Electronic Supplementary Materials

Lipothiophosphoramidates for gene delivery: critical role of the cationic polar headgroup.

Aurore Fraix, ${ }^{\text {a }}$ Tristan Montier, ${ }^{\text {b,c }}$ Tony Le Gall, ${ }^{\text {b }}$ Charlotte Sevrain, ${ }^{\text {a }}$ Nathalie Carmoy, ${ }^{\text {b,c }}$ Mattias Lindberg, ${ }^{\text {b }}$ Pierre Lehn, ${ }^{\text {b,c }}$ Paul-Alain Jaffrès ${ }^{\text {a,b } *}$
a) Université de Brest, Université Européenne de Bretagne, CEMCA, CNRS UMR 6521, IFR 148 ScInBIoS, , 6 Avenue Le Gorgeu, 29238 Brest, France. e-mail : pjaffres@univ-brest.fr
b) IBiSA SynNanoVect platform, IFR 148 ScInBIoS, Université de Bretagne Occidentale, Faculté de médecine Morvan, avenue Camille Desmoulins, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France.
c) INSERM U613, IFR 148 ScInBIoS, Université de Bretagne Occidentale, Faculté de médecine Morvan, avenue Camille Desmoulins, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France.

Summary

ESI-1 Formulation as liposomes - hydration time ... 2
ESI-2 Formulation as liposomes... 2
ESI-3 Transfection efficiency and toxicity of 7 and 7/DOPE (1/1 molar ratio)....................... 3
ESI-4 NMR Data ... 4

compound	$\mathbf{2}$ (BSV-17)	6a (BSV-14)	6b (BSV-28)	7 (BSV-21)	$7+$ DOPE (BSV-21 + DOPE)
formulation method	film hydration (3 days)	film hydration (13 days)	film hydration (13 days)	ethanolic injection	film hydration (3 days)

Table S1-1: Formulation method used for compounds 2, 6a-b, 7 and 7+DOPE.

ESI-2 Formulation as liposomes

Lipoplexes preparation

For each CR, the appropriate volume of liposomal solution (1.5 $\mu \mathrm{mol} . \mathrm{mL}^{-1}$) (e.g. $\mathrm{CR}=1$, $80 \mu \mathrm{~L}$) was introduced in a test tube and completed with water to obtain 1 mL of final volume (e.g. $920 \mu \mathrm{~L}$). Forty $\mu \mathrm{g}$ of DNA (plasmid: pCMV-luc, $6.6 \mathrm{mg} . \mathrm{mL}^{-1}, 6.06 \mu \mathrm{~L}$) was introduced in $993.94 \mu \mathrm{~L}$ of water. DNA solution was added dropewise to the liposomal solution. After mild homogenization, the mixture was incubated for 1 h at R.T..

Size and Zeta potential measurements.

Size and Zeta potential measurements were performed on a ZetaSizer 3000 HSa (Malvern Instruments).

For size measurements, $100 \mu \mathrm{~L}$ of liposomal solution were diluted in 3.5 mL of water or the lipoplex solution was diluted in 1 mL of water. The dilution was filtered and introduced in the appropriate cuvette. The size of liposomes and lipoplexes was measured by quasi-elastic laser light scattering (QELS) in water with a sample refractive index of 1.59 , a viscosity of 0.89 and a temperature of $25^{\circ} \mathrm{C}$. The system was calibrated with the $200 \pm 5 \mathrm{~nm}$ polystyrene polymer (Duke Scientific Corps Palo Alto, CA). The diameter of liposomes and lipoplexes was calculated in the contin mode.

Zeta potential measurement cell was filled with the solution used for size measurement.

ESI-3 Transfection efficiency and toxicity of 7 and 7/DOPE (1/1 molar ratio)

Figure S3-1: In vitro transfection efficiency and early toxicity of 7 (BSV21), $7+$ DOPE (BSV21 + DOPE) and Lipofectamine as reference. A-HeLa cell line. B- A549 cell line; C- 16HBE14o(-).

ESI-4 NMR Data

Figure S4-1: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 a}$.

Figure S4-2: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound 4a.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Figure S4-3: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 a}$.

Figure S4-4: 2D Cosy NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 a}$.

Figure S-4-5: 2D HMQC NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 a}$.

Figure S-4-6: 2D HMBC NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 a}$.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Figure S4-7: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound ${ }^{\mathbf{5}} \mathbf{5}$.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Figure S4-8: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound 5a.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Figure S4-9: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 a}$.

Figure S4-10: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{6 a}(\mathrm{BSV} 14)$.

Figure S4-11: ${ }^{13} \mathrm{C}$ jmod $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{6 a}$ (BSV14).

Figure S4-12: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{6 a}$ (BSV14).

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Figure S4-13: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 b}$.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Figure $\mathbf{S 4 - 1 4 :}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 b}$.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Figure $\mathbf{S 4 - 1 5}:{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 b}$.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Figure S4-16: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 b}$.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Figure S4-17: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 b}$.

Figure S4-18: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 b}$.

Figure S4-19: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{6 b}$ (BSV28).

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Figure S4-20: ${ }^{13} \mathrm{C}$ jmod $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{6 b}$ (BSV28).

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Figure S4-21: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{6 b}$ (BSV28).

Figure S4-22: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound 7 (BSV21).

Figure S4-23: ${ }^{13} \mathrm{C}$ jmod $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound 7 (BSV21).

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Figure S4-24: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound 7 (BSV21).

