Supplimentary information

An alternative approach: A highly selective dual responding fluoride sensor having active methylene group as binding site

Priyadip Das, Manoj K. Kesharwani, Amal K. Mandal, E. Suresh, Bishwajit Ganguly* and Amitava Das*

Central Salt and Marine Chemicals Research Institute (CSIR), G.B. Marg, Bhavnagar: 364002, Gujarat, India. Email address: <u>ganguly@csmcri.org</u>, <u>amitava@csmcri.org</u> Telephone number: +91 278 2567760 [672]; Fax number: +91 278 2567562/6970

Table of Contents:-

¹ H NMR spectra of L	S3
¹³ C NMR spectra of L	S4
IR spectra of L	S5
ESI-Mass spectra of L	S6
UV response of L towards different anions	S7
Emission response of L towards different anions	S 7
UV-VIS titration of L with Fluoride in acetonitrile	S 8
Benesi Hildebrand plot for the titration of L with Fluoride	S 8
Emission titration of L with floride in acetonitrile	S9
Benesi Hildebrand plot for the titration of \mathbf{L} with fluoride	S9
UV-VIS titration of \mathbf{L} with $H_2PO_4^-$ in acetonitrile	S10
Benesi Hildebrand plot for the titration of \mathbf{L} with $H_2PO_4^-$	S10
Emission titration of L with $H_2PO_4^-$ in acetonitrile.	S11
Benesi Hildebrand plot for the titration of \mathbf{L} with $H_2PO_4^-$	S11
UV-VIS titration of \mathbf{L} with CN^{-} in acetonitrile	S12
Benesi Hildebrand plot for the titration of L with CN^-	S12
Emission titration of L with CN^{-} in acetonitrile.	S13
Benesi Hildebrand plot for the titration of L with CN^-	S13
Mass spectra of (1:1) complex of Fluoride with L	S14
Mass spectra of (1:1) complex of $H_2PO_4^-$ with L	S15
¹ H NMR spectra of L in presence and absence of different anions	S16
31 P NMR of L with in presence and absence of different anions	S17
Excitation spectra for L.F ⁻ and L.CN ⁻ at emissive wavelength 366 nm	S17
Jobs plot analysis between L and Bu ₄ N salts of F ⁻ , CN ⁻ and H2PO4 ⁻	S18
¹ H NMR of L with different concentration of KO ^t Bu	S19
UV-VIS and emission scanning of L with Bu ₄ N-OH	S20

¹H NMR spectra of L

SI Figure 1:- ¹H NMR spectra of **L** in CD₃CN medium.

¹³C NMR spectra of L

SI Figure 2:- ¹³C NMR spectra of **L** CD₃CN medium.

SI Figure 3:- FTIR spectra of L as KRB pellet.

ESI-MS spectra of L

SI Figure 4: ESI-mass spectra of L.

SI Figure 5: UV response of **L** (4.0 x10⁻⁵ M) in CH₃CN medium on addition of the solution of tetrabutyl ammonium salt of various anions(8.0 x 10⁻⁴ M) : a) CN⁻, b) ClO₄⁻, c) PhCO₂⁻, d) IO₄⁻, e)N₃⁻, f) H₂PO₄⁻, g) I⁻, h) Br⁻, i) CH₃CO₂⁻, j) Cl⁻, k) NO₃⁻, l) F⁻, m) HSO₄⁻, n) L. with $\lambda_{mon} = 358$ nm.

Luminescence response of L towards different Anions.

SI Figure 6: Luminescence response of **L** (2.0 x10⁻⁵ M) in CH₃CN medium on addition of the solution of tetrabutyl ammonium salt of various anions : (4.0 x10⁻⁴ M) : a) CN⁻, b) ClO₄⁻, c) PhCO₂⁻, d) IO₄⁻, e)N₃⁻, f) H₂PO₄⁻, g) I⁻, h) Br⁻, i) CH₃CO₂⁻, j) Cl⁻, k) NO₃⁻, l) F⁻, m) HSO₄⁻, n) L with $\lambda_{mon} = 366$ nm and $\lambda_{ext} = 280$ nm.

UV- visible Titration of L with Fluoride

SI Figure 7: Absorption spectra of **L** (4.0 x 10^{-5} M) in presence of varying concentration of Fluoride $[0 - 6.0 \times 10^{-4} \text{ M}]$ in acetonitrile medium. Inset: corresponding titration plot of **L** at 358 nm (A-A₀) as function of [F⁻].

Benesi-Hildebrand plot of L with Fluoride (UV-Vis Titration)

SI Figure 8: Benesi-Hildebrand plot of **L** with fluoride ion when monitoring absorbance changes at 358 nm. Good linear fit confirms the 1:1 binding stoichiometry.

Emission Titration of L with Fluoride

SI Figure 9: Emission spectra of **L** (2.0 x 10^{-5} M) in presence of varying concentration of Fluoride [0 – 3.15 x 10^{-4} M] in acetonitrile medium. Inset: corresponding titration plot of **L** at 366 nm (F-F₀) as function of [F⁻].

Benesi-Hildebrand plot of L with Fluoride (Emission titration)

SI Figure 10: Benesi-Hildebrand plot of L with fluoride ion when monitoring emission intensity changes at 366 nm. Good linear fit confirms the 1:1 binding stoichiometry.

UV- visible Titration of L with di hydrogen phosphate

SI Figure 11: Absorption spectra of **L** (4.26 X 10^{-5} M) in presence of varying concentration of $H_2PO_4^{-}$ [0 – 1.72 X 10^{-3} M] in acetonitrile medium. Inset: corresponding titration plot of **L** at 420 nm (A-A₀) as function of [H₂PO₄⁻].

Benesi-Hildebrand plot of L with H₂PO₄ (UV-Vis Titration)

SI Figure 12: Benesi-Hildebrand plot of **L** with $H_2PO_4^-$ ion when monitoring absorbance changes at 420 nm. Good linear fit confirms the 1:1 binding stoichiometry.

Emission Titration of L with dihydrogen phosphate ion:

SI Figure 13: Emission spectra of **L** (2.10 X 10⁻⁵ M) in presence of varying concentration of $H_2PO_4^-$ [0 – 8.54 X 10⁻⁴ M] in acetonitrile medium. Inset: corresponding titration plot of **L** at 385 nm (F-F₀) as function of [$H_2PO_4^-$].

Benesi-Hildebrand plot of L with H₂PO₄ (Emission titration)

SI Figure 14: Benesi-Hildebrand plot of **L** with $H_2PO_4^-$ ion when monitoring emission intensity changes at 385 nm. Good linear fit confirms the 1:1 binding stoichiometry.

UV- visible Titration of L with CN⁻:

SI Figure 15: Absorption spectra of **L** (4.26 X 10^{-5} M) in presence of varying concentration of CN⁻ [0 – 1.78 X 10^{-3} M] in acetonitrile medium. Inset: corresponding titration plot of **L** at 420 nm (A-A₀) as function of [CN⁻].

Benesi-Hildebrand plot of L with CN⁻(UV-Vis Titration)</sup>

SI Figure 16: Benesi-Hildebrand plot of **L** with CN^- ion when monitoring absorbance changes at 420 nm. Good linear fit confirms the 1:1 binding stoichiometry.

SI Figure 17: Emission spectra of **L** (2.10 X 10^{-5} M) in presence of varying concentration of CN⁻ [0 – 9.00 X 10^{-4} M] in acetonitrile medium. Inset: corresponding titration plot of **L** at 370 nm (F-F₀) as function of [CN⁻].

Benesi-Hildebrand plot of L with CN⁻ (Emission titration)

SI Figure 18: Benesi-Hildebrand plot of **L** with CN^- ion when monitoring emission intensity changes at 370 nm. Good linear fit confirms the 1:1 binding stoichiometry.

13

Mass spectra of (1:1) complex of Fluoride with L

SI Figure 19: ESI-mass spectra of (1:1) complex of L and Fluoride.

Mass spectra of (1:1) complex of H₂PO₄⁻ with L

SI Figure 20: ESI-mass spectra of (1:1) complex of L and dihydrogen phosphate.

SI Figure 21: ¹H NMR spectra of compound **L** upon the addition of other different anions (30.00 equiv) in CD_3CN .

³¹P NMR of L with different anions

SI Figure 22: ³¹P NMR spectra of compound **L** before and after addition of F⁻ (10equiv) and other anionic analytes $H_2PO_4^-$, Cl⁻, Br⁻, HSO₄⁻, NO₃⁻ (30equiv) in CD₃CN at room temperature.

Excitation spectra for L.F and L.CN at emissive wavelength 366 nm

SI Figure 23: Excitation spectra recorded for L.F⁻ and L.CN⁻ at Emission wavelength 366nm

Job's plot analysis between L and TBA salts of F⁻, CN⁻ and H₂PO₄⁻

SI Figure 24: Job's plot analysis for the complexation between L and (A) F^- , (B) CN^- and (C) $H_2PO_4^-$. The total concentration of L and $F^-/CN^- / H_2PO_4^-$ were kept at 300 μ M.

¹H NMR of L with different concentration of KO^tBu

SI Figure 25: (A) ¹H NMR spectra of compound L upon the addition of varying concentration of KO^tBu in DMSO (B) ¹H NMR spectra of L in absence and presence of varying concentration of F⁻ in DMSO(d₆) that reveals the generation of HF₂⁻ on deprotonation of L in presence of excess of F⁻ (50 mole equivalent). Deprotonation of L or the generation of HF₂⁻ was not evident with 10 mole equivalent of F⁻

UV-VIS and emission scanning of L with Bu₄N-OH

