Supporting Information

Direct amination of α-substituted nitroacetates using di-*tert*-butyl

azodicarboxylate catalyzed by Hatakeyama's catalyst β-ICD

Cong-Bin Ji,^a Yun-Lin Liu,^a Xiao-Li Zhao,^a Yin-Long Guo,^b* Hao-Yang Wang^b and Jian Zhou^a*

^aShanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062 (P. R. China). Fax: +86(21)62234560. E-mail: <u>jzhou@chem.ecnu.edu.cn</u>

^bShanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China Fax: (+)21-54925300 E-mail: <u>ylguo@mail.sioc.ac.cn</u>

Contents

Page

General information:	1
General procedure for the organocatalytic asymmetric amination reaction	2
Single-Crystal X-ray Crystollgraphy	.10
¹ H and ¹³ C NMR spectra	.23
HPLC analysis of the compound 3 and 13	.57

General information:

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. ¹H and ¹³C NMR spectra were obtained using a Bruker DPX-300 or Bruker DPX-400 spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

All reactions were run under atmosphere except noted. MeOBu^{*t*}, toluene and THF were prepared by distillation over sodium-benzophenone ketyl prior to use. Anhydrous acetone and $CH_3CO_2{}^iPr$ was distilled over anhydrous CaSO₄ and stored over MS 4 Å. Anhydrous CH_2Cl_2 and $Cl_2CHCHCl_2$ were prepared by first distillation over P_2O_5 and then from CaH₂. α -Monosubstituted nitroacetates were easily prepared using literature procedures¹. Catalysts **4**, **5**, **7** and **8** were purchased from Aldrich, β -ICD **11** was purchased from TCI. Catalysts **6**² and **9-10**³ were prepared using a literature method.

 ¹ (a) J. P. Berry, A. F. Isbell and G. E. Hunt, *J. Org. Chem.*, 1972, **37**, 4396; (b) N. Kornblum, R. K.Blackwood and J. W. Powers, *J. Am. Chem. Soc.*, 1957, **79**, 2507; (c) S. Nakamura, H. Sugimoto and T. Ohwada, *J. Am. Chem. Soc.*, 2007, **129**, 1724; (d) P. G. Mattingly and M. J. Miller, *J. Org. Chem.*, 1981, **46**, 1557.

² N. F. Dummer, R. Jenkins, X. Li, S. M. Bawaked, P. McMorn, A. Burrows, C. J. Kiely, R. P. K. Wells, D. J. Willock and G. J. Hutchings, *J. Catal.* 2006, 243, 165.

³ X. Liu, H. Li and L. Deng, Org. Lett., 2005, 7, 167.

General procedure for the organocatalytic asymmetric amination reaction.

To a 5 mL vial were added catalyst **11** (7.7 mg, 0.025 mmol), nitroacetate **1** (0.25 mmol) and 2.5 mL of anhydrous CH_2Cl_2 or $Cl_2CHCHCl_2$. After the reaction mixture was stirred at -20 °C or -40 °C for half an hour, DTAD **2** (0.3 mmol) was added. The resulting mixture was stirred at the indicated temperature till almost full conversion of **1** by TLC analysis. The reaction mixture was directly subjected to column chromatography (petroleum ether/ethyl acetate, 30/1 to 15/1) to afford the desired product **3**.

It should be noted that due to the distinct presence of rotameric isomers, the ¹H NMR and ¹³C NMR contained extra peaks, as reported in the related work.⁴

Di-tert-butyl 1-(1-isopropoxy-2-nitro-1-oxopropan-2-yl)hydrazine-1,2-dicarboxylate (3a)

product: 92% ee, $[\alpha]_{D}^{20} = -94.2$ (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.14$ (s, br, 1H), 5.20-5.03 (m, 1H), 2.03 (s, 3H), 1.50-1.45 (m, 18H), 1.32-1.24 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.85$, 154.81, 153.23, 84.54, 81.94, 71.94, 71.21, 27.99, 27.80, 27.73, 21.37, 21.25, 21.06; IR (neat): 3329, 2982, 1754, 1564, 1147, 917, 845, 766, 689; HRMS (ESI): exact mass calculated for C₁₆H₂₉N₃O₈Na [M+Na]⁺: 414.1847, found: 414.1845.

⁴ (a) R. Matsubara and S. Kobayashi, *Angew. Chem. Int. Ed.*, 2006, **45**, 7993; (b) T. B. Poulsen, C. Alemparte and K. A. Jørgensen, *J. Am. Chem. Soc.*, 2005, **127**, 11614; (c) S. Saaby, M. Bella and K. A. Jørgensen, *J. Am. Chem. Soc.*, 2004, **126**, 8120; (d) M, Terada, M. Nagano and H. Ube, *J. Am. Chem. Soc.*, 2006, **128**, 16044; (e) S. Mouri, Z. Chen, H. Mitsunuma, M. Furutachi, S. Matsunaga and M. Shibasaki, *J. Am. Chem. Soc.*, 2010, **132**, 1255; (f) T. Bui, M. Borregan, C. Milite and C. F. Barbas III, *Org. Lett.*, 2010, **12**, 5696.

Di-tert-butyl 1-(1-ethoxy-2-nitro-1-oxopropan-2-yl)hydrazine-1,2-dicarboxylate (3b)

HN-Boc Reaction was run in CHCl₂CHCl₂ at -40 °C for 3 days. The product **3b** was obtained $\stackrel{\text{II}}{\xrightarrow{}} \dot{N}_{Boc}$ in 98% yield as colorless oil. $R_f = 0.4$ (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel IC-H, hexane/ⁱPrOH = 95/5, 1.0 mL/min, 205 nm; t_r (minor) = 3b 17.79 min, t_r (major) = 25.58 min) gave the isomeric composition of the product:

91% ee, $[\alpha]_{D}^{20} = -84.8$ (c = 0.77, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.26$ (s, br, 1H), 4.33-4.27 (m, 2H), 2.05 (s, 3H), 1.49 (s, 9H), 1.46 (s, 9H), 1.32-1.29 (m, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta =$ 163.50, 153.27, 84.70, 82.08, 63.57, 63.16, 27.98, 27.81, 27.75, 13.79, 13.64; IR (neat): 3329, 2981, 1736, 1567, 1368, 1241, 1151, 1017, 874, 730; HRMS (ESI): exact mass calculated for $C_{15}H_{27}N_3O_8Na$ [M+Na]⁺: 400.1690, found: 400.1688.

Di-tert-butyl 1-(1-tert-butoxy-2-nitro-1-oxopropan-2-yl)hydrazine-1,2-dicarboxylate (3c)

Reaction was run in CHCl₂CHCl₂ at -40 °C for 7 days. The product 3c was obtained ^tBuO $\stackrel{\text{t}}{\underset{\text{Me}}{}}$ NO₂ in 65% yield as colorless oil. R_f = 0.2 (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel IC-H, hexane/^{*i*}PrOH = 95/5, 1.0 mL/min, 205 nm; t_r (minor) = 9.31 min, t_r (major) = 17.25 min) gave the isomeric composition of the product:

92% ee, $[\alpha]_{D}^{20} = -58.2$ (c = 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.19$ (s, br, 1H), 1.99 (s, 3H), 1.49 (s, 18H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.84$, 154.55, 153.31, 85.27, 84.49, 81.84, 60.30, 28.05, 27.85, 27.81, 27.61, 27.37, 14.11; IR (neat): 3337, 2980, 1737, 1566, 1369, 1253, 1138, 1017, 845, 799, 777, 729; HRMS (ESI): exact mass calculated for C₁₇H₃₁N₃O₈Na [M+Na]⁺: 428.2003, found: 428.1993.

Di-tert-butyl 1-(1-isopropoxy-2-nitro-1-oxobutan-2-yl)hydrazine-1, 2-dicarboxylate (3d)

 i PrO $\stackrel{N}{\underset{Et}{\overset{N}{\underset{NO_2}{\overset{}}}}}$ Reaction was run in CH₂Cl₂ at -40 °C for 5 days. The product **3d** was obtained in i PrO $\stackrel{N}{\underset{Et}{\overset{}}{\underset{NO_2}{\overset{}}}}$ 87% yield as colorless oil. $R_f = 0.3$ (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel IC-H, hexane/PrOH = 95/5, 1.0 mL/min, 205 nm; t_r (minor) = 11.65 min, t_r (major) = 15.94 min) gave the isomeric composition of the product: 88% ee, $[\alpha]_{D}^{20} = -46.4$ $(c = 0.5, \text{CHCl}_3)$; ¹H NMR (300 MHz, CDCl₃): $\delta = 6.19$ (s, br, 1H), 5.19-5.03 (m, 1H), 2.61-2.22 (m, 2H), 2.61-2.22 (2H), 1.48-1.44 (m, 18H), 1.32-1.22 (m, 6H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 162.36, 161.75, 153.78, 84.56, 81.84, 71.88, 71.19, 29.60, 28.03, 27.77, 27.73, 21.58, 21.32, 8.74; IR

(neat): 3332, 2981, 1737, 1565, 1458, 1369, 1238, 1152, 1101, 931, 877, 831, 765; HRMS (ESI): exact mass calculated for $C_{17}H_{31}N_3O_8Na [M+Na]^+$: 428.2003, found: 428.2005.

Di-tert-butyl 1-(1-isopropoxy-2-nitro-1-oxopentan-2-yl)hydrazine-1, 2-dicarboxylate (3e)

Reaction was run in CHCl₂CHCl₂ at -40 °C for 5 days. The product 3e was obtained in 60% yield as colorless oil. $R_f = 0.3$ (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel IC-H, hexane/ⁱPrOH = 95/5, 1.0 mL/min, 205 nm; t_r (minor) = 11.24 min, t_r (major) = 14.94 min) gave the isomeric composition of the product:

89% ee, $[\alpha]_{D}^{20} = -32.9$ (c = 0.65, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 6.18$ (s, br, 1H), 5.18-5.01 (m, 1H), 2.51-2.11 (m, 2H), 1.98-1.65 (m, 2H), 1.48-1.45 (m, 18H), 1.31-1.22 (m, 6H), 0.98-0.89 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 162.37, 161.85, 153.77, 84.58, 81.80, 71.86, 71.18, 37.68, 28.03, 27.79, 27.74, 21.56, 21.31, 17.45, 14.13; IR (neat): 3332, 2979, 1737, 1566, 1368, 1309, 1235, 1153, 1102, 1051, 847, 827, 772; HRMS (ESI): exact mass calculated for $C_{18}H_{33}N_3O_8Na [M+Na]^+$: 442.2160, found: 442.2156.

Di-tert-butyl 1-(1-isopropoxy-2-nitro-1-oxohexan-2-yl)hydrazine-1, 2-dicarboxylate (3f)

HN^{-Boc} Reaction was run in CHCl₂CHCl₂ at -40 °C for 5 days. The product **3f** was obtained $i_{\text{PrO}} \xrightarrow{N}_{n_{\text{Bu}}} NO_2$ in 60% yield as colorless oil. $R_f = 0.2$ (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel IC-H, hexane/ⁱPrOH = 95/5, 1.0 mL/min, 205 nm; t_r (minor) =

11.15 min, t_r (major) = 14.34 min) gave the isomeric composition of the product:

90% ee, $[\alpha]_{D}^{20} = -37.0$ (c = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 6.19$ (s, br, 1H), 5.18-5.01 (m, 1H), 2.52-2.13 (m, 2H), 1.89-1.65 (m, 2H), 1.44 (s, 18H), 1.37-1.22 (m, 8H), 0.93-0.83 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 162.38, 161.88, 153.77, 84.52, 81.76, 71.82, 71.14, 35.40, 27.99, 27.76, 27.71, 25.85, 22.70, 21.52, 21.28, 13.48; IR (neat): 3234, 2979, 2874, 1747, 1719, 1565, 1467, 1367, 1311, 1255, 1154, 1051, 960, 829, 788; HRMS (ESI): exact mass calculated for C19H35N3O8Na [M+Na]⁺: 456.2316, found: 456.2310.

Di-tert-butyl 1-(1-isopropoxy-2-nitro-1-oxononan-2-yl)hydrazine-1, 2-dicarboxylate (3g)

Boc Reaction was run in CH₂Cl₂ at -40 °C for 6 days. The product **3g** was obtained in i PrO * N Boc i 54% yield as colorless oil. $R_f = 0.3$ (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel IC-H, hexane/ⁱPrOH = 95/5, 1.0 mL/min, 205 nm; t_r (minor) = 11.54 min, t_r (major) = 15.05 min) gave the isomeric composition of the product:

85% ee, $[α]_D^{20}$ = -37.0 (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 6.19 (s, br, 1H), 5.18-5.01 (m, 1H), 2.51-2.11 (m, 2H), 1.93-1.65 (m, 2H), 1.47-1.44 (m, 18H), 1.30-1.22 (m, 14H), 0.85-0.81 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 162.39, 161.89, 153.77, 84.52, 81.78, 71.82, 71.14, 35.74, 31.52, 29.55, 28.66, 28.01, 27.78, 27.72, 23.80, 23.80, 22.45, 21.54, 21.31, 13.93; IR (neat): 3330, 2980, 1739, 1566, 1460, 1369, 1315, 1238, 1151, 1051, 849, 829, 725; HRMS (ESI): exact mass calculated for C₂₂H₄₁N₃O₈Na [M+Na]⁺: 498.2786, found: 498.2783.

Di-tert-butyl 1-(1,4-diisopropoxy-2-nitro-1,4-dioxobutan-2-yl)hydrazine-1, 2-dicarboxylate (3h)

composition of the product: 93% ee, $[\alpha]_{D}^{20} = -34.6$ (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 6.37 (s, br, 1H), 5.16-5.05 (m, 1H), 5.04-4.96 (m, 1H), 3.47 (ABd, J = 16.8 Hz, 1H), 3.21 (ABd, J = 16.4 Hz, 1H), 1.47 (s, 9H), 1.46 (s, 9H), 1.32-1.27 (m, 6H), 1.26-1.20 (m, 6H); ¹³C NMR (100 MHz, $CDCl_3$: $\delta = 166.58, 161.36, 154.22, 152.72, 84.40, 81.97, 72.38, 71.93, 69.24, 39.25, 28.07, 27.77, 152.72$ 21.58, 21.49, 21.38, 21.19; IR (neat): 3321, 2982, 1737, 1577, 1468, 1370, 1314, 1235, 1147, 1103, 996, 848, 734; HRMS (ESI): exact mass calculated for $C_{20}H_{35}N_3O_{10}Na$ [M+Na]⁺: 500.2215, found: 500.2208.

Di-tert-butyl 1-(1-isopropoxy-2-nitro-1-oxo-4-phenylbutan-2-yl)hydrazine-1, 2-dicarbox-

O HN = BOC Reaction was run in CHCl₂CHCl₂ at -40 °C for 6 days. The product**3i**was obtainediPrO NO₂ <math>I

in 68% yield as colorless oil. $R_f = 0.2$ (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel AS-H + AS-H, hexane/ⁱPrOH = 95/5, 0.5 mL/min, 205 nm; t_r (minor) = 35.72 min, t_r (major) = 24.13 min) gave the isomeric composition of the product: 90% ee, $[\alpha]_D^{20} = -36.2$ (c = 0.5, CHCl₃); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.30-7.14 \text{ (m, 5H)}, 6.19 \text{ (s, br, 1H)}, 5.26-5.11 \text{ (m, 1H)}, 3.34-2.46 \text{ (m, 4H)}, 1.50 \text{ (m, 2H)}, 1.50 \text{ (m, 2$ (s, 9H), 1.49 (s, 9H), 1.37 (d, J = 6.4Hz, 3H), 1.34-1.29 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 162.30, 161.77, 153.90, 140.81, 128.60, 128.40, 126.41, 126.24, 84.86, 82.17, 72.23, 71.55, 31.44, 30.37, 28.12, 27.89, 27.83, 21.72, 21.47; IR (neat): 3329, 2981, 1737, 1566, 1456, 1369, 1310, 1239, 1148, 1100, 1045, 930, 849, 828, 700; HRMS (ESI): exact mass calculated for C₂₃H₃₅N₃O₈Na [M+Na]⁺: 504.2316, found: 504.2312.

Di-tert-butyl 1-(1-isopropoxy-2-nitro-1-oxo-3-phenylpropan-2-yl)hydrazine-1, 2-dicarbo-

HPLC analysis (Chiralcel IC-H, hexane/ⁱPrOH = 90/10, 1.0 mL/min, 205 nm; t_r $(minor) = 8.37 min, t_r (major) = 11.21 min)$ gave the isomeric composition of the

product: 84% ee, $[\alpha]_D^{20} = -6.6$ (c = 0.52, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.43-7.27$ (m, 5H), 6.22 (s, br, 1H), 5.01-4.94 (m, 1H), 3.85-3.58 (m, 2H), 1.51-1.47 (m, 18H), 1.16-1.04 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.16, 154.76, 153.71, 132.64, 131.07, 128.11, 128.07, 127.76, 127.31, 84.74, 82.00, 72.24, 71.66, 41.39, 28.15, 27.90, 27.84, 21.26, 20.97; IR (neat): 3326, 2983, 1717, 1567, 1370, 1250, 1144, 1050, 914, 831, 768, 699; HRMS (ESI): exact mass calculated for C₂₂H₃₃N₃O₈Na [M+Na]⁺: 490.2160, found: 490.2155.

Di-tert-butyl 1-(3-(3-chlorophenyl)-1-isopropoxy-2-nitro-1-oxopropan-2-yl)hydrazine-1,

2-dicarboxylate (3k)

HN^{Boc} Reaction was run in CHCl₂CHCl₂ at -20 °C for 5 days. The product **3k** was obtained i_{PrO} in 84% yield as colorless oil. $R_f = 0.2$ (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel IC-H. hexane/ $i_{PrOH} = 90/10$ 1 0 mL/min 230 nm; t (minor) = analysis (Chiralcel IC-H, hexane/ⁱPrOH = 90/10, 1.0 mL/min, 230 nm; t_r (minor) = 9.63 min, t_r (major) = 14.19 min) gave the isomeric composition of the product: 80%

ee, $[\alpha]_D^{20} = -9.7$ (c = 0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41-7.21$ (m, 4H), 6.22 (s, br, 1H), 5.02-4.76 (m, 1H), 4.21-3.55 (m, 2H), 1.64-1.41 (m, 18H), 1.18-1.08 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.98$, 154.81, 153.59, 134.63, 133.82, 131.29, 129.35, 127.97, 127.50, 85.18, 82.24, 72.57, 71.99, 40.84, 28.13, 27.89, 27.83, 21.29; IR (neat): 3328, 2985, 1730, 1569, 1476, 1370, 1321, 1251, 1145, 1079, 1050, 910, 830, 771, 685; HRMS (ESI): exact mass calculated for C₂₂H₃₂ClN₃O₈Na [M+Na]⁺: 524.1770, found: 524.1760.

Di*-tert*-butyl 1-(3-(4-bromophenyl)-1-isopropoxy-2-nitro-1-oxopropan-2-yl)hydrazine-1, 2-dicarboxylate (3l)

Reaction was run in CH₂Cl₂ at -40 °C for 5 days. The product **31** was obtained in 77% yield as colorless oil. $R_f = 0.2$ (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel IC-H, hexane/ⁱPrOH = 95/5, 1.0 mL/min, 205 nm; t_r (minor) = 9.46 min, t_r (major) = 10.49 min) gave the isomeric composition of the product: 80% ee, $[\alpha]_D^{20} = -11.9$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41-7.16$ (m, 4H), 6.22 (s,

br, 1H), 5.04-4.76 (m, 1H), 4.22-3.54 (m, 2H), 1.51-1.46 (m, 18H), 1.17-1.07 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.99$, 154.77, 153.61, 132.82, 132.43, 131.69, 131.22, 131.11, 122.04, 85.17, 82.20, 72.49, 71.88, 40.72, 29.66, 28.14, 28.01, 27.90, 27.88, 27.82, 21.28, 20.98; IR (neat): 3338, 2981, 1736, 1566, 1489, 1368, 1312, 1240, 1148, 1103, 1013, 847, 823, 766, 736, 710; HRMS (ESI): exact mass calculated for C₂₂H₃₂BrN₃O₈Na [M+Na]⁺: 568.1265, found: 568.1253.

Di*-tert*-butyl 1-(1-ethoxy-2-nitro-1-oxo-3-phenylpropan-2-yl)hydrazine-1, 2-dicarboxylate (3m)

Reaction was run in CHCl₂CHCl₂ at -20 °C for 5 days. The product **3m** was obtained in 55% yield as colorless oil. $R_f = 0.2$ (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel AD-H, hexane/^{*i*}PrOH = 95/5, 1.0 mL/min, 205 nm; t_r (minor) = 26.69 min, t_r (major) = 43.45 min) gave the isomeric composition of the product: 87% ee, $[\alpha]_p^{20} = -31.1$ (c = 0.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.44-7.26$

(m, 5H), 6.27 (s, br, 1H), 4.26-4.19 (m, 1H), 4.07-4.02 (m, 1H), 3.80-3.58 (m, 2H), 1.52-1.46 (m, 18H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.70$, 154.84, 153.67, 132.54, 131.05,

131.00, 128.12, 128.04, 127.46, 85.06, 82.16, 63.18, 62.98, 41.49, 28.11, 28.00, 27.88, 27.80, 13.65; IR (neat): 3322, 2981, 1736, 1566, 1456, 1368, 1313, 1242, 1148, 1095, 1021, 968, 847, 777, 741, 700; HRMS (ESI): exact mass calculated for $C_{21}H_{31}N_3O_8Na [M+Na]^+$: 476.2003, found: 476.2003.

Di-tert-butyl 1-(3-(3-chlorophenyl)-1-ethoxy-2-nitro-1-oxopropan-2-yl)hydrazine-1, 2-di-

carboxylate (3n)

 $\begin{array}{l} \begin{array}{c} \begin{array}{c} \mathsf{Boc} \\ \mathsf{EtO} \\ \mathsf{NO}_2 \\ \mathsf{NO}_2 \end{array} & \begin{array}{c} \mathsf{Reaction was run in CHCl_2CHCl_2 at -20 \ ^oC \ for \ 5 \ days. The product \ 3n \ was obtained in \ 63\% \ yield \ as \ colorless \ oil. \ R_f = 0.2 \ (petroleum \ ether/ethyl \ acetate, \ 10/1). \ HPLC \ analysis \ (Chiralcel \ IC-H, \ hexane/^{i} PrOH = 95/5, \ 1.0 \ mL/min, \ 230 \ nm; \ t_r \ (minor) = 12.28 \ min, \ t_r \ (major) = 19.87 \ min) \ gave \ the \ isomeric \ composition \ of \ the \ product: \ 80\% \ ee, \ [\alpha]_{D}^{20} = -25.6 \ (c = 0.60, \ CHCl_3); \ ^1H \ NMR \ (400 \ MHz, \ CDCl_3): \ \delta = 7.41-7.10 \end{array}$

(m, 4H), 6.27 (s, br, 1H), 4.35-4.10 (m, 2H), 3.93-3.50 (m, 2H), 1.60-1.36 (m, 18H), 1.26-1.19 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.53, 154.98, 153.56, 134.56, 133.85, 131.31, 129.35, 129.27, 128.04, 85.20, 82.42, 63.45, 63.20, 40.95, 28.25, 28.10, 27.98, 27.87, 27.79, 13.66; IR (neat): 3368, 2982, 1675, 1568, 1457, 1370, 1315, 1201, 1145, 1011, 846, 800, 716, 685; HRMS (ESI): exact mass calculated for C₂₁H₃₀ClN₃O₈Na [M+Na]⁺: 510.1614, found: 510.1601.

Di-tert-butyl 1-(3-(4-bromophenyl)-1-ethoxy-2-nitro-1-oxopropan-2-yl)hydrazine-1,

2-dicarboxylate (30)

Reaction was run in CHCl₂CHCl₂ at -20 °C for 5 days. The product **30** was obtained in 61% yield as colorless oil. $R_f = 0.2$ (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel AD-H, hexane/^{*i*}PrOH = 90/10, 1.0 mL/min, 230 nm; t_r (minor) = 16.85 min, t_r (major) = 25.51 min) gave the isomeric composition of the product: 85% ee, $[\alpha]_p^{20} = -25.4$ (c = 0.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.47-7.14$ (m,

4H), 6.25 (s, br, 1H), 4.31-4.07 (m, 2H), 3.92-3.54 (m, 2H), 1.51-1.44 (m, 18H), 1.25-1.17 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.53$, 154.90, 153.58, 132.75, 131.89, 131.58, 131.25, 131.13, 122.13, 85.20, 82.37, 63.40, 63.15, 40.82, 28.11, 27.99, 27.86, 27.79, 13.68; IR (neat): 3368, 2981, 1735, 1567, 1488, 1394, 1369, 1316, 1250, 1147, 1109, 1013, 911, 846, 763, 731, 648; HRMS (ESI): exact mass calculated for C₂₁H₃₀BrN₃O₈Na [M+Na]⁺: 554.1108, found: 554.1093.

Diethyl 1-(2-isopropoxy-1-nitro-2-oxo-1-phenylethyl)hydrazine-1, 2-dicarboxylate (3p)

Reaction was run in THF at -40 °C for 7 days. The product **3p** was obtained in 61% $i^{P}PO$ $K_{NO_2}^{P}CO_2Et$ wield as colorless oil. $R_f = 0.3$ (petroleum ether/ethyl acetate, 5/1). HPLC analysis MO_2 (Chiralcel IC-H, hexane/iPrOH = 85/15, 0.8 mL/min, 230 nm; t_r (minor) = 18.54 min, t_r (major) = 29.60 min) gave the isomeric composition of the product: 22% ee,

 $[\alpha]_{D}^{20} = -4.0 \ (c = 0.75, \text{CHCl}_3); \ ^1\text{H} \text{ NMR} \ (400 \text{ MHz}, \text{CDCl}_3): \ \delta = 7.84-7.27 \ (m, 5\text{H}), \ 6.52 \ (s, br, 1\text{H}), \ 5.20-5.04 \ (m, 1\text{H}), \ 4.31-4.18 \ (m, 2\text{H}), \ 4.09-3.95 \ (m, 2\text{H}), \ 1.43-1.23 \ (m, 6\text{H}), \ 1.21-1.02 \ (m, 6\text{H}); \ ^{13}\text{C}$ NMR (100 MHz, CDCl₃): $\delta = 161.16, \ 160.46, \ 155.37, \ 129.92, \ 128.84, \ 128.87, \ 127.93, \ 127.84, \ 127.72, \ 72.82, \ 72.34, \ 64.46, \ 64.21, \ 21.32, \ 20.95, \ 14.35, \ 14.18; \ \text{IR} \ (\text{neat}): \ 3307, \ 2925, \ 1733, \ 1571, \ 1450, \ 1375, \ 1231, \ 1100, \ 1066, \ 1017, \ 989, \ 828, \ 767, \ 733, \ 695; \ \text{HRMS} \ (\text{ESI}): \ \text{exact} \ \text{mass calculated for} \ \text{C}_{17}\text{H}_{23}\text{N}_3\text{O}_8\text{Na} \ [\text{M+Na}]^+: \ 420.1377, \ \text{found}: \ 420.1368.$

Di-*tert*-butyl 1-(4-chlorobenzoyl)-2-(1-isopropoxy-2-nitro-1-oxopropan-2-yl)hydrazine-1,2-di-Carboxylate (13)

3a (141 mg, 0.36 mmol) was dissolved in the mixture of CH_2Cl_2 (4 mL) and Et_3N (0.7 mL), Then 4-chlorobenzoyl chloride (70 mg, 0.4 mmol) and DMAP (4.0 mg, 0.1 eq.) was added at 0 °C and the resulting mixture was gradually warmed to room temperature. The reaction was monitored by

TLC. As the reaction was completed after 1.5 h. The resulting solution was concentrated under vacuum to afford the crude product. The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 35/1) to afford the desired product **13**, 47% yield. $R_f = 0.5$ (petroleum ether/ethyl acetate, 10/1). HPLC analysis (Chiralcel IC-H, hexane/[†]PrOH = 95/5, 1.0 mL/min, 230 nm; t_r (minor) = 29.15 min, t_r (major) = 33.67 min) gave the isomeric composition of the product: 92% ee, $[\alpha]_D^{20} = -92.3$ (c = 0.69, CHCl₃); $\delta = 7.74$ (d, J = 8.0 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.41 (d, J = 8.0 Hz, 2H), 5.20-5.10 (m, 1H), 2.02 (s, 3H), 1.54-1.45 (m, 9H), 1.39 (s, 6H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.95$, 169.50, 163.61, 163.47, 151.53, 151.24, 139.08, 132.50, 130.01, 128.53, 100.21, 85.43, 84.70, 71.79, 28.06, 27.96, 27.81, 27.53, 27.46, 27.36, 21.38, 21.30, 20.41; IR (neat): 2981, 2905, 1724, 1598, 1446, 1345, 1246, 1214, 1163, 1098, 1061, 996, 915, 731, 695; HRMS (ESI): exact mass calculated for C₁₇H₂₃N₃O₈Na [M+Na]⁺: 552.1719, found: 552.1738.

Single-Crystal X-ray Crystollgraphy⁵

Data intensity of **3a** was collected using a Bruker SMART APEX II (Mo radiation). The X-ray condition of was 50 kV × 30 mA. Data collection and reduction were done by using the Bruker ApexII software package. The structure was solved by direct methods and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **3a**: C₁₆H₂₉N₃O₈, M = 391.42, T = 173.2(2) K, $\lambda = 0.71073$ Å, Triclinic, space group P-1, a = 9.2865(5) Å, b = 10.1783(5) Å, c = 12.8619(7) Å, V = 1073.65(10) Å³, z = 2, d_{calc} = 1.211 mg/m³, 12281 reflections measured, 3749 unique [R_{int} = 0.0298], R₁ = 0.0390, wR₂ = 0.0952 ($I > 2\sigma(I)$), final R₁ = 0.0599, wR₂ = 0.1107 (all data), GOF = 1.027, and 248 parameters.

⁵ Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center. (CCDC 833516).

Table 1. Crystal data and structure refinement for z.

Identification code	Z	
Empirical formula	C16 H29 N3 O8	
Formula weight	391.42	
Temperature	173(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Triclinic, P-1	
Unit cell dimensions	a = 9.2865(5) A	alpha = 86.696(2) deg.
	b = 10.1783(5) A	beta = $80.581(2)$ deg.
	c = 12.8619(7) A	gamma = 63.553(2) deg.
Volume	1073.65(10) A^3	
Z, Calculated density	2, 1.211 Mg/m^3	
Absorption coefficient	0.097 mm^-1	
F(000)	420	
Crystal size	0.38 x 0.19 x 0.17 m	n
Theta range for data collection	1.61 to 25.00 deg.	
Limiting indices	-11<=h<=10, -12<=k	<=12, - 15<=1<=14
Reflections collected / unique	12281 / 3749 [R(int)	= 0.0298]
Completeness to theta = 25.00	99.2 %	
Absorption correction	Semi-empirical from	equivalents
Max. and min. transmission	0.9837 and 0.9641	
Refinement method	Full-matrix least-squ	ares on F^2
Data / restraints / parameters	3749 / 0 / 248	
Goodness-of-fit on F^2	1.027	
Final R indices [I>2sigma(I)]	R1 = 0.0390, wR2 =	0.0952
R indices (all data)	R1 = 0.0599, wR2 = 0	0.1107
Largest diff. peak and hole	0.185 and -0.172 e.A	^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for z.

U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

	X	у	Z	U(eq)
O(1)	10090(2)	-1430(2)	3754(1)	61(1)
O(2)	11010(2)	124(2)	3985(1)	52(1)
O(3)	10809(2)	652(2)	1753(1)	43(1)
O(4)	8203(2)	2049(1)	1528(1)	36(1)
O(5)	6219(2)	-727(1)	2674(1)	36(1)
O(6)	8626(2)	-933(2)	1760(1)	40(1)
O(7)	3584(2)	1794(1)	4800(1)	43(1)
O(8)	4464(1)	2744(1)	3339(1)	34(1)
N(1)	10041(2)	-217(2)	3686(1)	40(1)
N(2)	7355(2)	572(2)	3199(1)	29(1)
N(3)	6245(2)	841(2)	4126(1)	29(1)
C(1)	9382(2)	1164(2)	2054(1)	32(1)
C(2)	8617(2)	1011(2)	3188(1)	30(1)
C(3)	7501(2)	-447(2)	2469(1)	31(1)
C(4)	8049(2)	2423(2)	3808(2)	36(1)
C(5)	8694(2)	2231(2)	401(1)	38(1)
C(6)	7342(3)	2327(3)	-141(2)	55(1)
C(7)	8986(3)	3570(3)	286(2)	55(1)
C(8)	6208(2)	-1989(2)	2163(2)	39(1)
C(9)	6230(3)	-1748(3)	986(2)	57(1)
C(10)	4605(3)	-1936(3)	2691(2)	57(1)
C(11)	7631(3)	-3375(2)	2437(2)	49(1)
C(12)	4644(2)	1805(2)	4120(1)	29(1)
C(13)	2831(2)	3908(2)	3213(2)	46(1)

C(14)	1786(3)	3209(4)	3005(3)	101(1)
C(15)	2166(5)	4918(3)	4156(3)	115(1)
C(16)	3204(3)	4690(3)	2258(2)	74(1)

 $Table \ 3. \quad Bond \ lengths \ [A] \ and \ angles \ [deg] \ for \ z.$

O(1)-N(1)	1.214(2)
O(2)-N(1)	1.218(2)
O(3)-C(1)	1.191(2)
O(4)-C(1)	1.328(2)
O(4)-C(5)	1.473(2)
O(5)-C(3)	1.327(2)
O(5)-C(8)	1.481(2)
O(6)-C(3)	1.203(2)
O(7)-C(12)	1.209(2)
O(8)-C(12)	1.323(2)
O(8)-C(13)	1.478(2)
N(1)-C(2)	1.561(2)
N(2)-C(3)	1.386(2)
N(2)-N(3)	1.3938(19)
N(2)-C(2)	1.426(2)
N(3)-C(12)	1.371(2)
N(3)-H(3A)	0.86(2)
C(1)-C(2)	1.545(2)
C(2)-C(4)	1.517(3)
C(4)-H(4A)	0.9800
C(4)-H(4B)	0.9800
C(4)-H(4C)	0.9800
C(5)-C(6)	1.497(3)

C(5)-C(7)	1.499(3)
C(5)-H(5A)	1.0000
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(6)-H(6C)	0.9800
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-C(10)	1.510(3)
C(8)-C(11)	1.515(3)
C(8)-C(9)	1.518(3)
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(13)-C(14)	1.497(3)
C(13)-C(15)	1.498(4)
C(13)-C(16)	1.502(3)
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800

C(16)-H(16B)	0.9800
С(16)-Н(16С)	0.9800
C(1)-O(4)-C(5)	116.36(14)
C(3)-O(5)-C(8)	120.82(14)
C(12)-O(8)-C(13)	120.43(14)
O(1)-N(1)-O(2)	125.18(17)
O(1)-N(1)-C(2)	117.62(16)
O(2)-N(1)-C(2)	117.19(17)
C(3)-N(2)-N(3)	119.53(14)
C(3)-N(2)-C(2)	120.65(14)
N(3)-N(2)-C(2)	117.06(14)
C(12)-N(3)-N(2)	119.39(14)
C(12)-N(3)-H(3A)	113.0(13)
N(2)-N(3)-H(3A)	113.5(13)
O(3)-C(1)-O(4)	126.94(17)
O(3)-C(1)-C(2)	124.05(16)
O(4)-C(1)-C(2)	108.76(14)
N(2)-C(2)-C(4)	112.59(14)
N(2)-C(2)-C(1)	112.05(15)
C(4)-C(2)-C(1)	109.70(15)
N(2)-C(2)-N(1)	109.18(14)
C(4)-C(2)-N(1)	107.94(15)
C(1)-C(2)-N(1)	105.01(13)
O(6)-C(3)-O(5)	128.02(18)
O(6)-C(3)-N(2)	122.66(16)
O(5)-C(3)-N(2)	109.30(15)
C(2)-C(4)-H(4A)	109.5
C(2)-C(4)-H(4B)	109.5
H(4A)-C(4)-H(4B)	109.5
C(2)-C(4)-H(4C)	109.5

H(4A)-C(4)-H(4C)	109.5
H(4B)-C(4)-H(4C)	109.5
O(4)-C(5)-C(6)	105.83(15)
O(4)-C(5)-C(7)	108.45(16)
C(6)-C(5)-C(7)	113.99(19)
O(4)-C(5)-H(5A)	109.5
C(6)-C(5)-H(5A)	109.5
C(7)-C(5)-H(5A)	109.5
C(5)-C(6)-H(6A)	109.5
C(5)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(5)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(5)-C(7)-H(7A)	109.5
C(5)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(5)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
O(5)-C(8)-C(10)	101.85(16)
O(5)-C(8)-C(11)	108.25(16)
C(10)-C(8)-C(11)	111.26(18)
O(5)-C(8)-C(9)	110.04(16)
C(10)-C(8)-C(9)	111.23(18)
C(11)-C(8)-C(9)	113.53(18)
C(8)-C(9)-H(9A)	109.5
C(8)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(8)-C(9)-H(9C)	109.5

H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(8)-C(10)-H(10A)	109.5
C(8)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(8)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(8)-C(11)-H(11A)	109.5
C(8)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(8)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
O(7)-C(12)-O(8)	126.71(16)
O(7)-C(12)-N(3)	121.28(16)
O(8)-C(12)-N(3)	111.90(14)
O(8)-C(13)-C(14)	109.02(18)
O(8)-C(13)-C(15)	109.1(2)
C(14)-C(13)-C(15)	114.6(3)
O(8)-C(13)-C(16)	102.14(16)
C(14)-C(13)-C(16)	111.1(2)
C(15)-C(13)-C(16)	110.0(2)
C(13)-C(14)-H(14A)	109.5
C(13)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
С(13)-С(14)-Н(14С)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
С(13)-С(15)-Н(15А)	109.5

C(13)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
С(13)-С(15)-Н(15С)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(13)-C(16)-H(16A)	109.5
C(13)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
С(13)-С(16)-Н(16С)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for z.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12	
O(1)	75(1)	39(1)	60(1)	7(1)	-29(1)	-12(1)	
O(2)	33(1)	82(1)	41(1)	12(1)	-12(1)	-25(1)	
O(3)	28(1)	63(1)	35(1)	3(1)	1(1)	-21(1)	
O(4)	34(1)	46(1)	26(1)	7(1)	-4(1)	-16(1)	
O(5)	29(1)	38(1)	43(1)	-8(1)	1(1)	-17(1)	
O(6)	36(1)	50(1)	32(1)	-9(1)	6(1)	-21(1)	
O(7)	31(1)	37(1)	46(1)	11(1)	9(1)	-7(1)	
O(8)	30(1)	36(1)	37(1)	13(1)	-8(1)	-16(1)	
N(1)	34(1)	48(1)	27(1)	3(1)	-3(1)	-10(1)	
N(2)	27(1)	34(1)	25(1)	-2(1)	4(1)	-15(1)	

N(3)	27(1)	30(1)	25(1)	4(1)	2(1)	-10(1)
C(1)	30(1)	41(1)	29(1)	2(1)	-3(1)	-19(1)
C(2)	24(1)	36(1)	27(1)	4(1)	-5(1)	-12(1)
C(3)	28(1)	34(1)	30(1)	1(1)	-2(1)	-13(1)
C(4)	34(1)	43(1)	35(1)	-2(1)	-3(1)	-21(1)
C(5)	47(1)	43(1)	24(1)	4(1)	-1(1)	-21(1)
C(6)	66(2)	69(2)	37(1)	9(1)	-17(1)	-34(1)
C(7)	80(2)	56(1)	39(1)	7(1)	-2(1)	-41(1)
C(8)	40(1)	38(1)	44(1)	-7(1)	-8(1)	-19(1)
C(9)	63(2)	65(2)	50(1)	0(1)	-22(1)	-31(1)
C(10)	47(1)	60(2)	74(2)	-8(1)	-5(1)	-34(1)
C(11)	51(1)	40(1)	52(1)	-2(1)	-9(1)	-16(1)
C(12)	30(1)	27(1)	28(1)	2(1)	-1(1)	-13(1)
C(13)	35(1)	35(1)	61(1)	18(1)	-13(1)	-10(1)
C(14)	63(2)	95(2)	176(4)	73(2)	-75(2)	-50(2)
C(15)	138(3)	44(2)	84(2)	-1(2)	-2(2)	24(2)
C(16)	63(2)	74(2)	86(2)	51(2)	-33(2)	-31(1)

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for z.

	Х	У	Z	U(eq)
H(3A)	6370(20)	60(20)	4476(16)	35(5)
H(4A)	7151	3213	3509	54
H(4B)	8953	2684	3768	54
H(4C)	7676	2287	4546	54
H(5A)	9720	1350	128	46
H(6A)	7232	1412	-42	82
H(6B)	7588	2480	-896	82

H(6C)	6322	3150	159	82
H(7A)	9896	3423	648	83
H(7B)	8005	4422	599	83
H(7C)	9250	3741	-463	83
H(9A)	7284	-1794	665	85
H(9B)	5359	-783	863	85
H(9C)	6062	-2513	671	85
H(10A)	4630	-2105	3447	85
H(10B)	4426	-2699	2381	85
H(10C)	3720	-971	2586	85
H(11A)	8652	-3381	2082	74
H(11B)	7544	-4233	2205	74
H(11C)	7617	-3406	3202	74
H(14A)	2304	2570	2378	152
H(14B)	717	3974	2889	152
H(14C)	1651	2626	3614	152
H(15A)	1918	4402	4774	172
H(15B)	1170	5777	4027	172
H(15C)	2975	5236	4284	172
H(16A)	3639	4022	1645	111
H(16B)	4012	5014	2379	111
H(16C)	2205	5544	2127	111

Table 6. Torsion angles [deg] for z.

_

C(3)-N(2)-N(3)-C(12)	-83.2(2)
C(2)-N(2)-N(3)-C(12)	115.46(18)
C(5)-O(4)-C(1)-O(3)	10.3(3)
C(5)-O(4)-C(1)-C(2)	-175.30(14)
C(3)-N(2)-C(2)-C(4)	162.95(15)
N(3)-N(2)-C(2)-C(4)	-36.0(2)
C(3)-N(2)-C(2)-C(1)	38.7(2)
N(3)-N(2)-C(2)-C(1)	-160.21(15)
C(3)-N(2)-C(2)-N(1)	-77.18(19)
N(3)-N(2)-C(2)-N(1)	83.89(18)
O(3)-C(1)-C(2)-N(2)	-132.13(19)
O(4)-C(1)-C(2)-N(2)	53.3(2)
O(3)-C(1)-C(2)-C(4)	102.1(2)
O(4)-C(1)-C(2)-C(4)	-72.53(18)
O(3)-C(1)-C(2)-N(1)	-13.7(2)
O(4)-C(1)-C(2)-N(1)	171.70(15)
O(1)-N(1)-C(2)-N(2)	17.9(2)
O(2)-N(1)-C(2)-N(2)	-161.52(15)
O(1)-N(1)-C(2)-C(4)	140.58(17)
O(2)-N(1)-C(2)-C(4)	-38.8(2)
O(1)-N(1)-C(2)-C(1)	-102.44(18)
O(2)-N(1)-C(2)-C(1)	78.16(19)
C(8)-O(5)-C(3)-O(6)	14.6(3)
C(8)-O(5)-C(3)-N(2)	-167.33(14)
N(3)-N(2)-C(3)-O(6)	-165.54(16)
C(2)-N(2)-C(3)-O(6)	-4.9(3)
N(3)-N(2)-C(3)-O(5)	16.3(2)
C(2)-N(2)-C(3)-O(5)	176.88(14)

C(1)-O(4)-C(5)-C(6)	142.89(18)
C(1)-O(4)-C(5)-C(7)	-94.4(2)
C(3)-O(5)-C(8)-C(10)	175.68(17)
C(3)-O(5)-C(8)-C(11)	58.3(2)
C(3)-O(5)-C(8)-C(9)	-66.3(2)
C(13)-O(8)-C(12)-O(7)	-1.8(3)
C(13)-O(8)-C(12)-N(3)	-178.07(16)
N(2)-N(3)-C(12)-O(7)	160.63(17)
N(2)-N(3)-C(12)-O(8)	-22.9(2)
C(12)-O(8)-C(13)-C(14)	-62.6(3)
C(12)-O(8)-C(13)-C(15)	63.3(3)
C(12)-O(8)-C(13)-C(16)	179.75(19)
	Symmetry

transformations used to generate equivalent atoms:

Table 7.Hydrogen bonds for z [A and deg.].	
--	--

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
	••()			()

¹H and ¹³C NMR spectra

jcb-je-148 H

HPLC analysis of the compound 3

HPLC analysis of the mixture of racemic and chiral compound 3a obtained. (For comparison) (Table 2, entry 1)

HPLC analysis of the mixture of racemic and chiral compound 3b obtained. (For comparison) (Table 2, entry 2).

HPLC analysis of the mixture of racemic and chiral compound 3c obtained. (For comparison) (Table 2, entry 3).

HPLC analysis of the mixture of racemic and chiral compound 3d obtained. (For comparison) (Table 2, entry 4).

HPLC analysis of the mixture of racemic and chiral compound 3e obtained. (For comparison) (Table 2, entry 5).

HPLC analysis of the mixture of racemic and chiral compound 3f obtained. (For comparison) (Table 2, entry 6).

HPLC analysis of the mixture of racemic and chiral compound 3g obtained. (For comparison) (Table 2, entry 7).

HPLC analysis of the mixture of racemic and chiral compound 3h obtained. (For comparison) (Table 2, entry 8).

HPLC analysis of the mixture of racemic and chiral compound 3i obtained. (For comparison) (Table 2, entry 9).

-----| 95.2441 4.7559

1	1 22 720 MM	2 2052 2 4775204	252 52071	50 4061
T	23.720 MM	2.2952 3.4775364	252.52071	50.4061 40 5020
2	34.954 MM	4.6944 3.42150e4	121.4/393	49.5939
Total	g •	6 89902e4	373 99464	
IOCAL		0.0000204	575.55404	

HPLC analysis of the mixture of racemic and chiral compound 3j obtained. (For comparison) (Table 2, entry 10).

HPLC analysis of the mixture of racemic and chiral compound 3k obtained. (For comparison) (Table 2, entry 11).

		•	oun munic	neight	Alea	Nel.Alea	Amount	rype		1.000.11110	i cun	Name neight	Alea	Nel.Alea	Amount	Type
	min			mAU	mAU*min	%				min		mAU	mAU*min	%		
1	9.77	n.a.		77.977	38.638	50.00	n.a.	BMB*	1	9.63	n.a.	152.926	69.898	9.93	n.a.	BMB*
2	14.99	n.a.		37.022	38.635	50.00	n.a.	BMB*	2	14.19	n.a.	629.121	634.220	90.07	n.a.	BMB*
Total:				114.999	77.273	100.00	0.000		Total:			782.048	704.118	100.00	0.000	

HPLC analysis of the mixture of racemic and chiral compound 3l obtained. (For comparison) (Table 2, entry 12).

HPLC analysis of the mixture of racemic and chiral compound 3m obtained. (For comparison) (Table 2, entry 13).

HPLC analysis of the mixture of racemic and chiral compound 3n obtained. (For comparison) (Table 2, entry 14).

HPLC analysis of the mixture of racemic and chiral compound 30 obtained. (For comparison) (Table 2, entry 15).

HPLC analysis of the mixture of racemic and chiral compound 3p obtained. (For comparison).

Peak RetTime Type	Width	Area	Height	Area	Peak	RetTime	Туре	Width	Area	Height	Area
# [min]	[min]	mAU *s	[mAU]	8	#	[min]		[min]	mAU *s	[mAU]	8
1 18.665 VB	0.5450	8699.14648	245.17503	49.4284	1	18.536	MM	0.6055	1.34813e4	371.08737	38.8432
2 30.244 VB	1.9693	8900.35938	69.88151	50.5716	2	29.955	MM	2.1586	2.12256e4	163.88052	61.1568
Totals :		1.75995e4	315.05654		Tota	ls :			3.47069e4	534.96790	

HPLC analysis of the mixture of racemic and chiral compound 5 obtained. (For comparison).

