Electronic Supplementary Information (ESI) for:

Water Soluble, Deep-Red Fluorescent Squaraine Rotaxanes

Erin L. Cole^a, Easwaran Arunkumar^b, Shuzhang Xiao^a, Bryan A. Smith^a, and Bradley D. Smith^a*

^aDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA, ^bMolecular Targeting Technologies Incorporated, 833 Lincoln Ave., Unit 9, West Chester, PA 19380, USA.

*smith.115@nd.edu

Table of Contents

1. Syntheses in General	S2
2. Syntheses in Detail	S4
3. Photophysical Properties	S12
4. Equilibrium Dialysis	S14
5. ¹ H NMR and ¹³ C NMR spectra	S15
6. Animal Imaging	S44
7. References	S44

1. Syntheses in General

The structures of squaraine rotaxanes 1-8 are provided in Scheme S1.

Squaraine rotaxanes 1, 2, 4, 5, 7, and 8 are new compounds they were prepared by the pathways in Schemes S1-S3. As shown in Scheme S2, aniline 9 was reacted with semisquaraine 10 to create an unsymmetrical squaraine that was converted by standard clipping methods to the uncharged squaraine rotaxane 11. This compound was converted in three steps to the zwitterionic squaraine rotaxane 1. Condensation of two molar equivalents of aniline 9 with squaric acid, followed by rotaxane formation and deprotection produced the bis-carboxylic acid 2. Similarly, aniline 9 was used to make the precursor squaraine rotaxane 13, which was converted into cationic squaraine rotaxanes 4 and 5 (Scheme S3). Finally, the known squaraine rotaxane 16 was a common precursor for the squaraine rotaxanes 7 and 8, each with four large groups appended to the ends of the squaraine dye. In each, the four groups were appended by conducting copper catalyzed azide/alkyne cycloaddition reactions (Scheme S4).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

2. Syntheses in Detail

Reagents and starting materials were purchased from commercial supplies and used without further purification. Thin layer chromatography was performed on silica gel 60 F254. Column chromatography was performed on silica gel (230-400 mesh). NMR coupling constants (*J* values) are reported to the nearest 0.5 Hz. The known compounds 3^{s_1} , 6^{s_2} , 14^{s_2} , 16^{s_2} , 23^{s_3} , 29^{s_4} , 40^{s_2} , and 47^{s_2} were synthesized and characterized by previously published methods.

21. The commercially available compound **20** (501 mg, 3.03 mmol, Aldrich) was dissolved in dry pyridine (10 mL) and the solution cooled to 0 °C. 4-toluenesulfonyl chloride (1.02 g, 5.35 mmol, Aldrich) was added slowly, and the stirring reaction was allowed to warm to room temp over 16 h. The reaction was extracted with chloroform and water, and after drying, the organic layer was evaporated to yield **21** a yellow oil (485 mg, 87%): ¹H-NMR (300 MHz, CDCl₃): δ 1.25 (t, *J* = 7.0 Hz, 3H), 3.49 (q, *J* = 7.0 Hz, 2H), 3.65-3.72 (m, 4H), 6.75-6.82 (m, 3H), 7.32 (dd, *J* = 9.0 Hz, *J* = 7.5 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 12.4, 40.4, 45.3, 52.3, 111.7, 116.4, 129.4, 146.8; HRMS (ESI-TOF): calculated for C₁₀H₁₅ClN [*M*+H]⁺ 184.0888, found 184.0876; λ_{max} (abs, MeCN) = 257 nm.

22. Compound **21** (485 mg, 2.64 mmol) and sodium azide (1.04 g, 16.0 mmol, Sigma-Aldrich) were dissolved in DMSO (10 mL), and the mixture was heated for 16 h at 120 °C. The reaction was extracted with ethyl acetate and water, and after drying the organic layer was condensed and subjected to column chromatography using a silica gel column with CHCl₃ eluent to yield **22** a yellow oil. (312 mg, 62%): ¹H-NMR (300 MHz, CDCl₃): δ 1.24 (t, *J* = 7.0 Hz, 3H), 3.46-4.58 (m, 6H), 6.77-6.82 (m, 3H), 7.29-7.34 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 12.1, 45.4, 48.8, 49.5, 112.1, 116.5, 129.3, 147.1; HRMS (ESI-TOF): calculated for C₁₀H₁₅N₄ [*M*+H]⁺ 191.1291, found 191.1270; λ_{max} (abs, MeCN) = 257 nm.

24. Compound **22** (1.97 g, 10.4 mmol) and the previously known compound **23**^{S3} (2.04 g, 1.35 mmol) were refluxed in benzene (40 mL) for 16 h. The solvent was removed and the crude material was subjected to column chromatography using a silica gel column with CH₂Cl₂ eluent to yield **24** yellow oil (1.83 g, 58%): ¹H-NMR (300 MHz, CDCl₃): δ 1.26 (t, *J* = 7.0 Hz, 3H), 3.53-3.65 (m, 6H), 6.78 (d, *J* = 9.5 Hz, 2H), 8.09 (d, *J* = 9.5 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 12.0, 45.8, 48.7, 49.2, 111.7, 114.6, 131.6, 152.5, 172.3, 186.1, 190.0, 195.6; HRMS (ESI-TOF): calculated for C₁₄H₁₄ClN₄O₂ [*M*+H]⁺ 305.0800, found 305.0793; λ_{max} (abs, DMSO) = 382 nm.

10. Compound **24** (1.83 g, 6.01 mmol) was refluxed in water (60 mL), acetic acid (20 mL), and 5M HCl (20 mL) for 18 h. The hot reaction was poured over ice and allowed to warm to room temp then filtered. The brown solid was dried to give **10** (1.72 g, quantitative yield): ¹H-NMR (500 MHz, DMSO-*d*₆): δ 1.12 (t, *J* = 7.0 Hz, 3H), 3.47 (q, *J* = 7.0 Hz, 2H), 3.52 (t, *J* = 5.0 Hz, 2H), 3.59 (t, *J* = 6.0 Hz, 2H), 6.87 (d, *J* = 9.0 Hz, 2H), 7.84 (d, *J* = 9.0 Hz, 2H); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ 11.9, 44.5, 48.3, 48.5, 111.7, 116.9, 128.2, 149.6, 173.3, 194.5; HRMS (ESI-TOF): calculated for C₁₄H₁₅N₄O₃ [*M*+H]⁺ 287.1139, found 287.1157; λ_{max} (abs, DMSO) = 380 nm.

26. The commercially available compound **25** (2.01 g, 11.9 mmol, Aldrich), sodium azide (2.00 g, 30.8 mmol, Sigma-Aldrich), and sodium iodide (100 mg) were dissolved in water (60 mL). The reaction was refluxed for 13 h then cooled before extraction with diethyl ether. The later was washed with brine, condensed then subjected to column chromatography using a silica gel column with CHCl₃ eluent to yield **26** a yellow oil (1.42 g, 68%): ¹H-NMR (300 MHz, CDCl₃): δ 2.61 (t, *J* = 5.5 Hz, 1H), 3.38 (t, *J* = 5.0 Hz, 2H), 3.59 (t, *J* = 4.5, 2H), 3.64-3.73 (m,

8H); ¹³C-NMR (75 MHz, CDCl₃): δ 50.4, 61.5, 69.8, 70.2, 70.4, 72.4; HRMS (ESI-TOF): calculated for C₆H₁₄N₄O₂ [*M*+H]⁺ 174.1111, found 174.1099.

28. A 50% solution of sodium hydroxide was allowed to cool to room temperature (10 g in 10 mL water). To this **26** (1.06 g, 6.05 mmol), **27** (2.02 g, 10.4 mmol, Aldrich), and NBu₄HSO₄ (500 mg, Sigma-Aldrich) in toluene (10 mL) were added. The biphasic reaction was stirred for 20 h. The organic layer was condensed and extracted with CHCl₃ and water. The organic layer was condensed then subjected to column chromatography using a silica gel column with CHCl₃ eluent to yield **28** a yellow oil (1.56 g, 89%): ¹H-NMR (300 MHz, CDCl₃): δ 1.47 (s, 9H), 3.39 (t, *J* = 5.5 Hz, 2H), 3.66-3.75 (m, 10H), 4.02 (s, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 27.6, 27.9, 50.5, 68.3, 68.8, 69.8, 70.48, 70.51, 81.3, 169.4; HRMS (ESI-TOF): calculated for C₁₂H₂₃N₃NaO₅ [*M*+Na]⁺ 312.1530, found 312.1509.

9. A mixture of the previously known compound **29**^{S4} (352 mg, 1.73 mmol) and **28** (497 mg, 1.72 mmol) was dissolved in CH₂Cl₂ (5mL). To this a solution of CuSO₄•5H₂O (11.63 mg, Aldrich) and sodium L-ascorbate (17.05 mg, Sigma) in water (5 mL) was added. The reaction was stirred at room temperature over 16 h, then extraction with CHCl₃ and water. The organic layer was washed with EDTA, dried with MgSO₄, and condensed. The crude product was purified by column chromatography using a silica gel column with 0 to 5% MeOH in CHCl₃ eluent to give **9** a yellow oil (685 mg, 81%): ¹H-NMR (300 MHz, CDCl₃): δ 1.13 (t, *J* = 7.0 Hz, 3H), 1.46 (s, 9H), 3.39 (q, *J* = 7.0 Hz, 2H), 3.50 (t, *J* = 6.0 Hz, 2H), 3.61 (s, 4H), 3.67 (q, *J* = 6.0 Hz, 6H), 3.85 (t, *J* = 5.0 Hz, 2H), 4.00 (s, 2H), 4.52 (t, *J* = 5.0 Hz, 2H), 4.65 (s, 2H), 6.77-6.82 (m, 3H), 7.19 (dd, *J* = 8.5 Hz, *J* = 7.5 Hz, 2H), 7.68 (s, 1H); ¹³C-NMR (75 MHz, CDCl₃): δ 12.0, 27.7, 28.0, 45.3, 49.8, 50.1, 58.4, 64.6, 67.6, 68.0, 69.4, 70.41, 70.44, 70.48, 70.62, 81.5, 111.7, 115.6, 115.7, 123.6, 129.2, 169.5, 188.4; HRMS (ESI-TOF): calculated for C₂₅H₄₁N₄O₆ [*M*+H]⁺ 493.3021, found 493.3036; λ_{max} (abs, MeCN) = 257 nm.

Squaraine Dye 30. A solution of **10** (300 mg, 1.05 mmol), **9** (500 mg, 1.02 mmol), and tri-*n*-butyl orthoformate (1 mL, Alfa Aesar) in 2-propanol (30 mL) was allowed to reflux for 12 h. The crude product was condensed and purified by column chromatography using a silica gel column with 0 to 3% MeOH in CHCl₃ eluent to yield **30** a green-blue solid (549 mg, 71%): ¹H-NMR (500 MHz, CDCl₃): δ 1.25 (tt, *J* = 7.0 Hz, *J* = 4.5 Hz, 6H), 1.46 (s, 9H), 3.57-3.61 (m, 10H), 3.63-3.65 (m, 4H), 3.68-3.69 (m, 4H), 3.77 (t, *J* = 6.0 Hz, 2H), 3.85 (t, *J* = 5.0 Hz, 2H), 4.00 (s, 2H), 4.52 (t, *J* = 5.0 Hz, 2H), 4.64 (s, 2H), 6.77 (dd, *J* = 9.5 Hz, *J* = 3.5 Hz, 4H), 7.70 (s, 1H), 8.38 (dd, *J* = 9.0 Hz, *J* = 4.5 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 12.2, 12.4, 28.1, 29.7, 46.2, 46.4, 48.9, 49.5, 50.2, 50.3, 64.5, 67.6, 68.9, 69.3, 70.4, 70.6, 70.93, 81.6, 112.2, 112.5, 119.7, 120.3, 123.9, 133.1, 133.7, 144.2, 152.6, 154.0, 169.5, 183.2, 188.0, 188.9; HRMS (ESI-TOF): calculated for C₃₉H₅₃N₈O₈ [*M*+H]⁺ 761.3981, found 761.3991; λ_{max} (abs, CHCl₃) = 629 nm, log ε = 5.42, λ_{max} (em, CHCl₃) = 649 nm, Φ_f = 0.36.

Squaraine Rotaxane 11. In a 50 mL syringe pyridine-2,6-dicarbonyl dichloride **31** (804 mg, 3.92 mmol, Aldrich) was dissolved in anhydrous CHCl₃ (25 mL). In a second 50 mL syringe 1,4-xylylenediamine **32** (557 mg, 4.09 mmol, Alfa Aesar) and triethylamine (0.50 mL, 3.6 mmol, Sigma-Aldrich) were dissolved in anhydrous CHCl₃ (24.5 mL). Each syringe was added dropwise over 8 hours, using a mechanical syringe pump to a solution of squaraine dye **30** (385 mg, 0.506 mmol) in anhydrous CHCl₃ (25 mL). The reaction mixture was filtered through celite® 545 to remove any polymeric material and condensed. The crude product was purified by column chromatography using

a column of silica gel with 0 to 5% MeOH in CHCl₃ as the eluent to give pure **11** (361 mg, 55%): ¹H-NMR (500 MHz, CDCl₃): δ 1.18 (tt, *J* = 7.0 Hz, *J* = 4.5 Hz 6H), 1.47 (s, 9H), 3.41-3.52 (m, 6H), 3.58-3.61 (m, 4H), 3.64 (s, 2H), 3.65-3.67 (m, 4H), 3.69-3.73 (m, 4H), 3.90 (t, *J* = 5.0 Hz, 2H), 4.01 (s, 2H), 4.44 (dd, *J* = 14.5 Hz, *J* = 5.5 Hz, 4H), 4.57 (t, *J* = 5.0 Hz, 2H), 4.62 (d, *J* = 6.5 Hz, 2H), 4.64-4.65 (m, 4H), 6.11 (d, *J* = 9.5 Hz, 2H), 6.61 (d, *J* = 14.0 Hz, 8H), 7.79 (s, 1H), 8.09 (d, *J* = 9.0 Hz, 2H), 8.13-8.17 (m, 4H), 8.52 (d, *J* = 8.0 Hz, 4H), 10.02 (t, *J* = 6.0 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 12.2, 12.3, 28.1, 29.7, 43.3, 46.0, 46.4, 48.7, 49.3, 50.2, 50.3, 64.5, 67.6, 68.9, 69.4, 70.4, 70.5, 70.7, 81.6, 111.2, 111.9, 119.0, 119.4, 124.0, 125.2, 128.9, 133.4, 133.9, 136.6, 138.8, 144.1, 149.5, 152.7, 154.0, 163.6, 169.5, 184.2, 185.0, 185.9; HRMS (ESI-TOF): calculated for C₆₉H₇₉N₁₄O₁₂ [*M*+H]⁺ 1295.5996, found 1295.5984; λ_{max} (abs, CHCl₃) = 640 nm, log ε = 5.32, λ_{max} (em, CHCl₃) = 656 nm, $\Phi_{\rm f}$ = 0.47.

Squaraine Rotaxane 34. A mixture of **11** (30.4 mg, 23.4 μmol) and the commercially available compound **33** (54.9 mg, 660 μmol, Aldrich) was dissolved in CH₂Cl₂ (5mL). To this a solution of CuSO₄•5H₂O (17.63 mg, Aldrich) and sodium L-ascorbate (28.45 mg, Sigma) in water (5 mL) was added. The reaction was stirred at room temperature over 16 h, then extraction with CHCl₃ and water. The organic layer was washed with EDTA, dried with MgSO₄, and condensed. The crude product was purified by column chromatography using a silica gel column with 0 to 15% MeOH in CHCl₃ eluent to give **34** a blue solid (31.4 mg, 97%): ¹H-NMR (500 MHz, CDCl₃): δ 1.07 (t, *J* = 7.0 Hz, 3H), 1.17 (t, *J* = 7.0 Hz, 3H), 1.47 (s, 9H), 2.30 (s, 6H), 3.18 (q, *J* = 7.0 Hz, 2H), 3.47-3.51 (m, 2H), 3.58 (t, *J* = 5.5 Hz, 2H), 3.63 (s, 2H), 3.64-3.66 (m, 4H), 3.69-3.73 (m, 4H), 3.85-3.90 (m, 4H), 4.00 (s, 2H), 4.46-4.52 (m, 8H), 4.55-4.59 (m, 6H), 4.63 (s, 2H), 6.13 (d, *J* = 9.0 Hz, 2H), 6.23 (d, *J* = 9.5 Hz, 2H), 6.60 (br. s., 8H), 7.48 (s, 1H), 7.79 (s, 1H), 8.10-8.18 (m, 6H), 8.52 (d, *J* = 8.0 Hz, 4H), 10.00 (t, *J* = 6.0 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 12.4, 12.5, 18.7, 28.4, 43.6, 50.6, 64.7, 67.9, 69.2, 69.7, 70.73, 70.75, 70.78, 81.9, 111.4, 112.2, 119.3, 120.0, 124.3, 125.5, 129.2, 133.5, 134.5, 136.9, 139.2, 144.3, 149.8, 152.3, 154.6, 163.8, 169.8, 184.2, 185.2, 187.1; HRMS (ESI-TOF): calculated for C₇₄H₈₈N₁₅O₁₂ [*M*+H]⁺ 1378.6731, found 1378.6722; λ_{max} (abs, CHCl₃) = 637 nm, log ε = 5.36, λ_{max} (em, CHCl₃) = 654 nm, Φ_f = 0.44.

Squaraine Rotaxane 36. The commercially available compound **35** (23.5 mg, 191 μmol, Aldrich) and **34** (21.2 mg, 15.4 μmol) were dissolved in CHCl₃ (3 mL) and stirred for 16 h. The reaction was condensed then purified by column chromatography using a silica gel column with 0 to 10% NH₄OH in MeCN eluent to give **36** a blue solid (19.2 mg, 83%): ¹H-NMR (500 MHz, CDCl₃): δ 1.10 (t, *J* = 7.0 Hz, 3H), 1.20 (t, *J* = 7.0 Hz, 3H), 1.47 (s, 9H), 2.35 (br. s., 2H), 2.86 (br. s., 2H), 3.15 (br. s., 6H), 3.37 (d, *J* = 8.0 Hz, 2H), 3.48-3.55 (m, 2H), 3.61 (br. s., 2H), 3.64 (s, 2H), 3.65-3.67 (m, 4H), 3.70-3.74 (m, 6H), 3.81 (br. s., 2H), 3.89 (t, *J* = 5.0 Hz, 2H), 4.01 (s, 2H), 4.36 (dd, *J* = 14.5 Hz, *J* = 4.29 Hz, 4H), 4.57 (t, *J* = 5.0 Hz, 4H), 4.65-4.70 (m, 6H), 4.74 (br. s., 2H), 5.90 (d, *J* = 8.50 Hz, 2H), 6.33 (d, *J* = 9.0 Hz, 2H), 6.57 (m, 8H), 7.79 (s, 1H), 7.98 (d, *J* = 9.0 Hz, 2H), 8.13 (d, *J* = 9.0 Hz, 2H), 8.19 (t, *J* = 8.0 Hz, 2H), 8.52 (d, *J* = 8.0 Hz, 4H), 8.83 (br. s., 1H), 10.02 (t, *J* = 5.5 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 12.0, 12.2, 28.1, 29.7, 43.3, 50.3, 61.6 62.0 67.6, 68.9, 70.45, 70.47, 70.5, 70.7, 81.6, 111.0, 112.0, 119.5, 124.0 125.4, 128.9, 132.4, 134.4, 136.6, 139.0, 144.1, 149.3, 154.0, 163.6, 184.1, 185.0, 187.1; HRMS (ESI-TOF): calculated for C₇₇H₉₄N₁₅O₁₅S [*M*+H]⁺ 1500.6769, found 1500.6725; λ_{max} (abs, CHCl₃) = 640 nm, log ε = 5.51, λ_{max} (em, CHCl₃) = 657 nm, Φ_f = 0.31.

Squaraine Rotaxane 1. Squaraine Rotaxane **36** (19.2 mg, 12.8 μmol) was dissolved in CH₂Cl₂ (5 mL) and TFA (1.0 mL, 13 mmol, Sigma-Aldrich), and then stirred for 8 h. The reaction was condensed then washed with diethyl ether to produce **1** a blue solid (19.7 mg, 99%): ¹H-NMR (500 MHz, CD₃OD): δ 1.08 (t, *J* = 7.0, 3H), 1.19 (t, *J* = 7.0 Hz, 3H), 2.30-2.36 (m, 2H), 2.88 (t, *J* = 6.5 Hz, 6.5 Hz, 2H), 3.14 (s, 6H), 3.56-3.62 (m, 10H), 3.65-3.67 (m, 4H), 3.69-3.73 (m, 4H), 3.86-3.89 (m, 4H), 4.10 (s, 2H), 4.31 (dd, *J* = 14.5, 5.0 Hz, 4H), 4.58 (t, *J* = 5.0 Hz, 2H), 4.62 (s, 2H), 4.64-3.65 (m, 4H), 4.71 (dd, *J* = 14.5 Hz, *J* = 7.0 Hz, 4H), 5.95 (d, *J* = 9.0 Hz, 2H), 6.55 (d, *J* = 9.0 Hz, 10H), 7.94 (d, *J* = 9.0 Hz, 2H), 8.06 (s, 1H), 8.10 (d, *J* = 9.0 Hz, 2H), 8.35 (s, 1H), 8.36 (t, *J* = 8.0 Hz, 3H), 8.52 (d, *J* = 8.0 Hz, 4H), 10.15 (tt, *J* = 7.0, 5.0 Hz, 4H); ¹³C-NMR: unable to obtain due to poor solubility; HRMS (ESI-TOF): calculated for C₇₃H₈₆N₁₅O₁₅S [*M*+H]⁺ 1444.6158, found 1444.6143.; λ_{max} (abs, CHCl₃) = 640 nm, log ε = 5.14, λ_{max} (em, CHCl₃) = 654 nm, Φ_f = 0.28, λ_{max} (abs, H₂O) = 651 nm, log ε = 5.56, λ_{max} (em, H₂O) = 672 nm, Φ_f = 0.22, λ_{max} (abs, 10% FBS) = 651 nm, log ε = 5.57, λ_{max} (em, 10% FBS) = 671 nm.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Squaraine Dye 38. Compound **9** (1.79 g, 3.64 mmol) was added to a solution of 3,4-dihydroxy-3-cyclobutene-1,2-dione **37** (0.216 g, 1.90 mmol, Aldrich) in a mixture of benzene : 1-butanol / 2:1 (30 mL). The flask was equipped with a Dean-Stark apparatus and refluxed for 16 h. The reaction was condensed and the crude product purified by column chromatography using a column of silica gel with 0 to 1% MeOH in CHCl₃ eluent to give **38** a green-blue solid (599 mg, 31%): ¹H-NMR (500 MHz, CDCl₃): δ 1.24 (t, *J* = 7.0 Hz, 6H), 1.47 (s, 18H), 3.55-3.70 (m, 24H), 3.77 (t, *J* = 4.0, 4H), 3.86 (t, *J* = 5.0 Hz, 4H), 4.00 (s, 4H), 4.53 (t, *J* = 5.0 Hz, 4H), 4.65 (s, 4H), 6.76 (d, *J* = 9.0 Hz, 4H), 7.71 (s, 2H), 8.36 (d, *J* = 9.0 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 12.2, 28.1, 46.3, 50.2, 64.6, 67.3, 67.7, 68.9, 69.4, 70.45, 70.50, 70.64, 75.0, 81.6, 112.4, 119.8, 123.9, 133.3, 144.2, 153.5, 169.5, 183.3, 188.4, 189.3; HRMS (ESI-TOF): calculated for C₅₄H₇₈N₈NaO₁₄ [*M*+Na]⁺ 1085.5530, found 1085.5558; λ_{max} (abs, CHCl₃) = 633 nm, log ε = 5.45, λ_{max} (em, CHCl₃) = 652 nm, Φ_f = 0.45.

Squaraine Rotaxane 39. In a 100 mL syringe pyridine-2,6-dicarbonyl dichloride **31** (1.47 g, 723 mmol, Aldrich) was dissolved in anhydrous CHCl₃ (70 mL). In a second 100 mL syringe 1,4-xylylenediamine **32** (952 mg, 6.99 mmol, Alfa Aesar) and triethylamine (3.0 mL, 22 mmol, Sigma-Aldrich) were dissolved in anhydrous CHCl₃ (67 mL). Each syringe was added dropwise over 8 hours, using a mechanical syringe pump to a solution of squaraine dye **38** (769 mg, 0.723 mmol) in anhydrous CHCl₃ (25 mL). The reaction mixture was filtered through celite® 545 to remove any polymeric material and condensed. The crude product was purified by column chromatography using a column of silica gel with 0 to 5% MeOH in CHCl₃ as the eluent to give pure **39** a blue solid (401 mg, 35%): ¹H-NMR (500 MHz, CDCl₃): δ 1.14 (t, *J* = 10.0, 6H), 1.45 (s, 18H), 3.42-3.47 (m, 4H), 3.54 (t, *J* = 5.5 Hz, 4H), 3.60-3.70 (m, 20H), 3.88 (t, *J* = 5.0 Hz, 4H), 3.99 (s, 4H), 4.52 (d, *J* = 5.5 Hz, 8H), 4.56 (t, *J* = 5.0 Hz, 4H), 4.62 (s, 4H), 6.17 (d, *J* = 9.0 Hz, 4H), 6.60 (s, 8H), 7.78 (s, 2H), 8.07 (d, *J* = 9.0 Hz, 4H), 8.14 (t, *J* = 8.0 Hz, 2H), 8.50 (d, *J* = 8.0 Hz, 4H), 10.03 (t, *J* = 6.0 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 12.1, 28.0, 43.3, 46.2, 50.0, 50.2, 64.4, 67.6, 68.9, 69.4, 70.39, 70.42, 70.45, 70.6, 81.6, 111.5, 118.9, 123.9, 125.1, 128.9, 133.5, 138.8, 144.1, 149.4, 153.4, 163.5, 169.5, 184.2, 185.1, 187.3; HRMS (ESI-TOF): calculated for C₈₄H₁₀₅N₁₄O₁₈ [*M*+H]⁺ 1597.7726, found 1597.7689; λ_{max} (abs, CHCl₃) = 640 nm, log ε = 5.19, λ_{max} (em, CHCl₃) = 663 nm, $\Phi_{\rm f} = 0.44$.

Squaraine Rotaxane 2. Squaraine Rotaxane **39** (398 mg, 249 μmol) was dissolved in CH₂Cl₂ (5 mL) and TFA (1.0 mL, 13 mmol, Sigma-Aldrich), and then stirred for 8 h. The reaction was condensed then washed with diethyl ether to produce **2** a blue solid (414 mg, 97%): ¹H-NMR (500 MHz, CD₃OD): δ 1.12 (t, *J* = 7.0 Hz, 6H), 3.63 (m, 28H), 3.89 (s, 8H), 4.51 (d, *J* = 5.5 Hz, 8H), 4.59 (m, 8H), 6.29 (d, *J* = 9.0 Hz, 4H), 6.57 (s, 8H), 8.02 (d, *J* = 9.0 Hz, 4H), 8.05 (s, 2H), 8.32 (m, 2H), 8.49 (d, *J* = 8.0 Hz, 4H), 10.17 (t, *J* = 6.0 Hz, 4H); ¹³C-NMR (125 MHz, CD₃OD): δ 12.5, 15.6, 44.3, 47.4, 51.7, 52.4, 65.1, 67.1, 69.0, 70.5, 71.5, 71.6, 71.7, 71.9, 72.0, 111.3, 120.1, 126.3, 126.7, 130.1, 134.7, 138.0, 141.1, 150.6, 155.4, 165.2, 172.8, 187.1; HRMS (ESI-TOF): calculated for C₇₆H₈₈N₁₄NaO₁₈ [*M*+Na]⁺ 1507.6293, found 1507.6324; λ_{max} (abs, H₂O) = 655 nm, log ε = 5.06, λ_{max} (abs, 10% FBS) = 655 nm, log ε = 5.02, λ_{max} (em, 10% FBS) = 675 nm.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

41. The previously known compounds 40^{82} (2.21 g, 8.59 mmol) and 23^{83} (1.25 g, 8.23 mmol) were refluxed in benzene (40 mL) for 16 h. The solvent was removed and the crude material was subjected to column chromatography using a silica gel column with CH₂Cl₂ eluent to yield **41** a yellow oil (369 mg, 12%): ¹H-NMR (300 MHz, CDCl₃): δ 2.45 (t, J = 2.5, 2H), 3.71 (s, 8H), 4.13 (d, J = 2.0 Hz, 4H), 6.75 (d, J = 9.5 Hz, 2H), 7.96 (d, J = 9.0 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 50.6, 58.1, 66.6, 74.6, 79.0, 111.6, 114.0, 131.0, 152.9, 171.4, 185.5, 189.5, 195.3; HRMS (ESI-TOF): calculated for C₂₀H₁₉ClNO₄ [M+H]⁺ 372.1003, found 372.0997.

12. Compound **41** (364 mg, 979 µmol) was refluxed in water (60 mL), acetic acid (20 mL), and 5M HCl (20 mL) for 18 h. The hot reaction was poured over ice and allowed to warm to room temp then filtered. The filter paper was allowed to dry, then rinsed with acetone to remove the brown oil that was condensed to yield **12** (346 mg, quantitative yield): ¹H-NMR (300 MHz, DMSO-*d*₆): δ 3.45 (t, *J* = 2.5, 2H), 3.61 (s, 8H), 4.16 (d, *J* = 2.5 Hz, 4H), 6.82 (d, *J* = 9.0 Hz, 2H), 7.82 (d, *J* = 9.0 Hz, 2H); ¹³C-NMR (75 MHz, DMSO-*d*₆): δ 49.9, 57.7, 66.7, 77.3, 80.2, 111.5, 127.2, 144.4, 162.7, 185.5, 195.3; HRMS (ESI-TOF): calculated for C₂₀H₂₀NO₅ [*M*+H]⁺ 354.1336, found 354.1315.

Squaraine Dye 42. A solution of **12** (350 mg, 990 μmol), **9** (800 mg, 1.63 mmol), and tri-*n*-butyl orthoformate (1 mL, Alfa Aesar) in 2-propanol (50 mL) was allowed to reflux for 12 h. The crude product was condensed and purified by column chromatography using a silica gel column with 0 to 2% MeOH in CHCl₃ eluent to yield **42** a green-blue solid (328 mg, 40%): ¹H-NMR (500 MHz, CDCl₃): δ 1.23 (t, *J* = 10.0 Hz, 3H), 1.46 (s, 9H), 2.44 (t, *J* = 2.5, 2H), 3.56-3.69 (m, 12H), 3.76-3.79 (m, 10H), 3.85 (t, *J* = 5.0 Hz, 2H), 4.00 (s, 2H), 4.16 (d, *J* = 2.5 Hz, 4H), 4.53 (t, *J* = 5.0 Hz, 2H), 4.64 (s, 2H), 6.79 (dd, *J* = 15.0, 9.0 Hz, 4H), 7.70 (s, 1H), 8.36 (d, *J* = 9.0 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 12.5, 28.3, 46.6, 50.5, 51.6, 58.8, 64.8, 67.4, 67.9, 69.1, 69.6, 70.68, 70.72, 70.87, 75.2, 79.4, 112.7, 120.0, 124.1, 133.3, 133.8, 144.4, 153.6, 154.0, 183.5, 188.4, 189.7; HRMS (ESI-TOF): calculated for C₄₅H₅₈N₅O₁₀ [*M*+H]⁺ 828.4178, found 828.4163; λ_{max} (abs, CHCl₃) = 631 nm, log ε = 5.65, λ_{max} (em, CHCl₃) = 651 nm, Φ_f = 0.43.

Squaraine Rotaxane 13. In a 100 mL syringe pyridine-2,6-dicarbonyl dichloride 31 (1.13 mg, 5.54 mmol, Aldrich) was dissolved in anhydrous CHCl₃ (50 mL). In a second 100 mL syringe 1,4-xylylenediamine **32** (810 mg, 5.95 mmol, Alfa Aesar) and triethylamine (1.0 mL, 7.16 mmol, Sigma-Aldrich) were dissolved in anhydrous CHCl₃ (49 mL). Each syringe was added dropwise over 8 hours, using a mechanical syringe pump to a solution of squaraine dye 42 (525 mg, 0.634 mmol) in anhydrous $CHCl_3$ (50 mL). The reaction mixture was filtered through celite to remove any polymeric material and condensed. The crude product was purified by column chromatography using a column of silica gel with 0 to 1% MeOH in CHCl₃ as the eluent to give pure 13 (440 mg, 51%): ¹H-NMR (500 MHz, CDCl₃): δ 1.21 (t, *J* = 7.0 Hz, 3H), 1.47 (s, 9H), 2.51 (t, *J* = 2.5 Hz, 2H), 3.52 (q, *J* = 7.0 Hz, 2H), 3.61-3.64 (m, 14H), 3.65-3.72 (m, 4H), 3.74 (t, J = 6.0 Hz, 2H), 3.90 (t, J = 5.0 Hz, 2H), 4.01 (s, 2H), 4.15 (d, J = 2.5 Hz, 4H),4.35 (dd, J = 14.5, 4.5 Hz, 4H), 4.58 (t, J = 5.0 Hz, 2H), 4.66 (s, 2H), 4.72 (dd, J = 14.5, 7.0 Hz, 4H), 6.09 (d, J = 14.5, 7.0 Hz, 4H), 7.0 9.5 Hz, 2H), 6.36 (d, J = 9.5 Hz, 2H), 6.61 (d, J = 28.0 Hz, 8H), 7.80 (s, 1H), 8.05 (d, J = 9.0 Hz, 2H), 8.14-8.17 (m, 4H), 8.52 (d, J = 8.0 Hz, 4H), 10.02 (t, J = 6.5 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 12.2, 28.1, 43.3, 50.3, 51.2, 58.5, 64.5, 66.9, 67.6, 68.9, 69.4, 70.45, 70.51, 70.7, 75.1, 79.1, 111.6, 111.9, 119.0, 124.0, 125.2, 128.9, 133.4, 133.7, 136.6, 138.8, 144.1, 149.5, 152.5, 163.6, 169.5, 184.3, 185.1; HRMS (ESI-TOF): calculated for C₇₅H₈₄N₁₁O₁₄ $[M+H]^+$ 1362.6194, found 1362.6203; λ_{max} (abs, CHCl₃) = 641 nm, log ε = 5.46, λ_{max} (em, CHCl₃) = 661 nm, Φ_f = 0.45.

Squaraine Rotaxane 43. A mixture of **13** (15.33 mg, 11.25 μmol) and the previously known compound **14**^{S2} (22.34 mg, 65.2 μmol) was dissolved in CH₂Cl₂ (3mL). To this a solution of CuSO₄•5H₂O (19.51 mg, Aldrich) and sodium L-ascorbate (23.34 mg, Sigma) in water (3 mL) was added. The reaction was stirred at room temperature over 16 h, then extraction with CHCl₃ and water. The organic layer was washed with EDTA, dried with MgSO₄, and condensed. The crude product was purified by column chromatography using a silica gel column with 0 to 2% MeOH in CHCl₃ eluent to give **43** a blue solid (13.6 mg, 59%): ¹H-NMR (500 MHz, CDCl₃): δ 1.15 (t, *J* = 7.0 Hz, 3H), 1.47 (s, 9H), 1.50 (d, *J* = 2.5 Hz, 36H), 2.21 (quin, *J* = 6.5 Hz, 4H), 3.44-3.50 (m, 6H), 3.55 (br. s., 2H), 3.62-3.71 (m, 18H), 3.90 (t, *J* = 5.0 Hz, 2H), 4.01 (s, 2H), 4.46-4.50 (m, 8H), 4.57-4.63 (m, 12H), 6.13 (d, *J* = 9.0 Hz, 2H), 6.26 (d, *J* = 9.0 Hz, 2H), 6.61 (s, 8H), 7.80 (br. s., 1H), 8.00 (br. s., 2H), 8.08 (dd, *J* = 9.0 Hz, *J* = 3.5 Hz, 4H), 8.16 (t, *J* = 8.0 Hz, 2H), 8.48-8.52 (m, 6H), 10.03 (t, *J* = 6.0 Hz, 4H), 11.47 (s, 2H); ¹³C-NMR (125 MHz, CDCl₃): δ 12.2, 28.0, 28.3, 29.7, 30.5, 37.4, 43.3, 47.6, 51.2, 64.5, 67.6, 68.9, 69.4, 70.45, 70.47, 70.51, 70.7, 79.4, 81.6, 83.4, 111.5, 111.8, 118.9, 119.2, 125.2, 128.9, 133.3, 133.7, 136.6, 138.9, 149.5, 153.2, 153.6, 156.6, 163.6, 169.5, 184.2, 184.9, 185.1; HRMS (ESI-TOF): calculated for C₁₀₃H₁₃₅N₂₃Na₂O₂₂ [*M*+2Na]⁺ 2091.9942, found 2091.9945; λ_{max} (abs, CHCl₃) = 643 nm, log ε = 5.49, λ_{max} (em, CHCl₃) = 662 nm, Φ_f = 0.45.

Squaraine Rotaxane 4. Squaraine Rotaxane **43** (12.2 mg, 5.96 μmol) was dissolved in CH₂Cl₂ (5 mL) and TFA (1.0 mL 13 μmol, Sigma-Aldrich), and then stirred for 8 h. The reaction was condensed then washed with diethyl ether to produce **4** a blue solid (11.4 mg, 99%): ¹H-NMR (500 MHz, CD₃OD): δ 1.18 (t, J = 7.0 Hz, 3H), 2.17 (quin, J = 7.0 Hz, 4H), 3.21 (t, J = 7.0 Hz, 6H), 3.35 (s, 2H), 3.51-3.73 (m, 18H), 3.89 (t, J = 5.0 Hz, 2H), 4.12 (s, 2H), 4.31 (dd, J = 14.5 Hz, J = 5.0 Hz, 4H), 4.49 (t, J = 7.0 Hz, 4H), 4.54 (s, 4H), 4.59 (t, J = 4.5 Hz, 2H), 4.62 (s, 2H), 4.70 (dd, J = 14.5 Hz, J = 7.0 Hz, 4H), 6.08 (d, J = 9.0 Hz, 2H), 6.54 (d, J = 9.0 Hz, 10H), 7.93 (d, J = 9.0 Hz, 2H), 8.31 (t, J = 8.0 Hz, 2H), 8.48 (d, J = 8.0 Hz, 4H), 10.15 (t, J = 7.0 Hz, 4H); ¹³C-NMR: 30.5, 30.9, 39.7, 44.4, 65.1, 66.7, 69.0, 70.47, 70.53, 71.6, 80.5, 82.3, 91.2, 91.8, 111.3, 113.8, 119.4, 120.1, 126.7, 130.1, 133.6, 135.1, 138.0, 149.0, 154.4, 157.7, 164.8, 168.2, 185.6, 186.4; HRMS (ESI-TOF): calculated for C₇₉H₉₆N₂₃O₁₄ [*M*+H]⁺ 1590.7502, found 1590.7536; λ_{max} (abs, H₂O) = 654 nm, log $\varepsilon = 5.09$, λ_{max} (em, H₂O) = 675 nm, $\Phi_{\rm f} = 0.22$, λ_{max} (abs, PBS) = 654 nm, log $\varepsilon = 5.07$, λ_{max} (em, PBS) = 673 nm, $\Phi_{\rm f} = 0.23$, λ_{max} (em, 10% FBS) = 672 nm.

15. Compound **45** (2.00 mL, 11.9 mmol) was added dropwise to a mixture of sodium azide (1.07 g, 16.5 mmol, Sigma-Aldrich) in acetonitrile (35 mL) at 0 °C. The reaction was allowed to warm to room temperature and after 2 h filtered to remove salts. The solution was again cooled to 0 °C and the commercially available compound **44** (1.04 g, 7.21 mmol, Aldrich) was added dropwise and stirred for 16 h at room temperature. The reaction was extracted with CHCl₃ and water, the organic layer was condensed to yield **15** a yellow oil (566 mg, 46%): ¹H-NMR (500 MHz, CDCl₃): δ 1.74 (quin, *J* = 7.0 Hz, 2H), 2.40-2.44 (m, 6H), 3.32 (t, *J* = 7.0 Hz, 2H), 3.68 (t, *J* = 4.5 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 25.6, 49.2, 53.4, 55.5 66.6; HRMS (ESI-TOF): calculated for C₇H₁₅N₄O [*M*+H]⁺ 171.1240, found 171.1253.

Squaraine Rotaxane 46. A mixture of **13** (33.4 mg, 24.5 µmol) and **15** (29.84 mg, 175.3 µmol) was dissolved in CH₂Cl₂ (3mL). To this a solution of CuSO₄•5H₂O (27.90 mg, Aldrich) and sodium L-ascorbate (31.55 mg, Sigma) in water (3 mL) was added. The reaction was stirred at room temperature over 16 h, then extraction with CHCl₃ and water. The organic layer was washed with EDTA, dried with MgSO₄, and condensed. The crude product was purified by column chromatography using a silica gel column with 0 to 15% MeOH in CHCl₃ eluent to give **46** a blue solid (35.8 mg, 86%): ¹H-NMR (500 MHz, CDCl₃): δ 1.19 (t, *J* = 7.0 Hz, 3H), 1.46 (s, 9H), 2.12 (t, *J* = 6.5 Hz, 4H), 2.40-2.44 (m, 12H), 3.50 (t, *J* = 6.0 Hz, 2H), 3.59-3.73 (m, 28H), 3.90 (t, *J* = 5.0 Hz, 2H), 4.01 (s, 2H), 4.41 (dd, *J* = 14.0, 5.0 Hz, 4H), 4.47 (t, *J* = 6.5 Hz, 4H), 4.57-4.68 (m, 12H), 6.08 (d, *J* = 9.0 Hz, 2H), 6.30 (d, *J* = 9.0 Hz, 2H), 6.59 (d, *J* = Hz, 8H), 7.68 (br. s., 2H), 7.81 (br. s., 1H), 8.04 (d, *J* = 9.0 Hz, 2H), 8.11-8.17 (m, 4H), 8.51 (d, *J* = 8.0 Hz, 4H), 10.02 (t, *J* = 5.5 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 12.2, 26.9 28.1, 43.3, 48.3, 50.2, 51.1, 53.5,

55.1, 66.7, 67.6, 67.7, 68.9, 69.4, 70.43, 70.45, 70.48, 70.6, 81.6, 111.5, 111.8, 119.0, 119.2, 125.2, 128.9, 133.3, 133.7, 136.6, 138.9, 149.5, 153.8, 163.5, 184.1, 185.1; HRMS (ESI-TOF): calculated for $C_{89}H_{112}N_{19}O_{16} [M+H]^+$ 1702.8490, found 1702.8557; λ_{max} (abs, CHCl₃) = 644 nm, log ϵ = 5.51, λ_{max} (em, CHCl₃) = 662 nm, Φ_{f} = 0.47.

Squaraine Rotaxane 5. Squaraine Rotaxane **46** (20.7 mg, 12.2 μmol) was dissolved in CH₂Cl₂ (5 mL) and TFA (1.0 mL, 13 mmol, Sigma-Aldrich), and then stirred for 8 h. The reaction was condensed then washed with diethyl ether to produce **5** a blue solid (23.9 mg, 99%): ¹H-NMR (500 MHz, CD₃OD): δ 1.13 (t, *J* = 7.0 Hz, 3H), 2.40 (br. s., 4H), 3.22-3.25 (m, 12H), 3.35 (s, 2H), 3.59-3.70 (m, 28 H), 3.91 (br. s., 2H), 4.13 (s, 2H), 4.30 (dd, *J* = 14.5 Hz, *J* = 4.0 Hz, 4H), 4.56-4.60 (m, 12H), 4.71 (dd, *J* = 14.0, 7.0 Hz, 4H), 6.07 (d, *J* = 8.0 Hz, 2H), 6.55 (br. s., 10H), 7.41 (br. s., 2H), 7.54 (s, 1H), 7.93 (d, *J* = 8.5 Hz, 2H), 8.09 (d, *J* = 8.5 Hz, 2H), 8.19 (br. s., 2H), 8.32 (t, 2H), 8.47 (d, *J* = 8.0 Hz, 4H), 10.14 (t, *J* = 5.5 Hz, 4H); ¹³C-NMR: 25.5, 44.2, 53.4, 55.8, 65.2, 69.1, 70.4, 71.5, 71.6, 71.7, 71.9, 112.3, 112.9, 120.1, 125.2, 126.7, 129.3, 130.1, 134.5, 134.9, 138.1, 141.1, 150.6, 157.4, 157.6, 165.3, 187.1; HRMS (ESI-TOF): calculated for C₈₅H₁₀₄N₁₉O₁₆ [*M*+H]⁺ 1646.7864, found 1646.8011; λ_{max} (abs, H₂O) = 654 nm, log ε = 5.25, λ_{max} (em, H₂O) = 675 nm, Φ_f = 0.21, λ_{max} (abs, PBS) = 653 nm, log ε = 5.23, λ_{max} (em, PBS) = 674 nm, log ε = 5.24, λ_{max} (em, 10% FBS) = 673 nm.

Squaraine Rotaxane 17. A mixture of the previously published squaraine rotaxane 16^{S2} (9.54 mg, 8.46 μmol) and 15 (12.78 mg, 75.08 μmol) was dissolved in CH₂Cl₂ (5mL). To this a solution of CuSO₄•5H₂O (31.87 mg, Aldrich) and sodium L-ascorbate (36.08 mg, Sigma) in water (5 mL) was added. The reaction was stirred at room temperature over 16 h, then extraction with CHCl₃ and water. The organic layer was washed with EDTA, dried with MgSO₄, and condensed. The crude product was purified by column chromatography using a silica gel column with 0 to 15% NH₄OH in MeCN eluent to give 17 a blue solid (12.1 mg, 79%): ¹H-NMR (500 MHz, CDCl₃): δ 2.08 (quin, J = 7.0 Hz, 8H), 2.34 (t, J = 7.0 Hz, 12H), 2.39 (br. s., 12H), 3.60 - 3.74 (m, 32H), 4.44 (t, J = 7.0 Hz, 8H), 4.52 (d, J = 6.0 Hz, 8H), 4.58 (s, 8H), 6.20 (d, J = 9.0 Hz, 4H), 6.58 (s, 8H), 7.63 (s, 4H), 8.07 (d, J = 9.0 Hz, 4H), 8.14 (t, J = 8.0 Hz, 2H), 8.49 (d, J = 8.0 Hz, 4H), 10.00 (t, J = 5.5 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 2.64, 29.7, 43.3, 48.2, 51.3, 53.5, 55.1, 64.5, 66.7, 67.7, 111.8, 119.3, 125.0, 128.9, 133.5, 136.6, 138.9, 149.5, 153.9, 163.6, 185.1; HRMS (ESI-TOF): calculated for C₉₄H₁₁₉N₂₄O₁₄ [*M*+H]⁺ 1807.9293, found 1807.9522; λ_{max} (abs, CHCl₃) = 643 nm, log $\varepsilon = 5.32$, λ_{max} (em, CHCl₃) = 661 nm, $\Phi_{\rm f} = 0.44$.

Squaraine Rotaxane 7. Squaraine Rotaxane **17** (9.40 mg, 5.21 μmol) was dissolved in CH₂Cl₂ (5 mL) and TFA (1.0 mL, 13 mmol, Sigma-Aldrich), and then stirred for 8 h. The reaction was condensed then washed with diethyl ether to produce **7** a blue solid (11.65 mg, 99%): ¹H-NMR (500 MHz, CD₃OD): δ 2.39 (br. s., 8H), 3.19 - 3.25 (m, 24H), 3.65 (br. s., 32H), 4.50 (d, J = 5.5 Hz, 8H), 4.55 (d, J = 7.5 Hz, 16H), 6.32 (d, J = 9.0 Hz, 4H), 6.53 (s, 8H), 7.99 - 8.05 (m, 8H), 8.31 (t, J = 8.0 Hz, 2H), 8.46 (d, J = 8.0 Hz, 4H), 10.11 (t, J = 6.0 Hz, 4H); ¹³C-NMR (125 MHz, CD₃OD): δ 25.6, 27.9, 29.4, 29.8, 30.1, 31.2, 35.5, 44.3, 48.5, 53.4, 55.8, 59.7, 65.2, 69.1, 72.3, 109.2, 117.1, 124.5, 127.6, 131.4, 138.1, 142.5, 145.4, 150.1, 161.2, 175.4, 179.2; HRMS (ESI-TOF): calculated for C₉₄H₁₁₉N₂₄O₁₄ [*M*+H]⁺ 1807.9293, found 1807.9322; λ_{max} (abs, H₂O) = 652 nm, log $\varepsilon = 5.25$, λ_{max} (abs, 10% FBS) = 652 nm, log $\varepsilon = 5.24$, λ_{max} (abs, 10% FBS) = 672 nm.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

18. The commercially available compound **48** (2.00 mL, 22.0 mmol, Aldrich) in MeOH (20 mL) was cooled to 0 °C. To this reaction a solution of the previously known compound 47^{s2} (1.03g, 10.3 mmol) in MeOH (8 mL) was added dropwise and the reaction allowed to warm to room temperature and stir for 48 h. The crude product was purified by column chromatography using a silica gel column with 0 to 50% EtOAc in hexane eluent to give **18** a yellow oil (2.66 g, 95%): ¹H-NMR (300 MHz, CDCl₃): δ 1.64 (quin, J = 6.5 Hz, 2H), 2.36-2.45 (m, 6H), 2.68 (t, J = 7.0 Hz, 4H), 3.26 (t, J = 6.5 Hz, 2H), 3.61 (s, 6H); ¹³C-NMR (75 MHz, CDCl₃): δ 26.5, 32.4, 49.0, 49.1, 50.3, 51.3, 172.7; HRMS (ESI-TOF): calculated for C₁₁H₂₁N₄O₄ [M+H]⁺ 273.1557, found 273.1545.

Squaraine Rotaxane 19. A mixture of the previously published squaraine rotaxane 16^{S2} (46.20 mg, 41.0 μmol) and **18** (141.78 mg, 521 μmol) was dissolved in CH₂Cl₂ (6mL). To this a solution of CuSO₄•5H₂O (47.48 mg, Aldrich) and sodium L-ascorbate (60.23 mg, Sigma) in water (6 mL) was added. The reaction was stirred at room temperature over 16 h, then extraction with CHCl₃ and water. The organic layer was washed with EDTA, dried with MgSO₄, and condensed. The crude product was purified by column chromatography using a silica gel column with 0 to 2% MeOH in CHCl₃ eluent to give **19** a blue solid (89.9 mg, 99%): ¹H-NMR (500 MHz, CDCl₃): δ 2.07 (quin, *J* = 6.5 Hz, 8H), 2.43 (q, *J* = 7.0 Hz, 24H), 2.74 (t, *J* = 7.0 Hz, 16H), 3.67 (s, 40H), 4.38 (t, *J* = 7.0 Hz, 8H), 4.54 (d, *J* = 5.5 Hz, 8H), 4.61 (s, 8H), 6.22 (d, *J* = 9.0 Hz, 4H), 6.61 (s, 8H), 7.76 (s, 4H), 8.09 (d, *J* = 9.0 Hz, 4H), 8.16 (t, *J* = 8.0 Hz, 2H), 8.51 (d, *J* = 8.0 Hz, 4H), 10.02 (t, *J* = 5.5 Hz, 4H); ¹³C-NMR (125 MHz, CDCl₃): δ 28.2, 29.7, 32.4, 43.3, 48.0, 49.1, 50.4, 51.2, 51.6, 64.5, 67.5, 111.8, 119.2, 123.2, 125.2, 128.9, 130.8, 133.5, 136.6, 138.9, 144.1, 149.5, 153.9, 163.5, 172.9, 184.9, 185.1; HRMS (ESI-TOF): calculated for C₁₁₀H₁₄₃N₂₄O₂₆ [*M*+H]⁺ 2216.0600, found 2216.0623; λ_{max} (abs, CHCl₃) = 643 nm, log ε = 5.24, λ_{max} (em, CHCl₃) = 660 nm, $\Phi_{\rm f}$ = 0.35.

Squaraine Rotaxane 8. Squaraine Rotaxane **19** (15.74 mg, 7.10 μmol) was dissolved in MeOH (3 mL) and 10M HCl (0.05 mL) then stirred for 8 h. The reaction was condensed to remove MeOH then dissolved in 10M HCl (2.00 mL) allowing it to stir for an additional 24 h. The reaction was neutralized with aqueous Na₂CO₃ then condensed, redissolved in MeOH, and then filtered and condensed again to yield **8** a blue solid (16.02 mg, 99%): ¹H-NMR (300 MHz, CD₃OD:D₂O/1:1): δ 2.45 (br. s., 8H), 2.55 - 2.77 (m, 16H), 3.16 - 3.30 (m, 16H), 3.59 - 3.80 (m, 16H), 4.43 - 4.66 (m, 24H), 6.34 (br. s., 4H), 6.55 (s, 8H), 8.00 (d, *J* = 7.5 Hz, 4H), 8.07 (s, 4H), 8.36 (t, *J* = 7.5 Hz, 2H), 8.49 (d, *J* = 7.5 Hz, 4H), 10.09 (t, *J* = 6.0 Hz, 4H); ¹³C-NMR (125 MHz, CD₃OD): δ 25.7, 29.6, 29.7, 44.4, 50.9, 51.1, 53.3, 64.7, 69.7, 114.0, 120.6, 124.4, 126.9, 127.6, 130.2, 132.4, 134.7, 138.1, 144.8, 150.5, 155.8, 165.2, 172.5, 173.7, 173.8, 184.3, 186.9; HRMS (ESI-TOF): calculated for C₁₀₂H₁₂₇N₂₄O₂₆ [*M*+H]⁺ 2103.9309, found 2103.9348; λ_{max} (abs, H₂O) = 653 nm, log ε = 5.20, λ_{max} (em, H₂O) = 674 nm, Φ_f = 0.23, λ_{max} (abs, PBS) = 653 nm, log ε = 5.22, λ_{max} (em, PBS) = 673 nm.

3. Photophysical Properties

The absorption/emission values for samples in phosphate buffered saline (PBS, sodium phosphate 10 mM, NaCl 150 mM, pH 7.4) are very similar to the values in water (compare Table S1 and Table 1). The absorption maxima bands for 7 and 8 are coincident with their excitation maxima bands indicating that the compounds do not form nonfluorescent aggregates.

Table S1. Absorption/Emission Maxima in Phosphate Buffered Saline (PBS)

Compound	$\lambda_{abs}\left(nm\right)$	log ε	λ_{em}^{a} (nm)	${\Phi_{\mathrm{f}}}^b$
1	651	5.57	672	0.22
2	655	5.05	676	0.16
3	Aggregation			
4	654	5.07	673	0.23
5	653	5.23	674	0.26
6	653	5.21	670	0.27
7	652	5.20	672	0.24
8	653	5.22	673	0.26

^a Spectra were obtained in Phosphate Buffered Saline (PBS) 0.01M phosphate buffer, 0.154M sodium chloride, and pH 7.4. Solutions were excited at optically matching wavelengths and emission monitored in the region 600-900 nm. ^bFluorescence quantum yields (error limit \pm 5%) were determined using 4,4-[bis(N,N-dimethylamino)phenyl] squaraine dye as the standard ($\Phi_f = 0.70$ in CHCl₃).

Absorption spectra were also recorded for the eight compounds in 10% FBS (fetal bovine serum) and they are shown below. In this environment, the absorption bands for 4, 5, and 6 showed the presence of a minor, blue shifted band at ~575 nm, which is highly characteristic of a non fluorescent H-aggregate (Chen, H.; Farahat, M. S.; Law, K.-Y.; Whitten, D. G. J. Am. Chem. Soc. 1996, 118, 2584). Thus, serum proteins promote self-aggregation of these specific dyes leading to intermolecular coupling of transition dipoles and diminished fluorescence brightness.

abs (- -) in 10% FBS

Squaraine Rotaxane **3** abs (—), em (—) in water, abs (- -) in 10% FBS

Squaraine Rotaxane 4 abs (----), em (----) in water, abs (---) in 10% FBS

Squaraine Rotaxane **5** abs (—), em (—) in water, abs (- -) in 10% FBS

Squaraine Rotaxane 7 abs (----), em (----) in water, abs (---) in 10% FBS

Squaraine Rotaxane **8** abs (—), em (—) in water, abs (- -) in 10% FBS

4. Equilibrium Dialysis

A single-use Rapid Equilibrium Dialysis (RED) device (Thermo) was used to measure the relative affinity of bovine serum albumin (BSA) for squaraine rotaxanes 7 and 8, and control dye Indocyanine Green (ICG). The RED device comprised a plate that held a series of disposable dialysis cells. Each cell contained a source chamber that was separated by a porous membrane (10,000 MW cutoff) from a receiving chamber. Separate solutions of 7, 8, or ICG (10 μ M), with or without BSA (10 μ M), in 500 μ L of phosphate buffered saline (PBS, sodium phosphate 10 mM, NaCl 150 mM, pH 7.4) were placed in the source chamber of separate dialysis cells and 750 µL of PBS was placed in the corresponding receiving chamber of each cell. The plate holding the cells was incubated at 37 °C and 100 rpm using a thermoregulated shaker. After 24 h, a 300 µL aliquot was removed from each chamber, mixed with 700 µL of PBS, and scanned at the absorption maxima of the respective dye. The various absorption spectra are shown in Fig. S1. The control dye, ICG, is known to decompose in water with a half-life of ~ 12 h at 37 °C, ^{S5} but the dye is protected when it associates with BSA. Thus, the spectra in Fig. S1A show that most of ICG is sequestered by the BSA in source chamber of the dialysis cell, in agreement with its known very high affinity for BSA (log $K_a \sim 5.5$).⁸⁶ The data in Fig. S1B and Fig. S1C show that the presence of BSA has a small sequestering effect on the equilibrium distribution of dye 7 and no measurable effect on the equilibrium distribution of dye 8 across the dialysis cell. This is strong evidence that squaraine rotaxanes 7 and 8 have low or no affinity for BSA. Furthermore, fluorescence experiments confirm that the presence of 5% BSA has essentially no effect on the quantum yield of 8 in PBS.

Fig. S1. Absorbance spectra of dye in the source and receiving chambers of the RED device after 24 h of incubation at 37 °C. (A) Incubation started with a mixture of **ICG** and BSA (10 μ M each) in the source chamber. (**B**) Incubation started with only 7 (10 μ M) in the source chamber (circles), or a mixture of 7 and BSA (10 μ M each) in the source chamber (triangles). (**C**) Incubation started with only 8 (10 μ M) in the source chamber (circles), or a mixture of 8 and BSA (10 μ M each) in the source chamber (triangles).

5. ¹H NMR and ¹³C NMR spectra

¹H NMR (300 MHz, CDCl₃) of compound **21**

¹H NMR (300 MHz, CDCl₃) of compound **22**

¹H NMR (500 MHz, DMSO- d_6) of compound **10**

¹H NMR (300 MHz, CDCl₃) of compound **26**

¹H NMR (300 MHz, CDCl₃) of compound **28**

¹H NMR (300 MHz, CDCl₃) of compound **9**

¹H NMR (500 MHz, CDCl₃) of Squaraine **30**

¹H NMR (500 MHz, CDCl₃) of Squaraine Rotaxane 11

¹H NMR (500 MHz, CDCl₃) of Squaraine Rotaxane **34**

¹H NMR (500 MHz, CDCl₃) of Squaraine Rotaxane **36**

 $^{13}\mathrm{C}$ NMR of Squaraine Rotaxane 1 was not obtained due to poor solubility

¹H NMR (500 MHz, CDCl₃) of Squaraine Rotaxane **39**

¹H NMR (500 MHz, CDCl₃) of Squaraine **42**

¹H NMR (500 MHz, CDCl₃) of Squaraine Rotaxane 13

¹H NMR (500 MHz, CDCl₃) of Squaraine Rotaxane 43

¹H NMR (500 MHz, CDCl₃) of Squaraine Rotaxane 46

¹H NMR (500 MHz, CDCl₃) of Squaraine Rotaxane 17

150.1

-145.4 -142.5

138.1

-161.2

160 150 140 130 120

179.2 -175.4

180 170

200 190

127.6

131.4

124.5

117.1

09.2

110 100 90 Chemical Shift (ppm)

¹H NMR (500 MHz, CD₃OD) of Squaraine Rotaxane 7

25.6

20 10

35.5 31.2 29.8 27.9

59.7 55.8

44.3

40 30

50

-72.3 69.1

70 60

80

¹H NMR (500 MHz, CDCl₃) of Squaraine Rotaxane 19

 ^1H NMR (300 MHz, CD₃OD:D₂O / 1:1) of Squaraine Rotaxane **8**

6. Animal Imaging

All animal procedures were approved by the University of Notre Dame Institutional Animal Care and Use Committee. Three cohorts of 6-week old female hairless mice (strain: SKH-1, 25 g, n = 3-4) were injected intravenously with 40 pmol/g of either **7**, **8** or **ICG** (Cardiogreen, Sigma-Aldrich, St. Louis, MO) (100 μ L in H₂O). Two hours post-probe injection, the mice were anesthetized by isoflurane inhalation (1.5 %), sacrificed, and subjected to ex vivo imaging on an optical imaging station. The skin surrounding the abdominopelvic area was removed thus exposing the internal organs. Fluorescence images for mice treated with **7** and **8** were acquired using the same acquisition parameters including 630 nm ±10 nm excitation filter and 700 nm ± 20 nm emission filter. Fluorescence images for mice treated with **ICG** were acquired using a 750 ± 10 nm excitation filter and an 830 nm ± 20 nm emission filter. With each digital image, a region of interest (ROI) was drawn around the bladder, intestines, liver, and exposed skin and the mean pixel intensities (MPI) were recorded. Selected tissues were excised from each animal and placed on a transparent imaging tray for ex vivo biodistribution imaging using the same filter sets. ROI analysis was performed on the digital images by manually drawing a shape around each excised tissue and calculating the MPI. The resulting ROI values were plotted in Fig. S2 using Graphpad Prism 4.

Fig. S2. Bar graph showing ex vivo tissue distribution of 7 (black bars), **8** (dashed bars), and **ICG** (white bars). For each digital image, a region of interest was drawn around each excised tissue and the mean pixel intensity (MPI) was plotted as a normalized value relative to the MPI for heart tissue. MPI \pm SEM. n = 3-4

7. References

(S1) J. R. Johnson, N. Fu, E. Arunkumar, W. M. Leevy, S. T. Gammon, D. Piwnica-Worms and B. D. Smith, Angew. Chem. Int. Ed., 2007, 46, 5528-5531.

(S2) S. Xiao, N. Fu, K. Peckham and B. D. Smith, Org. Lett., 2010, 12, 140-143.

(S3) M. Ohno, Y. Yamamoto, Y. Shirasaki and S. Eguchi, J. Chem. Soc., Perkin Trans. 1., 1993, 2, 263-271.

(S4) J. J. Gassensmith, E. Arunkumar, L. Barr, J. M. Baumes, K. M. DiVittorio, J. R. Johnson, B. C. Noll and B. D. Smith, J. Am. Chem. Soc., 2007, 129, 15054-15059.

(S5) V. Saxena, M. Sadoqi and J. Shao, J. Photochem. Photobiol. B., 2004,74, 29-38.

(S6) M. Y. Berezin, K. Guo, W. Akers, J. Livingston, M. Solomon, H. Lee, K. Liang, A. Agee and S. Achilefu, *Biochemistry*, 2011, **50**, 2691-2700.