 В F2		
355.17715	66948380.0	24.01	355.17743	-0.28	C 18 H 20 N 5 B F 2		
356.17334	278829120.0	100.00	356.17268	0.66	C 17 H 19 N 6 B F 2		
357.17636	63413432.0	22.74	357.18051	-4.15	C 17 H 20 N 6 B F 2		
358.17963	6736812.5	2.42	358.17710	2.53	C ₁₈ H ₂₁ O N 4 B F ₂		
368.19287	11945678.0	4.28	368.19247	0.40	C ₁₃ H ₂₁ O N ₉ B F ₂		
376.17923	11848446.0	4.25	376.17911	0.12	C ₂₂ H ₂₁ N ₃ BF ₂		

2011-8-12 13:22:41

430.05307

457.06329

551.50330

579.53534

3987565.5

3325009.5

4572049.5

19053504.0

0.17

0.14

0.20

0.82

457.06279

551.49765

579.48401

-0.17 C19 H16 ON3 BBr F2

0.50 C18 H15 N7 B Br F2

51.33 C30 H58 N8 B F2

C25 H60 ON9 B F2

5.65

20110812 APCI JLJ 12 110812143513#12 RT: 0.18 T: FTMS + c APCI corona Full ms [100.00-800.00] m/z Intensity Relative Theo. Mass Delta Composition (mmu) 401.34171 3946.2 0.05 401.33701 4.70 C19 H40 N6 B F2 402.05493 449063.5 402.05422 0.72 C19 H13 N3 B Cl 2 F2 5.14 403.05875 71229.4 0.82 403.05952 -0.77 C₁₁ H₂₂ N₄ B Cl₂ ³⁷Cl₂ F₂ 404.05200 289416.0 3.31 404.05127 0.74 C19 H13 N3 B Cl 37Cl F2 -0.21 C13 H13 N8 B 37Cl 2 F2 404.06348 4765.8 0.05 404.06369 405.05560 43953.4 0.50 405.05490 0.71 C19 H19 B Cl ³⁷Cl₂ F₂ 406.04904 38352.2 0.44 406.04946 -0.42 C8 H14 N10 BCl2 37Cl F2 0.07 406.05923 5725.5 406.05853 0.70 C₁₈ H₈ N₇ B Cl F₂ 407.05264 8902.0 0.10 407.05309 -0.45 C8 H20 N7 B Cl 2 37 Cl 2 F2 411.39917 18968.8 0.22 411.36495 34.22 C15 H42 N10 B F2 412.40274 4697.0 0.05 412.31844 84.30 C18 H42 N5 B Cl F2 413.06726 7799.7 0.09 413.06719 0.07 C15 H19 N4 B Cl ³⁷Cl₂ F₂ 413.07858 13508.2 0.15 413.07794 0.64 C17 H16 N5 B ³⁷Cl 2 F2

2011-8-12 12:37:54

534.26343

76023976.0

3.29

534.23836

25.07

C30 H27 N7 B F2

4. UV-vis and Fluorescence data for all the new compounds (THF: Tetrahydrofuran; DCM: Dichloromethane).

Figure S22: Absorption (top) and emission spectra (bottom) of BODIPY 1a recorded in

Figure S23: Absorption (top) and emission spectra (bottom) of BODIPY 1b recorded in

Figure S24: Absorption (top) and emission spectra (bottom) of BODIPY 1c recorded in

Figure S25: Absorption (top) and emission spectra (bottom) of BODIPY 1d recorded in

Figure S26: Absorption (top) and emission spectra (bottom) of BODIPY 1e recorded in

Figure S27: Absorption (top) and emission spectra (bottom) of BODIPY 1f recorded in

Figure S28: Absorption (top) and emission spectra (bottom) of BODIPY 1g recorded in different solvents. Excited at 520 nm

Figure S29: Absorption (top) and emission spectra (bottom) of BODIPY 1h recorded in

5. Table S1. UV-vis and fluorescence properties	of BODIPYs 1a-h in	various solvent	at room
temperature.			

bodipys	solvent	λ_{abs} (max)/nm	λ _{emiss}	Φ^{a}	Stokes	Stokes
	DCMb	(IIIax)/IIII 576	(IIIax)/IIII	0.24	22.4	
	Toluene	581	612	0.24	30.4	952 856
Ť.	CH ₂ CN	570	606	0.29	35.6	1031
	MeOH	573	604	0.16	31.2	901
E E	Havana	576	601	0.10	25.0	301 722
1a HN	THE ^C	570	609	0.20	25.0	011
	1111	511	009	0.15	52.0	711
ļ	DCM	575	607	0.29	31.8	911
	Toluene	580	610	0.36	29.8	843
1 A A A A A A A A A A A A A A A A A A A	CH ₃ CN	570	605	0.23	34.8	1010
	MeOH	571	604	0.24	32.6	946
E E	Hexane	574	600	0.31	25.2	733
1b HN	THF	576	610	0.25	33.8	962
0	DCM	575	606	0.28	31.0	890
	Toluene	581	608	0.40	27.2	770
	CH ₃ CN	570	604	0.18	34.2	993
	MeOH	572	602	0.23	29.8	866
	Hexane	575	597	0.30	22.0	641
IC HN	THF	577	607	0.32	30.2	862
			<i></i>	0.0 7	7 0 0	10.44
	DCM	585	636	0.05	50.8	1366
	Toluene	586	618	0.23	32.4	894
	CH ₃ CN	581	622	0.01	40.8	1129
	MeOH	580	619	0.01	39.2	1092
F F	Hexane	577	602	0.26	24.8	714
1d HN	THF	584	620	0.02	36.0	994
Ţ	DCM	573	600	0.60	26.6	774
	Toluene	579	602	0.57	23.0	660
	CH ₃ CN	568	598	0.50	30.0	883
	MeOH	570	596	0.56	26.0	765
F F	Hexane	573	598	0.50	25.0	730
1e HN	THF	575	601	0.57	26.2	758

Br ↓	DCM	578	612	0.27	34.2	967
	Toluene	584	615	0.36	30.8	858
<u> </u>	CH ₃ CN	572	609	0.21	36.8	1057
	MeOH	575	609	0.20	34.4	982
F F	Hexane	578	606	0.28	28.0	799
1f HN	THF	579	613	0.28	34.0	958
	DCM	584	612	0.56	28.2	789
cici	Toluene	590	615	0.57	25.2	694
	CH ₃ CN	578	609	0.35	31.0	881
	MeOH	580	608	0.33	28.2	799
FF	Hexane	584	604	0.68	19.6	556
1g '''\	THF	585	612	0.55	17.2	480
/	DCM	567	593	0.34	26.0	773
	Toluene	573	597	0.45	23.4	685
	CH ₃ CN	560	582	0.34	21.8	669
N _B N	MeOH	563	590	0.45	27.0	813
F ^C F 1h ^{HN}	Hexane	569	587	0.47	17.4	522
	THF	568	594	0.35	26.5	786
^a the fluorescen	ce quantum	yields	were calculated	using	Rhodamine I	B (0.49 in
ethanol) as the reference. ^b Dichloromethane. ^c tetrahydrofuran.						

6. Experimental Fluorescence Decay Curve

Figure S30: Experimental fluorescence decay Curve of BODIPYs 1a in nondegassed DCM.

Figure S31: Experimental fluorescence decay Curve of BODIPYs 1b in nondegassed DCM.

Figure S32: Experimental fluorescence decay Curve of BODIPYs 1c in nondegassed DCM.

Figure S33: Experimental fluorescence decay Curve of BODIPYs 1d in nondegassed DCM.

Figure S34: Experimental fluorescence decay Curve of BODIPYs 1e in nondegassed DCM.

Figure S35: Experimental fluorescence decay Curve of BODIPYs 1f in nondegassed DCM.

Figure S36: Experimental fluorescence decay Curve of BODIPYs 1g in nondegassed DCM.

Figure S37: Experimental fluorescence decay Curve of BODIPYs 1h in nondegassed DCM.