Supporting Information

for

Carbazole-thiosemicarbazone-Hg(II) ensamble-based colorimetric and fluorescence turn-on toward iodide in aqueous media and its application in live cell imaging

Ajit Kumar Mahapatra^{*}, Jagannath Roy, Prithidipa Sahoo[†] Subhra Kanti Mukhopadhyay[‡], Amarnath Chattopadhyay[‡]

Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah - 711103, India.

[†] Present address: Chemistry and Chemical Biology Department, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA

[‡]Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, India

E-mail: mahapatra574@gmail.com

Table of contents	Page No.
1. Cell cultured method	S2
2. Absorption, Emission and Bound Mass spectra	S3-S10
3 . p ^H and ¹ H NMR titration spectra	S11
4. NMR Spectra	S12-S14
5. Mass spectra	S15

Preparation of cells

Candida albicans cells (IMTECH No. 3018) from exponentially growing culture in yeast extract glucose broth medium (pH 6.0, incubation temperature, 37^{0} C) were centrifuged at 3000 rpm for 10 minutes, washed twice with 0.1 M HEPES buffer at pH 7.4. Then, it was treated with **3** (10⁻⁵M) ligand for 45 minutes in 0.1 M HEPES buffer (pH 7.4) containing 0.01 % Triton X100 as permeability enhancing agent. After incubation the cells were washed again with HEPES buffer at pH 7.4. **3** (10⁻⁵M) treated cells were mounted on a grease free glass slide and observed under a Leica DM 1000 fluorescence microscope equipped with UV filter. Cells without **3** treatment were used as control. Then 10⁻⁵M Hg²⁺ (aqueous solution) was added to the specimen at the point of observation with the help of a micropipette. The change in fluorescence intensity was observed and recorded. After that 10⁻⁵M KI was added in similar way to detect the change.

Figure S1 UV-vis spectra recorded for compound 3 (5μ M) in the absence or presence of various heavy and transition metal species in pH 7.0 HEPES buffer (25 mM, pH 7.4, containing 1.0% DMSO).

Binding constant curve for receptor 3 with Hg(II) from UV-vis in pH 7.4 HEPES buffer (25 mM, pH 7.4, containing 1.0% DMSO).

Figure S2: Binding constant curve for **3** (c = 1.00×10^{-5} M) with Hg(II) (c = 5.00×10^{-4} M) [Determined using non-linear curve fitting y= (A₀+A*K*x)/(1+K*x). x = [G], y= absorbance in pH 7.4 HEPES buffer (25 mM, pH 7.4, containing 1.0% DMSO).

Binding constant curve for receptor 3 with Hg(II) from fluorescence in pH 7.4 HEPES buffer (25 mM, pH 7.4, containing 1.0% DMSO).

Figure S3. (a) Fluorescence spectra of compound **3** (5 μ M) in the absence or presence of various heavy and transition -metal species in pH 7.4 HEPES buffer (30 mM, pH 7.4, containing 1.0% DMSO), **(b)** Job's plot of compound **3** with Hg⁺² according to the method of continuous variations. The total concentrations of compound **4** and Hg⁺² were kept constant at 20 μ M. **(c)** Binding constant curve of **3** (c = 1.00 x 10⁻⁵ M) with Hg(II) (c = 2.0 x 10⁻⁴ M) from fluorescence titration in pH 7.4 HEPES buffer (25 mM, pH 7.4, containing 1.0% DMSO). Working formula y=I₀+((I-I₀)/(2*x_2))*(x_1+x_2+1/K-((x_1+x_2+1/K)^2-4*x_1*x_2)^{-5}), x_1=[G], x_2 = [H], y = intensity.

Figure S4. ESI-MS spectrum of Compound 3 +Hg⁺²

Figure S5. The absorption spectra of the **3-** Hg^{+2} ensemble (10µM) in pH 7.4 HEPES buffer (30 mM, pH 7.4, containing 1.0% DMSO) in the presence of Iodide anions .

Figure S6. Plot of the fluorescence intensity (at 425 nm) as a function of the concentrations of Iodide anions. The concentration of the 3-Hg ensemble was 5 μ M.

Figure S7. Fluorescence intensity response of **3**–Hg ensemble toward various anions. 1. **3**–Hg⁺², 2. F⁻, 3.Cl⁻, 4.Br⁻, 5.NO₃⁻, 6. I⁻, 7.NO₂⁻, 8.SO₄⁻², 9.SO₃⁻² 10.CO₃⁻², 11.PO₄⁻³, 12. CH₃COO⁻, 13.N₃⁻, 14.CN⁻.

Figure S8 The fluorescence intensity changes of the **3**–Hg ensemble to Iodide anions in the presence of various test anions.1. I⁻, 2. I⁺ F⁻, 3.I⁺+Cl⁻, 4. I⁺+Br⁻, 5. I. +NO₃⁻, 6.I⁻, 7. I⁺ +NO₂⁻, 8. I⁺+SO₄⁻², 9. I+SO₃⁻²10. I⁺+CO₃⁻², 11. I⁺+PO₄⁻³, 12. I⁺+CH₃COO⁻, 13. I⁺+N₃⁻, 14. I⁺+CN⁻.

Figure S9. The pH effects on the fluorescence intensity at 425nm of the 3-Hg⁺²ensemble (5 μ M) (\triangleright), and the ensemble (5 μ M) toward iodide anions (10 μ M) (\bullet).

Figure S10. 1H NMR (400 MHz) spectra of Compound **3** (a), **3** + .5 equivalent $Hg^{+2}(b)$, **3**+ 1 equivalent $Hg^{+2}(c)$, and **3**+ 1.5 equivalent Hg^{+2} in d₆ DMSO-D₂0 (d).

Figure S11. ¹H NMR spectrum of compound **2**.

Figure S12. ¹³C NMR spectrum of compound 2.

S12

Figure S13. ¹H NMR spectrum of compound 3

S13

Figure S14. ¹³C NMR spectrum of compound 3.

Figure S15. ESI-MS spectrum of Compound 3.