Direct Arylation of Fluorinated Aromatics with Aryl sulfonates

Joyce Wei Wei Chang^a, Eugene Yurong Chia^a, Christina Li Lin Chai^{a,b} and Jayasree Seayad^a*

Institute of Chemical and Engineering Sciences, 8 Biomedical Drive, Neuros #07-01, Singapore 138665. ^bDepartment of Pharmacy, 18 Science Drive 4, National University of Singapore, Singapore 117543

Email: jayasree_seayad@ices.a-star.edu.sg

Supporting Information

Table of Content

Synthesis and Characterization of Aryl Trifluoromethanesulfonates	2
General Procedure for Optimization Studies	6

Synthesis and Characterization of Aryl Sulfonates

All aryl trifluorosulfonates were synthesized according to the procedure below except phenyl trifluoromethanesulfonate, 4-methoxyphenyl trifluoromethanesulfonate, 4-nitrophenyl trifluoromethanesulfonate, 1-naphthyl trifluoromethanesulfonate and 3,5-dimethoxyphenyl trifluoromethanesulfonate and which were commercially available.

General Procedure for the Synthesis of Aryl Trifluoromethanesulfonates:¹ To a solution of phenol (5 mmol) and pyridine (7.5 mmol) in CH₂Cl₂ (25 mL) was added triflic anhydride (6 mmol) dropwise at 0 °C. The reaction was then left to stir at room temperature to completion as monitored by thin layer chromatography. The reaction mixture was quenched with 2M aq. HCl solution and washed successively with saturated NaHCO₃ and brine. After drying with Na₂SO₄, the organic solvent was removed under reduced pressure. The crude product was purified *via* flash column chromatography.

General Procedure for the Synthesis of Aryl Methanesulfonates:² To a solution of phenol (5 mmol) and pyridine (7.5 mmol) in CH_2Cl_2 (25 mL) was added methanesulfonyl chloride (6 mmol) dropwise at 0 °C. The reaction was then left to stir at room temperature to completion as monitored by thin layer chromatography. The reaction mixture was quenched with 2M aq. HCl solution and washed successively with saturated NaHCO₃ and brine. After drying with Na₂SO₄, the organic solvent was removed under reduced pressure. The crude product was purified *via* flash column chromatography.

Characterization of aryl sulfonates

4-Chlorophenyl trifluoromethanesulfonate (1c)³

^{Tf} Prepared according to general procedure using 4-chlorophenol. Colorless oil; Yield: 69%; ¹H NMR δ 7.42 (d, J = 9.1 Hz, 2H), 7.23 (dt, J = 9.0, 2.8 Hz, 2H); ¹³C NMR δ 147.9, 134.3, 130.3, 122.7, 118.8 (q, J = 320.7 Hz); EI-MS [M⁺] m/z 260.

4-Fluorophenyl trifluoromethanesulfonate (1d)⁴

Prepared according to general procedure using 4-fluorophenol. Colorless oil; Yield: 77%; ¹H NMR δ 7.19 – 7.16 (m, 2H), 7.07 – 7.02 (m, 2H); ¹³C NMR δ 162.9, 160.4, 145.3, 120.1 (dd, J = 605.2, 16.5 Hz), 118.7 (q, J = 320.8 Hz); EI-MS [M⁺] m/z 244.

4-Methylphenyl trifluoromethanesulfonate (1f)³

Prepared according to general procedure using *p*-cresol. Colorless oil; Yield: 95%; ¹H NMR δ 7.09 (dt, J = 9.4, 1.3 Hz, 2H), 7.02 (dt, J = 8.8, 2.4 Hz, 2H), 2.23 (s, 3H): ¹³C Me NMR δ 147.6, 138.6, 130.7, 121.0, 118.8 (q, J = 320.6 Hz), 20.7. EI-MS [M⁺] m/z 240.

4-Cyanophenyl trifluoromethanesulfonate (1h)¹

^{OTf} Prepared according to general procedure using 4-cyanophenol. Colorless oil; Yield: 65%; ¹H NMR δ 7.79 (d, J = 8.6 Hz, 1H), 7.43 (d, J = 8.7 Hz, 1H); ¹³C NMR δ 152.0, 134.5, ¹L2.6, 118.7 (q, J = 323.3 Hz), 113.0; EI-MS [M⁺] m/z 251.

3,5-Difluorophenyl trifluoromethanesulfonate (1j)

Prepared according to general procedure using 3,5-difluorophenol. Colorless oil; Yield: 69%; ¹H NMR δ 6.93 – 6.86 (m, 3H); ¹³C NMR δ 163.0 (dd, J = 252.7, 14.2 Hz), 149.8 (t, J = 13.9 Hz), 118.6 (q, J = 320.7 Hz), 106.0 (dd, J = 30.2, 11.8 Hz),

104.4 (t, J = 25.2 Hz); ¹⁹F NMR δ -72.9 (s, 3F), -105.6 (s, 2F); EI-MS [M⁺] m/z 262; HRMS (EI) m/z for C₇H₃F₅O₃S calcd 261.9723, found 261.9734.

3,5-Bis(trifluoromethyl)phenyl trifluoromethanesulfonate (11)

Prepared according to general procedure using 3,5-bis(trifluoromethyl)phenol. Colorless oil; Yield: 94%; ¹H NMR δ 7.97 (s, 1H), 7.79 (s, 2H); ¹³C NMR δ 149.5, 134.2 (q, J = 34.9 Hz), 122.3 (dt, J = 7.7, 3.8 Hz), 122.1 (q, J = 272.8 Hz), 118.7 (q, J = 320.0Hz); ¹⁹F NMR δ -64.7 (s, 6F), -74.1 (s, 3F) EI-MS [M⁺] m/z 362; HRMS (EI) m/z for C₉H₃F₉O₃S calcd 361.9659, found 361.9666.

2,4,6-Trimethylphenyl trifluoromethanesulfonate (1v)⁵

Prepared according to general procedure using 2,4,6-trimethylphenol. Colorless oil;

Yield : 90%; ¹H NMR δ 6.91 (s, 1H), 2.34 (s, 3H), 2.28 (s, 1H); ¹³C NMR δ 144.9, 137.8, 131.0, 130.4, 118.6 (q, J = 319.8 Hz), 20.6, 17.0; EI-MS [M⁺] m/z 268.

2-Methylphenyl trifluoromethanesulfonate (1x)¹

Prepared according to general procedure using *o*-cresol. Colourless oil; Yield: 84%; ¹H NMR δ 7.29 (dd, J = 7.2, 2.1 Hz, 1H), 7.28 – 7.22 (m, 3H), 2.38 (s, 3H); ¹³C NMR δ 148.6, 132.2, 130.9, 128.3, 127.6, 121.2, 118.7 (q, J = 319.9 Hz), 16.2; EI-MS [M⁺] m/z

240.

2-Ethylphenyl trifluoromethanesulfonate (1y)

Prepared according to general procedure using 2-ethylphenol. Colorless oil; Yield: 90%; ¹H NMR δ 7.38 – 7.22 (m, 5H), 2.76 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H); ¹³C NMR δ 148.0, 136.6, 130.5, 128.4, 127.6, 121.2, 118.6 (q, J = 320.0 Hz), 23.0, 14.0; ¹⁹F NMR δ -74.1 (s, 3H); EI-MS [M⁺] m/z 254 HRMS (EI) m/z for C₉H₉F₃O₃S calcd 254.0224 found 254.0227.

2-Isopropyl-5-methylphenyl trifluoromethanesulfonate (1z)

Prepared according to general procedure using thymol. Colorless oil; Yield: 93%; ¹H NMR δ 7.27 (d, J = 8.1 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.03 (s, 1H), 3.24 (ht, J = 8.8 Hz, 1H), 2.35 (s, 1H), 1.24 (d, J = 6.9 Hz, 1H); ¹³C NMR δ 146.9, 138.0, 137.7, 129.4, 127.4, 121.5, 118.6 (q, J = 319.9 Hz), 26.8, 23.2, 20.8; ¹⁹F NMR δ -74.2 (s, 3H); EI-MS [M⁺] m/z 282; HRMS (EI) m/z for C₁₁H₁₃F₃O₃S calcd 282.0537 found 282.0541.

2-Methoxy-5-methylphenyl trifluoromethanesulfonate (1a1)

Prepared according to general procedure using 2-methoxy-5-methylphenol. Colorless oil; Yield: 87%; ¹H NMR δ 7.11 (ddd, J = 8.4, 2.0, 0.7 Hz, 1H), 7.02 (d, J = 1.7 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 3.88 (s, 3H), 2.31 (s, 3H); ¹³C NMR δ 149.1, 138.4, 130.9, 129.5, 122.8, 118.8 (q, J = 320.3 Hz), 113.0, 56.2, 20.3; ¹⁹F NMR δ -74.2 (s, 3F); EI-MS [M⁺] m/z 270; HRMS (EI) m/z for C₉H₉F₃O₄S calcd 270.0174 found 270.0162.

Methyl 5-methyl-2-(((trifluoromethyl)sulfonyl)oxy)benzoate (1b1)

Prepared according to general procedure using methyl 5-methylsalicylate. Colorless oil; Yield: 87%; ¹H NMR δ 7.88 (d, J = 1.9 Hz, 1H), 7.40 (ddd, J = 8.4, 2.3, 0.6 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 3.96 (s, 3H), 2.42 (s, 3H); ¹³C NMR δ 164.4, 146.2, 138.8, 134.7, 133.1, 124.0, 122.5, 118.7 (q, J = 320.7 Hz), 52.6, 20.8; ¹⁹F NMR δ 73.7 (s, 3F); EI-MS [M⁺] m/z 298; HRMS (ESI) m/z for C₁₀H₉F₃O₅SNa [M+Na]⁺ calcd 321.0020 found 321.0013.

Isoquinolin-5-yl trifluoromethanesulfonate (1c1)⁶

Prepared according to general procedure using 5-hydroxyisoquinoline. Off-white solid; Yield: 67%; ¹H NMR δ 9.38 (s, 1H), 8.71 (d, J = 6.0 Hz, 2H), 8.05 (s, 1H), 7.89 (d, J = 5.9 Hz, 1H), 7.70 (dt, J = 15.7, 7.3 Hz, 2H); ¹³C NMR δ 151.7, 144.4, 143.6, 129.6, 129.4, 128.4, 127.4, 122.9, 118.7 (q, J = 320.6 Hz), 114.1; EI-MS [M⁺] m/z 272.

Quinolin-8-yl trifluoromethanesulfonate (1d1)³

Prepared according to general procedure using 8-hydroxyquinoline. White solid; Yield: 74%; ¹H NMR δ 9.07 (dd, J = 4.2, 1.6 Hz, 1H), 8.24 (dd, J = 8.4, 1.6 Hz, 1H), 7.87 (dd, J = 8.1, 1.4 Hz, 1H), 7.66 – 7.51 (m, 3H); ¹³C NMR δ 151.7, 146.1, 141.0, 135.8, 129.8, 128.2, 126.0, 122.7, 121.1, 118.9 (q, J = 320.5 Hz); EI-MS [M⁺] m/z 272.

4-Cyanophenyl methanesulfonate⁷ (4a)

^{OMs} Prepared according to general procedure using 4-cyanophenol. White solid; Yield: 98%; ¹H NMR δ 7.72 (d, J = 8.9 Hz, 2H), 7.40 (d, J = 8.9 Hz, 2H), 3.2 (s, 3H); ¹³C NMR δ ¹51.8, 134.1, 122.9, 117.6, 111.3, 38.1; EI-MS [M⁺] m/z 197.

Phenyl methanesulfonate² (4b)

^{OMs} Prepared according to general procedure using phenol. White solid; Yield: 70%; ¹H NMR δ 7.50 – 7.31 (m, 2H), 7.30 – 7.09 (m, 3H), 3.06 (s, 3H); ¹³C NMR δ 149.3, 130.0, 127.4, 122.0, 37.3.; EI-MS [M+] m/z 172.

4-Methoxyphenyl methanesulfonate² (4c)

^{OMs} Prepared according to general procedure using 4-methoxyphenol. White solid; Yield: 95%; ¹H NMR δ 7.20 (d, J = 9.2 Hz, 2H), 6.90 (d, J = 9.2 Hz, 2H), 3.8 (s, 3H), 3.1 (s, OMe 3H); ¹³C NMR δ 158.5, 142.6, 123.0, 114.9, 55.6, 36.9; EI-MS [M⁺] m/z 202.

4-Cyanophenyl methanesulfonate⁸

OMs

Prepared according to general procedure using 4-chlorophenol. White solid; Yield: 98%; ¹H NMR δ 7.38 (d, J = 8.9 Hz, 2H), 7.23 (d, J = 8.9 Hz, 2H), 3.14 (s, 3H); ¹³C NMR δ 147.5, 133.1, 130.1, 123.4, 37.5; EI-MS [M⁺] m/z 206.

4-Nitrophenyl methanesulfonate⁹

Prepared according to general procedure using phenol. White solid; Yield: 88%; ¹H NMR δ 8.32 (d, J = 9.1 Hz, 2H), 7.47 (d, J = 9.2 Hz, 2H), 3.25 (s, 3H); ¹³C NMR δ 153.2, 146.3, 125.7, 122.8, 38.3; EI-MS [M+] m/z 217.

3.5-Difluoromethylphenyl methanesulfonate

^{OMs} Prepared according to general procedure using 3,5-difluorophenol. Colorless oil; ^{Yield: 81%; ¹H NMR δ 6.93-6.85 (m, 2H), 6.82 (tt, J = 8.7, 2.3 Hz, 1H), 3.20 (s, 3H); ¹³C NMR δ 164.3 (d, J = 14.5 Hz), 161.8 (d, J = 14.5 Hz), 149.9, 106.8 – 105.9 (m), 103.3 (t, J = 25.3 Hz), 37.9; ¹⁹F NMR δ 106.7 (s, 2F); EI-MS [M⁺] m/z 208.}

3.5-Bis(trifluoromethyl)phenyl methanesulfonate¹⁰

Prepared according to general procedure using 3,5-bis(trifluoromethyl)phenol. Colorless oil; Yield: 81%; ¹H NMR δ 7.86 (s, 1H), 7.76 (s, 2H), 3.28 (s, 3H); ¹³C NMR δ 149.1, 133.7 (q, J = 34.5 Hz), 123.8, 122.9 (d, J = 3.0 Hz), 121.2 (dd, J = 11.9, 8.2 Hz), 38.4; EI-MS [M⁺] m/z 308.

Table S-1: Ligand Screening^a

Entry	Ligand	Yield $(\%)^b$
1	DavePhos	12
2	CyJohnphos	14
3	PhDavephos	ND
4	^t BuXPhos	ND
5	^t BuDavePhos	ND
6	JohnPhos	ND
7	Me4 ^t BuXPhos	ND
8	PPh ₃	Trace
9	PCy ₃	Trace
10	PCy ₃ HBF ₄	Trace
11	$P(C_6F_5)_3$	ND
12	dppp	ND
13	dppb	ND
14	dppf	Trace
15	XantPhos	ND
16	1,10-phenanthroline	ND
17	4,4'-dimethyl 2,2'-bipyridine	ND
18	Lutidine	ND
10	2,6-bis((R)-4-isopropyl-4,5-	ND
17	dihydrooxazol-2-yl)pyridine	

^a The reaction was conducted at 40 °C in 1.5 mL THF as solvent for 17 h with $Pd(OAc)_2$:ligand: **1a**:**2a**:KOAc molar ratio = 1:2:20:60:40. ^b ¹H NMR yield using CH_2Br_2 as the internal standard, ND: not detected.

Optimization of Pd-catalyzed direct arylation of mesityl trifluoromethanesulfonate with pentafluorobenzene (Table S-2)

To a microwave reaction tube in the glove box was charged $Pd(OAc)_2$ catalyst (5.6 mg, 0.025 mmol, 5 mol%), ligand (0.05 mmol, 10 mol%)), base (1 mmol, 2 equiv), solvent (1.5 mL), mesityl trifluoromethanesulfonate (0.5 mmol, 1 equiv), and pentafluorobenzene (1.5 mmol, 3

equiv). The tube was then sealed and left to stir at the given temperature for 18 h, after which the reaction was cooled to room temperature. The reaction mixture was filtered through celite and washed with CH_2Cl_2 . The solvent was removed under vacuum and the reaction yield was determined by ¹H NMR spectroscopy by the addition of dibromomethane (35 μ L, 0.5 mmol) as the internal standard.

	OTf + 1v	F F F 1a	Pd(OAc) ₂ (5 mol%) Ligand (10 mol%) Base (2 equiv) Solvent, 80 - 100 °C		F 〉—F F
Entry	Ligand	Base	Solvent	Temperature	Yield $(\%)^b$
1 ^c	XPhos	KOAc	DMF	100	ND^d
2 ^{<i>c</i>}	tBuXPhos	KOAc	DMF	100	ND^d
3 ^{<i>c</i>}	MePhos	KOAc	DMF	100	ND^d
4 ^{<i>c</i>}	MePhos	K ₂ CO ₃	DMF	100	trace
5 ^{<i>c</i>}	tBuMePhos	K ₂ CO ₃	DMF	100	ND
6 ^{<i>c</i>}	tBuDavePhos	K ₂ CO ₃	DMF	100	ND
1 ^{<i>c</i>}	PEt ₃	K ₂ CO ₃	DMF	100	ND
3 ^{<i>c</i>}	SPhos	K ₂ CO ₃	DMF	100	8
4 ^{<i>c</i>}	SPhos	K_2CO_3	1,4-dioxane	100	30
5 ^e	SPhos	K_2CO_3	1,4-dioxane	100	90
6 ^{<i>e</i>}	RuPhos	K ₂ CO ₃	1,4-dioxane	100	99 (92)
7^e	RuPhos	K ₂ CO ₃	1,4-dioxane	80	62
8 ^e	RuPhos	KOAc	1,4-dioxane	80	11
9 ^e	MePhos	K ₂ CO ₃	1,4-dioxane	80	5
10^{e}	MePhos	KOAc	1,4-dioxane	80	3
11 ^e	RuPhos	K_2CO_3	THF	80	62
12 ^e	RuPhos	K ₂ CO ₃	MeCN	80	ND
13 ^e	RuPhos	K ₂ CO ₃	DCE	80	29

Table S-2. Pd(OAc)₂-catalyzed arylation of trimethylphenyl triflate with pentafluorobenzene^a

^{*a*} Reactions were conducted in 1.5 mL solvent at the stated temperature for 18 h with $1v:3a:Pd(OAc)_2:ligand:base molar ratio = 20:60:1:2:40$. ^{*b*} Determined by ¹H NMR spectroscopy of the crude reaction mixture with CH₂Br₂ as internal standard, ND = not detected. ^{*c*} Reactions were carried out under reflux under Ar atmosphere. ^{*d*} Formation of side products eg mesitylene and mesitylphenol observed based on GCMS analysis of crude reaction mixture, not observed when K₂CO₃ was used as base. ^{*e*} Reactions were carried out under sealed tube conditions.

Optimization of Pd-catalyzed direct arylation of *p*-cyanophenyl methanesulfonate with pentafluorobenzene (Table S-3)

To a microwave reaction tube in the glove box was charged $Pd(OAc)_2$ catalyst (0.025 mmol, 5 mol%), ligand (0.05 mmol, 10 mol%), base (1 mmol, 2 equiv), solvent (1.5 mL), *p*-cyanophenyl methanesulfonate (0.5 mmol, 1 equiv), and pentafluorobenzene (1.5 mmol, 3 equiv). The tube was then sealed and left to stir at the given temperature for 18 h, after which the reaction was cooled to room temperature. The reaction mixture was filtered through celite and washed with CH_2Cl_2 . The solvent was removed under vacuum and the reaction yield was determined by ¹H NMR spectroscopy by the addition of dibromomethane (35 µL, 0.5 mmol) as the internal standard.

Table S-3. $Pd(OAc)_2$ -catalyzed arylation of *p*-cyanophenyl methanesulfonate with pentafluorobenzene^{*a*}

	NC	F F F F F F F F F F	5 mol%) → mol%) → NC → → equiv) 120 °C	F F F F
Entry	Ligand	Base	Solvent	Yield $(\%)^b$
1	XPhos	K ₂ CO ₃	DMF/ ^t BuOH	ND^d
2	XPhos	K ₂ CO ₃	PhMe/ ^t BuOH	14
3	SPhos	K ₂ CO ₃	PhMe/ ^t BuOH	70
4	RuPhos	K ₂ CO ₃	PhMe/ ^t BuOH	12
5	SPhos	K ₂ CO ₃	PhMe	37
6	SPhos	K ₂ CO ₃	^t BuOH	16

7	SPhos	K ₂ CO ₃	dioxane	ND
8	CyJohnPhos	K ₂ CO ₃	DMF	ND
9	MePhos	K ₂ CO ₃	PhMe/ ^t BuOH	ND
10	DavePhos	K ₂ CO ₃	PhMe/ ^t BuOH	ND
11	CataCXium PInCy	K ₂ CO ₃	PhMe/ ^t BuOH	ND
12	CataCXium PCy	K ₂ CO ₃	PhMe/ ^t BuOH	ND
13	BrettPhos	K ₂ CO ₃	PhMe/ ^t BuOH	20
14	CMPhos	K ₂ CO ₃	PhMe/ ^t BuOH	17
15	XantPhos	K ₂ CO ₃	PhMe/ ^t BuOH	ND
16	SPhos	KOAc	PhMe/ ^t BuOH	45
17	SPhos	K ₃ PO ₄	PhMe/ ^t BuOH	18
18	SPhos	Cs ₂ CO ₃	PhMe/ ^t BuOH	25
19	SPhos	CsOAc	PhMe/ ^t BuOH	37
20	SPhos	CsOPiv	PhMe/ ^t BuOH	25
21	SPhos	CsF	PhMe/ ^t BuOH	12

^{*a*} Reactions were conducted under sealed tube conditions in 1.5 mL solvent at 120 °C for 18 h with p-cyanophenyl mesylate:pentafluorobenzene:Pd(OAc)₂:ligand:base molar ratio = 20:60:1:2:40. ^{*b*} Determined by ¹H NMR spectroscopy of the crude reaction mixture with CH₂Br₂ as internal standard, ND = not detected.

References:

¹ Seganish, W. M.; DeShong, P. J. Org. Chem. 2004, 69, 1137.

⁵ Zhu, S.; Wang, C.; Chen, L.; Liang, R.; Yu. Y.; Jiang. H. Org. Lett. **2011**, 13, 1146.

² Crossland, R. K.; Servis, K. L. J. Org. Chem. 1970, 35, 3195.

 ³ Maegawa, T.; Kitamura, Y.; Sako, S.; Udzu, T.o; Sakurai, A.; Tanaka, A.; Kobayashi, Y.; Endo, K.; Bora, U.; Kurita, T. *Chem. Eur. J.* 2007, *13*, 5937.

⁴ Goossen, L. J.; Linder, C.; Rodriguez, N.; Lange, P. P. Chem. Eur. J. 2009, 15, 9336.

⁶ Iwakubo, M.; Takami, A.; Okada, Y.; Kawata, T.; Tagami, Y.; Sato, M.; Sugiyama, T.; Fukushima, T.; Taya, S.; Amano, M.; Kaibuchi, K.; Iijima, H. *Bioorg. Med. Chem.* 2007, 15, 1022.

⁷ Virgil, P.; Bae, J.-Y.; Zhao, M.; Hill, D. H. J. Org. Chem. **1995**, 60, 176.

⁸ Kaboudin, B.; Abedi, Y. Synthesis 2009, 2025.

⁹ Okano, K.; Fujiwara, H.; Noji, T.; Tokuyama, H.; Fukuyama, T.

Angew. Chem., Int. Ed. 2010 49, 5925.

¹⁰ Goriya, Y.; Ramana, C. V. *Tetrahedron*, **2010**, *66*, 7642