Synthesis and conformational studies of peptido-squaramide

foldable modules: a new class of turn-mimetic compounds.

Luís Martínez, Angel Sampedro, Elena Sanna, Antoni Costa^{*} and Carmen Rotger^{*}

Department of Chemistry, Universitat de les Illes Balears, Crta Valldemossa Km 7.5,

07122 Palma, Spain.

antoni.costa@uib.es, carmen.rotger@uib.es

Supporting Information

- General Methods
- Synthesis of the compounds
- Variable-concentration ¹H-NMR spectra of **1** in CDCl₃: Figure S1a
- Variable-temperature ¹H-NMR spectra of **1** in CDCl₃: Figure S1b
- Variable-temperature ¹H-NMR spectra of **1** in CD₃CN: Figure S1c
- Variable-temperature ¹H-NMR spectra of **2** in CDCl₃: Figure S2
- Variable-concentration ¹H-NMR spectra of **3** in CDCl₃: Figure S3a
- Variable-temperature ¹H-NMR spectra of **3** in CDCl₃: Figure S3b
- Variable-temperature ¹H-NMR spectra of **3** in CD₃CN: Figure S3c
- Selected fragments of NOESY spectrum of 4 (1 mM) in CD₃CN at 298 K: Figure S4
- ¹H-NMR and ¹³C NMR spectra of **1**: Figure S5
- ¹H-NMR and ¹³C NMR spectra of **2**: Figure S6
- ¹H-NMR and ¹³C NMR spectra of **3**: Figure S7
- ¹H-NMR and ¹³C NMR spectra of **4**: Figure S8
- ¹H-NMR and ¹³C NMR spectra of **9**: Figure S9
- ¹H-NMR and ¹³C NMR spectra of **10**: Figure S10
- ¹H-NMR and ¹³C NMR spectra of **11**: Figure S11
- ¹H-NMR and ¹³C NMR spectra of **12**: Figure S12
- ¹H-NMR and ¹³C NMR spectra of **13**: Figure S13
- ¹H-NMR and ¹³C NMR spectra of 14: Figure S14
- ¹H-NMR and ¹³C NMR spectra of **15**: Figure S15

General Methods

All reagents and solvents were commercially available and were used without further purification unless otherwise stated. All reactions sensitive to air or moisture were carried out under argon atmosphere in dry, freshly distilled solvents under anhydrous conditions. DMSO- d_6 and CDCl₃ (99.8 %D) were stored on molecular sieves (3 Å). ¹H and ¹³C NMR spectra were recorded at 600, 300 and 75 MHz at 23 °C unless otherwise specified. Chemicals shifts are reported as parts per million (δ) referenced to the residual deuterium lock solvents. The coupling constants values J are given in Hz. NMR peak assignments were performed by COSY, HSQC, HMBC, and NOESY experiments. Concentration dependence experiments were run recording spectra of the studied compounds at seven different concentrations (0.5- 100 mM). The temperature coefficients were determined by recording spectra of 1-2 mM solution of those compounds at seven different temperatures between 313-237 K. IR spectra were recorded on (FT-IR) Bruker IFS66 spectrophotometer. HRMS data were obtained on a MicroMass Autospec 3000 double focusing magnetic sector mass spectrometer operating at 3000 m/z with a cone voltage of 4V. Samples were introduced through an electrospray module (ESI).

Molecular Modeling. Molecular models for compound **1** were generated using the MMFF94 force field as implemented in MacSpartan 10^1 . The initial geometries were then subjected to a conformational search on 52488 structures generated from all the rotatable bonds. The geometry of the two different conformers of minimum energy were then subjected to full geometry optimization at the RB3LYP/6-31G* level of approximation.

Synthesis of the Compounds

3-(Butylamino)-4-ethoxycyclobut-3-ene-1,2-dione (5)

5 was prepared as described previously².

2-((2-(Butylamino)-3,4-dioxocyclobut-1-en-1-yl)amino)acetic acid (9)

5 (1.0 g, 5.07 mmol) in EtOH (20 ml) was added dropwise to a stirred solution of glycine (0.375 g, 5.0 mmol) and sodium ethoxide (0.375 g, 5.5 mmol) in EtOH (150 mL). The mixture was led to stand for 12 h at room temperature. Then, the solvent was removed and the residue suspended in Et_2O (50 mL) and filtered. The solid was dissolved in H_2O (5 mL) and HCl 37% was added until pH =2 to form a precipitate. The

¹ Spartan'10 Wavefunction, Inc. Irvine, CA

² M. C. Rotger, M. N. Piña, A. Frontera, G. Martorell, P. Ballester, P. M. Deyà, A. Costa, J. Org. Chem., 2004, **69**, 2302-2308.

product was filtered and washed with H₂O at 0°C to afford **9** (0.851 g 3.76 mmol) as a white solid. Yield 75%. Mp: 217 °C with descomp; ¹H RMN (DMSO- d_6) δ : 12.87 (1H, s), 7.52 (2H, s), 4.24 (2H, s), 4.47 (2H, s), 4.71 (2H, m), 1.30 (2H, m), 0.86 (3H, t, *J*=7.5Hz). ¹³C RMN (DMSO- d_6) δ : 186.17, 185.6, 174.4, (171.1, 170.8), 47.7, 46.1, 35.9, 22.2, 16.7. IR(KBr): 3168, 2959, 1655, 1570 cm⁻¹. HRMS (ESI): m/z calc. for C₂₀H₂₈N₄O₈Na: 475.1805, found 475.1815.

3-((2-(Butylamino)-3,4-dioxocyclobut-1-en-1-yl)amino)propanoic acid (10)

10 was prepared and purified as described for **9** starting from **5** (591 mg, 3.0 mmol), βalanine (270 mg, 3.0 mmol) and sodium ethoxide (225 mg, 3.3 mmol). The desired product **10** (563 mg, 2.34 mmol) was obtained as white solid. Yield = 78%. Mp: 210-211 °C. ¹H RMN (DMSO-*d*₆) δ: 12.37 (1H, s), 7.40 (2H, s), 3.67 (2H, q, *J*=6Hz), 3.46 (2H, m), 1.47 (2H, m), 1.30 (2H, m), 0.87 (3H, t, *J*=8.1Hz). ¹³C RMN (DMSO-*d*₆) δ: 185.4, 175.9, 171.0, 170.6, 46.0, 38.6, 35.9, 22.1, 16.7. IR (KBr): 3164, 2958, 1647, 1583 cm⁻¹. HRMS (ESI): m/z calc. for C₂₂H₃₂N₄O₈Na: 503.2118, found 503.2138.

4-((2-(Butylamino)-3,4-dioxocyclobut-1-en-1-yl)amino)butanoic acid (11)

11 was prepared and purified as described for **9** starting from **5** (296 mg, 1.5 mmol), γaminobutiric acid (157 mg, 1.5 mmol) and sodium ethoxide (102 mg, 1.5 mmol). The desired product **11** (337 mg, 1.32 mmol) was obtained as white solid. Yield = 87%. Mp: 195 °C with descomp. ¹H RMN (DMSO-*d*₆) δ: 12.13 (0.6H, s), 7.30 (0.6, s), 3.46 (4H, m), 2.24 (2H, t, *J*=6Hz), 1.72 (2H, m), 1.48 (2H, m), 0.87 (3H, t, *J*=7.5Hz). ¹³C RMN (DMSO-*d*₆) δ: 185.5, 177.2, 170.9, 46.1, 45.8, 36.0, 33.7, 29.4, 22.2, 16.7. IR (KBr): 3165, 2958, 1640, 1584 cm⁻¹. HRMS (ESI): m/z calc. for C₂₄H₃₆N₄O₈Na: 531.2431, found 531.2441.

(S)-Ethyl 2-(2-((2-(butylamino)-3,4-dioxocyclobut-1-en-1-yl)amino)acetamido)-3phenylpropanoate (1)

9 (500 mg, 2.2 mmol) and phenylalanine methylester (710 mg, 3.96 mmol) were mixed in a three neck round bottom flask and dissolved in DMF (30 mL). Then, DIPEA (2.3 g, 17.8 mmol) was added to the solution. Finally HBTU (2.5 g, 6.6 mmol) in DMF (20 mL) were added dropwise under inert atmosphere. The reaction mixture was covered with a foil and stirred for 15 h. The solvent was removed and the residue suspended in

CH₂Cl₂ (50 mL) was filtered. The solution was washed with HCl 3N (3 x 30 mL), H₂O (30 mL), NaCl sat (30 mL) and dried with Na₂SO₄. The solvent was removed and the solid obtained was digested in Et₂O (3 x 20 ml) obtaining **1** (552 mg, 1.42 mmol) as a pale brown solid. Yield 65%. Mp: 138-139 °C. ¹H RMN (CDCl₃) δ : 7.73 (1H, s), 7.13 (2H, d, *J*=5.7Hz), 4.67 (1H, q, *J*=6.3Hz), 4.14 (2H, s), 3.70 (3H, s), 3.64 (2H, m), 3.15/3.04 (2H, m), 1.62 (2H, m), 1.39 (2H, m), 0.94 (3H, t, *J*=7.2Hz). ¹³C RMN (CDCl₃) δ : 185.8, 184.8, 174.3, 172.2, 168.9, 138.6, 131.8, 131.2, 129.7, 56.7, 55.1, 49.6, 47.2, 40.2, 35.8, 22.3, 16.4. IR (KBr): 3305, 3234, 2955, 1659, 1586 cm⁻¹. HRMS (ESI): m/z calc. for C₄₀H₅₀N₆O₁₀Na: 797.3486, found 797.3473.

(S)-Ethyl 2-(3-((2-(butylamino)-3,4-dioxocyclobut-1-en-1-yl)amino)propanamido)-3-phenylpropanoate (2)

2 was prepared and purified as described for **1** starting from **10** (500 mg, 2.0 mmol) phenylalanine methyl ester (365 mg, 2.0 mmol). The desired product **2** (434 mg, 1.08 mmol) was obtained as white solid. Yield = 54%. Mp: 202-203 °C. ¹H RMN (CDCl₃) δ : 7.13 (2H, d, *J*=5.7Hz), 6.52 (2H, s), 6.38 (0.8H, s), 4.82 (1H, q, *J*=5.7Hz), 3.93 (1H, s), 3.78 (1H, s), 3.77 (3H, s), 3.66 (2H, q, *J*=5.7Hz), 3.18/3.13 (2H, m), 2.55 (2H, m), 1.45 (2H, m), 0.98 (3H, t, *J*=7.5Hz). ¹³C RMN (DMSO-*d*₆) δ : 185.4, 175.1, 173.5, 170.9, 170.6, 140.2, 132.2, 131.4, 129.7, 56.8, 54.9, 46.0, 39.9, 35.9, 22.1, 16.6. IR (KBr): 3302, 3166, 2958, 1650, 1567 cm⁻¹. HRMS (ESI): m/z calc. for C₂₁H₂₇N₃O₅Na: 424.1848, found 424.1848.

(S)-Ethyl 2-(4-((2-(butylamino)-3,4-dioxocyclobut-1-en-1-yl)amino)butanamido)-3phenylpropanoate (3)

3 was prepared and purified as described for **1** starting from **11** (509 mg, 2.0 mmol) phenylalanine methyl ester (663 mg, 3.7 mmol). The desired product **3** (556 mg, 1.34 mmol) was obtained as white solid. Yield = 67%. Mp: 152-153 °C. ¹H RMN (CDCl₃) δ : 7.13 (2H, d, *J*=5.7Hz), 6.41 (1H, s), 6.24 (1H, s), 4.86 (1H, q, *J*=6.3Hz), 3.79 (3H, s), 3.74 (2H, q, *J*=6Hz), 3.44 (2H, s), 3.17/3.12 (2H,m), 2.33 (2H, m), 1.90 (2H, m), 1.67 (2H, m), 1.45 (2H, m), 0.99 (3H, t, *J*=7.2Hz). ¹³C RMN (CDCl₃) δ : 185.3, 175.5, 171.1, 170.3, 138.7, 131.8, 131.3, 129.8, 56.24, 55.1, 47.1, 46.1, 40.5, 35.8, 29.8, 22.3, 16.4. IR (KBr): 3305, 3167, 2956, 1645, 1581 cm⁻¹. HRMS (ESI): m/z calc. for C₄₄H₅₈N₆O₁₀Na: 853.4112, encontrada: 853.4136.

Phenyl (1-((2-(tert-butoxycarbonyl)amino)ethyl)amino)ethyl)amino)-4-methyl-1oxopentan-2-yl)carbamate (12)

12 was prepared the coupling procedure described for **1** starting from N-tert-Buthylaminoethyl-carbamate (361 mg, 2.26 mmol) and N-[(benzyloxy)carbonyl]leucine (500 mg, 1.88 mmol) obtaining **12** (517 mg, 1.27 mmol) as a pale brown solid. Yield 67%. Mp: 129-130 °C. ¹H RMN (CDCl₃) δ : 7.35 (5H, s), 6.61 (1H, s), 5.11 (2H, m), 4.91 (1H, s), 4.14 (1H, q, *J*=3.9Hz), 3.33 (2H, m), 3.26 (2H, m), 1.66 (2H, m), 1.48 (1H, m), 1.44 (9H, s), 0.94 (6H, d, *J*=6.6Hz). ¹³C RMN (DMSO-*d*₆) δ : 175.5, 159.1, 140.2, 131.2, 131.5, 130.8, 80.8, 68.5, 56.3, 31.4, 27.4, 26.1, 24.6. IR (KBr): 3350, 3305, 2963, 1686, 1656, 1535 cm⁻¹. HRMS (ESI): m/z calc. for C₂₁H₃₃N₃O₅Na: 430.2318, found 430.2320.

(S)-Benzyl (1-((2-((2-ethoxy-3,4-dioxocyclobut-1-en-1-yl)amino)ethyl)amino)-4methyl-1-oxopentan-2-yl)carbamate (13)

12 (100 mg, 0.25 mmol) was dissolved in CH₂Cl₂/TFA 9:1 v:v (7 mL) and stirred for 2 h at room temperature. Then, the solvent was removed and the trifluoroacetate salt of the amine was used without further purification. This was dissolved in ethanol (1 mL) with DIPEA (200µL, 2.0 mmol). This solution was diluted with diethyl ether (17 mL) and added dropwise to a solution of diethyl squarate (51 mg, 0.3 mmol) in ethanol (2 mL). The reaction was stirred for 48 h. The solvent was removed and the residue was suspended in dichloromethane (20 ml), washed with HCl 3 M (3 x 15 mL), NaCl sat (15 mL) and dried with Na₂SO₄. The solvent was removed and the product was purified by flash column chromatography using as eluent mixtures of ethyl acetate-dichloromethane to afford **13** as a white solid (90 mg, 0.21 mmol). Yield 84%. Mp: 47-48 °C. ¹H RMN (CDCl₃) & 7.33 (5H, s), 7.13 (0.7H, s), 7.98 (0.7H, s), 6.62 (0.3H, s), 6.15 (0.3H, s), 5.66 (0.7, s), 5.11 (2H, m), 4.73 (2H, q, J=7.2Hz), 4.14 (1H, m), 3.77 (0.7H, m), 3.53 (2H, m), 3.43 (1.3H, m), 1.67 (2H, m), 1.51 (1H, m), 1.44 (1H, t, J=6.6Hz), 0.92 (6H, t, J=4.8Hz). ¹³C RMN (CDCl₃) δ: 180.6, 176.2, 175.0, 159.2, 138.9, 131.9, 130.6, 72.8, 69.8, 56.9, 47.1, 43.8, 42.4, 27.5, 25.7, 24.4, 18.5. IR (KBr): 3297, 2957, 1706, 1609, 1532 cm^{-1} . HRMS (ESI): m/z calc. for C₂₂H₂₉N₃O₆Na: 454.1954, found 454.1943.

(S)-tert-Butyl (2-((1-(cyclohexylamino)-1-oxo-3-phenylpropan-2-yl)amino)-2oxoethyl)carbamate (14)

14 was prepared following the coupling procedure described for 1 starting from N-tertbutoxy-glycine (177 mg, 1.01 mmol) and L-Phenylalanine-cyclohexylamide (250 mg, 1.01 mmol) to afford 14 as a white solid (302 mg, 0.75 mmol). Yield 74 %. Mp: 171-172 °C. ¹H RMN (CDCl₃) δ : 7.26-7.22 (5H, m), 6.60 (1H, s), 5.46 (1H, s), 5.01 (1H, s), 4.56 (1H, q, *J*=5.7Hz), 3.77 (2H, d, *J*=5.7Hz), 3.65 (2H, m), 3.18-2.94 (2H, m), 1.56 (4H, m), 1.44 (9H, s), 1.28 (4H, m), 1.01 (2H, m). ¹³C RMN (DMSO-*d*₆) δ : 172.6, 172.0, 158.9, 140.7, 139.4, 131.1, 129.4, 81.2, 56.8, 50.6, 46.4, 35.3, 31.3, 28.3, 27.7, 27.6. IR (KBr): 3275, 2931, 1680, 1639, 1546 cm⁻¹. HRMS (ESI): m/z calc. for C₂₂H₃₃N₃O₄Na: 426.2369, found 426.2373.

(S)-tert-Butyl (4-((2-((1-(cyclohexylamino)-1-oxo-3-phenylpropan-2-yl)amino)-2oxoethyl)amino)-4-oxobutyl)carbamate (15)

14 was deprotected as described for **12** (200 mg, 0.2 mmol). The trifluoroacetate salt of the amine was used without farther purification and coupled with 4-(tertbutoxycarbonylamino)butanoic acid (102 mg, 0.5 mmol) following the coupling procedure described for **1** to obtain **15** (178 mg, 0.36 mmol) as a white solid. Yield 73%. Mp:180-181 °C. ¹H RMN (CDCl₃) δ : 7.26/7.22 (5H, m), 6.87 (1H, d, *J*=7.2Hz), 6.74 (1H, s), 5.69 (1H, d, *J*=6.6Hz) 4.56 (1H, q, *J*=6.6Hz), 3.89 (2H, m), 3.65 (1H, m), 3.14 (2H, m), 3.02/3.13 (2H, m), 2.26 (3H, t, *J*=6Hz), 1.80 (2H, m), 1.62 (4H, m), 1.44 (9H, s), 1.25 (4H, m), 0.98 (2H, m). ¹³C RMN (DMSO-*d*₆) δ : 175.5, 172.7, 171.8, 158.7, 140.9, 132.3, 131.2, 129.3, 80.6, 57.0, 50.7, 45.2, 35.5, 31.4, 28.9, 28.3, 27.7. IR (KBr): 3330, 2931, 28544, 1688, 1636, 1537 cm⁻¹. HRMS (ESI): m/z calc. for C₂₆H₄₀N₄O₅Na: 511.2896, found 511.2879.

Benzyl ((S)-1-((2-((2-(((4-((2-(((S)-1-(cyclohexylamino)-1-oxo-3-phenylpropan-2yl)amino)-2-oxoethyl)amino)-4-oxobutyl)amino)-3,4-dioxocyclobut-1-en-1yl)amino)ethyl)amino)-4-methyl-1-oxopentan-2-yl)carbamate (4)

15 was deprotected as described for 12 (112 mg, 0.23 mmol). The trifluoroacetate salt of the free amine of 15 was used without farther purification and dissolved in borax buffer 0.1 M, pH = 9 (10 mL). To this solution, 13 (100 mg, 0.23 mmol) in EtOH (10 mL) was added dropwise. The reaction was stirred for 72 h. The EtOH was removed under reduced pressure and from the aqueous phase an organic residue was separated by decantation. This was suspended in ethyl acetate (15 ml) and filtered to yield 4 as a pale brown solid 40 mg

(0.05 mmol). Yield 22%. Mp:142-143 °C. ¹H RMN (CDCl₃) δ : 7.94 (1.5H, s), 7.73 (1.5H, s), 7.49 (1.5H, s), 7.23 (2H, s), 6.78 (0.7H, s), 6.41 (0.2H, s), 6.13 (0.8H, s), 5.11 (1H, d, *J*=6Hz), 5.05 (1H, d, *J*=6Hz), 4.66 (1H, s), 4.31 (1H, s), 3.91 (2H, s), 3.71 (4H, m), 3.62 (1H, s), 3.52 (1H, s), 3.39 (1H, s), 3.08 (2H, m), 2.37 (2H, s), 1.97 (2H, s), 1.68 (8H, m), 1.09 (2H, m), 0.92 (8H, m). ¹³C RMN (DMSO-*d*₆) δ : 185.5, 175.9, 175.3, 172.7, 171.8, 171.0, 159.1, 140.8, 140.2, 132.3, 131.1, 129.4, 68.5, 57.0, 56.3, 50.6, 46.0, 45.2, 41.2, 35.3, 30.1, 28.3, 27.7, 27.6, 27.3, 26.1, 24.6. IR (KBr): 3293, 2933, 1656, 1593, 1542 cm⁻¹. HRMS (ESI): m/z calc. for C₄₁H₅₅N₇O₈Na: 796.4010, found 796.4006.

S1a: Variable-concentration ¹H-NMR spectra of **1** in CDCl₃.

S1b: Variable-temperature ¹H-NMR spectra of **1** (2mM) in CDCl₃.

S1c: Variable-temperature 1 H-NMR spectra of **1** (2mM) in CD₃CN.

S2a: Variable-temperature ¹H-NMR spectra of 2 (1 mM) in CDCl₃

S3a: Variable-concentration ¹H-NMR spectra of **3** in CDCl₃

S3b: Variable-temperature ¹H-NMR spectra of **3** in CDCl₃

S3c: Variable-temperature ¹H-NMR spectra of **3** in CD₃CN

7.3

7.2

7.1

7.0

S4: Selected fragments of NOESY spectrum of **4** (1 mM) in CD₃CN at 298 K

6.9

6.8

ppm

S5: ¹H-NMR and ¹³C NMR spectra of **1**

S6: ¹H-NMR and ¹³C NMR spectra of **2**

S7: ¹H-NMR and ¹³C NMR spectra of **3**

S8: ¹H-NMR and ¹³C NMR spectra of **4**

S9: ¹H-NMR and ¹³C NMR spectra of **9**

S10: ¹H-NMR and ¹³C NMR spectra of **10**

S11: ¹H-NMR and ¹³C NMR spectra of **11**

S12: ¹H-NMR and ¹³C NMR spectra of **12**

S13: ¹H-NMR and ¹³C NMR spectra of **13**

S14: ¹H-NMR and ¹³C NMR spectra of **14**

S15: ¹H-NMR and ¹³C NMR spectra of **15**