Interaction of Acetonitrile with Trifluoromethanesulfonic Acid: Unexpected Formation of a Wide Variety of Structures

George E. Salnikov, Alexander M. Genaev\*, Vladimir G. Vasiliev, and Vyacheslav G. Shubin

Vorozhtsov Novosibirsk Institute of Organic Chemistry

Academician Lavrent'ev Ave., 9, Novosibirsk 630090, Russian Federation

e-mail: genaev@nioch.nsc.ru

#### **Electronic Supplementary Information**

### Table of content

|                      |                                                                       | page        |                                                          | page        |
|----------------------|-----------------------------------------------------------------------|-------------|----------------------------------------------------------|-------------|
| MeCN-TfOH (1:14 m/m) | , products and their chemical shifts                                  | S2          | MeCN-TfOH (4:1 m/m), products and their chemical shifts  | S19         |
|                      | Table 1                                                               | <b>S</b> 3  | Table 3                                                  | <b>S</b> 19 |
|                      | <sup>1</sup> H NMR spectra, Me region                                 | <b>S</b> 4  | <sup>1</sup> H NMR spectra, CH region                    | S20         |
|                      | <sup>1</sup> H NMR spectra, NH and CH regions                         | <b>S</b> 5  | <sup>1</sup> H NMR spectra, NH region                    | S21         |
|                      | <sup>13</sup> C NMR spectrum, 192 h at r.t.                           | <b>S</b> 6  | <sup>13</sup> C NMR spectrum, 214 h at r.t.              | S22         |
|                      | <sup>19</sup> F NMR spectrum, 192 h at r.t.                           | <b>S</b> 7  | ESI-MS spectra                                           | S23         |
|                      | $^{15}$ N- $^{1}$ H correlations, 214 h at r.t.                       | <b>S</b> 8  | ESI-MS spectra (heavy ions)                              | S25         |
| MeCN-TfOH (1:2 m/m), | products and their chemical shifts                                    | <b>S</b> 9  | MeCN-TfOH (17:1 m/m), products and their chemical shifts | S26         |
|                      | Table 2                                                               | <b>S</b> 10 | Table 5                                                  | S26         |
|                      | <sup>1</sup> H NMR spectra, CH region                                 | <b>S</b> 11 | <sup>1</sup> H NMR spectra, CH region                    | S27         |
|                      | <sup>1</sup> H NMR spectra, NH region                                 | <b>S</b> 12 | <sup>1</sup> H NMR spectra, NH region                    | S28         |
|                      | <sup>13</sup> C NMR spectrum, 316 h at r.t.                           | <b>S</b> 13 |                                                          |             |
|                      | $^{15}$ N- <sup>1</sup> H correlations, 316 h at r.t.                 | <b>S</b> 14 | MeCN-TfOH (20:1 m/m), <sup>1</sup> H NMR spectrum        | S29         |
|                      | CH <sub>3</sub> CN vs. CD <sub>3</sub> CN, <sup>1</sup> H NMR spectra | S15         | <sup>13</sup> C NMR spectrum                             | <b>S</b> 30 |
|                      | ESI-MS spectra                                                        | <b>S</b> 16 |                                                          |             |
|                      | -                                                                     |             | MeCN-TfOH (200:1 m/m), <sup>1</sup> H NMR spectrum       | <b>S</b> 31 |
| MeCN-TfOH (1:1 m/m), | products and their chemical shifts                                    | <b>S</b> 17 |                                                          |             |
|                      | Table 4                                                               | <b>S</b> 17 |                                                          |             |
|                      | <sup>1</sup> H and <sup>13</sup> C NMR spectra                        | S18         |                                                          |             |

#### Chemical shifts of MeCN, TfOH (molar ratio 1:14) and of the products of their interaction.

<sup>1</sup>H chemical shifts are given in italics, <sup>13</sup>C in ordinary font, <sup>15</sup>N in bold face.

Here and further the chemical shifts of acetonitrile are in fact those of its mixture with the protonated form, the NMR signals are averaged due to a rapid exchange.



Table 1. Products of the interaction of MeCN with TfOH (mol. ratio 1:14). Given in italics are logarithms of diffusion coefficients ( $m^2/s$ ) derived from the DOSY spectra.

| Time (h) <sup>e</sup>       | MeCN  | $1^{a}$ | $2^{a}$ | $3^{a}$ | <b>4</b> <sup><i>a</i></sup> | <b>5</b> <sup><i>a</i></sup> | 6     | 7     | 8     | sum  | $Tf_2O^b$ | CF <sub>3</sub> OTf <sup><i>b</i></sup> |
|-----------------------------|-------|---------|---------|---------|------------------------------|------------------------------|-------|-------|-------|------|-----------|-----------------------------------------|
| 0.25                        | 84.7  | 11.5    | 0.9     |         |                              |                              |       |       |       | 97.1 |           |                                         |
| 2.0                         | 62.5  | 31.8    | 2.9     | 0.2     | 0.2                          |                              |       |       |       | 97.2 | 15        |                                         |
| 48                          | 10    | 66.5    | 3.0     | 9.0     | 9.3                          | 0.03                         |       |       |       | 97.8 | 35        |                                         |
| 171                         | 4.5   | 49.3    | 1.2     | 20.9    | 14.0                         | 7.4                          |       |       |       | 97.2 | 36        |                                         |
| 192                         | 3.8   | 47.5    | 1.0     | 22.8    | 13.8                         | 9.0                          | 0.4   |       |       | 98.3 | 40.7      |                                         |
| <sup>1</sup> H DOSY         | -9.36 | -9.56   | -9.52   | -9.42   | -9.45                        | -9.45                        | -9.56 |       |       |      |           |                                         |
| 215                         |       |         |         |         |                              |                              |       |       |       |      | 40.8      | 1.5                                     |
| $^{19}$ F DOSY <sup>c</sup> |       |         |         |         |                              |                              |       |       |       |      | -9.24     | -9.16                                   |
| 247                         | 2.9   | 42.5    | 0.7     | 26.3    | 13.6                         | 11.5                         | 1.0   |       |       | 98.5 |           |                                         |
| 317+1/74°                   | 1.3   | 23.2    | 0       | 37.7    | 20.0                         | 5.3                          | 4.4   | 1.5   | 2.3   | 95.6 | 36.6      | 4.5                                     |
| 335+3/74°                   | 0     | 12.4    |         | 42.9    | 20                           | 4.3                          | 6.9   | 4.0   | 6.2   | 95.8 | 31.2      | 8.8                                     |
| 508+3/74°                   |       | 10.5    |         | 42.8    | 20.6                         | 3.7                          | 7.3   | 4.2   | 7.3   | 96.4 |           |                                         |
| 1568+3/74°                  |       | 5.7     |         | 46.1    | 24.3                         | 1.6                          | 7.3   | 4.0   | 8.6   | 97.6 | 25.0      | 13.8                                    |
| $^{1}$ H DOSY $^{d}$        |       | -9.64   |         | -9.53   | -9.55                        | -9.55                        | -9.62 | -9.60 | -9.57 |      |           |                                         |
| 5572+3/74°                  |       | 0.5     |         | 47.7    | 29.0                         | 0                            | 7.3   | 3.3   | 9.0   | 96.8 | 12        | 21.6                                    |
| 6287+3/74°                  |       | 0       |         | 47.2    | 29.0                         |                              | 7.0   | 2.8   | 9.1   | 95.1 | 9.5       | 23.1                                    |
| <sup>1</sup> H DOSY         |       |         |         | -9.39   | -9.43                        |                              | -9.53 | -9.47 | -9.46 |      |           |                                         |

<sup>*a*</sup> Percentage of the acetonitrile turned into the corresponding product as determined from the <sup>1</sup>H NMR spectra. <sup>*b*</sup>Molar part (%) relative to the initial quantity of acetonitrile. <sup>*c*</sup>For TfOH lg D = -9.37 (from <sup>19</sup>F DOSY). <sup>*d*</sup>At -7 °C.

<sup>e</sup> In Fig. 1 of the paper an hour at 74 °C was set equal to 300 hours at room temperature









MeCN-TfOH (1:14 m/m, 0.4 ml), CD<sub>2</sub>Cl<sub>2</sub> (0.1 ml); 192 h at r.t.; <sup>19</sup>F NMR spectrum





Chemical shifts of MeCN, TfOH (molar ratio 1:2) and of the products of their interaction. <sup>1</sup>H chemical shifts are given in italics, <sup>13</sup>C in ordinary font, <sup>15</sup>N in bold face.

$$\begin{array}{c} 2.27 \\ 1.3 \\ H_{3}C \\ \hline -C \\ \hline -C \\ \hline N \\ 19_{F} \\ -78.5 \\ Tf \\ -OH \end{array} \begin{array}{c} 2.50 \\ H_{3}C \\ 20.7 \\ H_{3}C \\ 170.3 \\ \hline 170.3 \\ H_{7} \\ 19_{F} \\ -72.9 \\ H_{10.63} \\ 19_{F} \\ -72.9 \\ Tf \\ -OTf \\ 9.93 \\ H_{76.8} \\ OH \\ 24.4 \\ H_{3}C \\ 1 \\ 1 \\ 19_{F} \\ -72.9 \\ Tf \\ -OTf \\ 10_{F} \\ -72.9 \\ Tf \\ -OTf \\ -0.5 \\ Tf \\ -0.5 \\ Tf$$





Table 2. Products of the interaction of MeCN with TfOH (mol. ratio 1:2). Given in italics are logarithms of diffusion coefficients (m<sup>2</sup>/s) derived from the DOSY spectra.

| Time (h)                      | MeCN   | <b>12</b> <sup><i>a</i></sup> | $1^{a}$ | <b>13</b> <sup><i>a</i></sup> | <b>11</b> <sup><i>a</i></sup> | <b>4</b> <sup><i>a</i></sup> | <b>14</b> <sup><i>a</i></sup> | $3^{a}$ | <b>15</b> <sup><i>a</i></sup> | sum  | $Tf_2O^k$ |
|-------------------------------|--------|-------------------------------|---------|-------------------------------|-------------------------------|------------------------------|-------------------------------|---------|-------------------------------|------|-----------|
| 0.25                          | 70.3   | 12.9                          | 4.6     | 4.6                           | 3.4                           | 0.3                          | 0.3                           |         |                               | 96.4 | 2.6       |
| $^{1}\text{H}\text{DOSY}^{c}$ | -9.60  | -9.70                         | -9.66   | -9.70                         | -9.70                         |                              |                               |         |                               |      |           |
| 2.5                           | 30.5   | 33.4                          | 12.4    | 8.0                           | 7.3                           | 1.2                          | 1.0                           |         |                               | 93.7 |           |
| 23                            | 7.6    | 46.5                          | 19.2    | 6.4                           | 11.0                          | 2.4                          | 1.9                           |         |                               | 94.9 | 9.7       |
| 26                            | 6.7    | 47.3                          | 19.5    | 6.2                           | 11.3                          | 2.5                          | 2.1                           | 0.0     |                               | 95.5 |           |
| 72                            | 2.8    | 50.9                          | 19.8    | 4.0                           | 12.0                          | 3.3                          | 2.4                           | 0.8     | 0.0                           | 96.0 |           |
| 169                           | 1.3    | 53.6                          | 18.3    |                               | 12.5                          | 3.8                          | 2.5                           | 1.9     | 1.5                           | 95.4 |           |
| 316                           | 0.7    | 48.1                          | 15.5    |                               | 11.1                          | 3.0                          | 2.4                           | 3.2     | 10.4                          | 94.4 | 7.9       |
| <sup>1</sup> H DOSY           | -10.02 | -10.56                        | -10.19  |                               | -10.51                        |                              | -10.52                        | -10.10  | -10.50                        |      |           |
| 1154                          | 0.0    | 36.0                          | 8.3     |                               | 7.9                           | 2.0                          | 2.6                           | 7.1     | 26.5                          | 90.3 |           |
| 1394                          |        | 33.8                          | 7.2     |                               | 7.7                           | 1.9                          | 2.9                           | 8.0     | 28.5                          | 90.0 | 6.2       |
| 2401                          |        | 28.6                          | 3.4     |                               | 6.3                           | 0.9                          | 2.8                           | 9.6     | 35.7                          | 87.3 |           |

<sup>a</sup> Percentage of the acetonitrile turned into the corresponding product as determined from the <sup>1</sup>H NMR spectra. <sup>b</sup> Molar part (%) relative to the initial quantity of acetonitrile. <sup>c</sup> At -7°C.









## MeCN-TfOH (1:2 m/m) + 0.1 ml CD<sub>2</sub>Cl<sub>2</sub>; 316 h at r.t. <sup>1</sup>H (green), <sup>1</sup><sup>5</sup>N INEPT (red), N-H HMBC (blue), and N-H HSQC (purple) spectra





## MeCN-TfOH (1:2 m/m, 4000 h, 5 mg) in MeCN (1 ml) FIA , MeCN, 0.1ml/min, 4 $\mu$ L , tune low.m , ES 80-3000



Chemical shifts of MeCN, TfOH (molar ratio 1:1) and of the products of their interaction. <sup>1</sup>H chemical shifts are given in italics, <sup>13</sup>C̃ in ordinary font, <sup>15</sup>N in bold face.



*Table 4.* Products of the interaction of MeCN with TfOH (mol. ratio 1:1).<sup>*a*</sup> Given in italics are logarithms of diffusion coefficients  $(m^2/s)$  derived from the DOSY spectra.

| Time (h)            | MeCN   | 12     | 11     | 17     | Sum  |
|---------------------|--------|--------|--------|--------|------|
| 0.25                | 92.5   | 4.5    | 1.2    | 0.0    | 98.2 |
| 0.4                 | 88.1   | 7.6    | 2.0    | 0.0    | 97.7 |
| 5.4                 | 52.5   | 33.9   | 8.4    | 0.2    | 95.0 |
| 24                  | 30.1   | 46.6   | 11.8   | 4.8    | 93.3 |
| 96                  | 18.5   | 42.5   | 11.2   | 18.7   | 90.9 |
| <sup>1</sup> H DOSY | -10.38 | -11.30 | -11.19 | -11.48 |      |

<sup>a</sup> Percentage of the acetonitrile turned into the corresponding product as determined from the <sup>1</sup>H NMR spectra.



MeCN-TfOH (1:1 m/m, 0.4 ml), CD<sub>2</sub>Cl<sub>2</sub> (0.1 ml); 24 h at r.t.; <sup>13</sup>C NMR spectrum



Chemical shifts of MeCN, TfOH (molar ratio 4:1) and of the products of their interaction. <sup>1</sup>H chemical shifts are given in italics, <sup>13</sup> $\tilde{C}$  in ordinary font, <sup>15</sup>N in bold face.



Table 3. Products of the interaction of MeCN with TfOH (mol. ratio 4:1).<sup>a</sup> Given in italics are logarithms of diffusion coefficients ( $m^2/s$ ) derived from the DOSY spectra.

| Time (h)            | MeCN  | 13  | 12    | 11  | 17    | 18    | Sum MeCN |
|---------------------|-------|-----|-------|-----|-------|-------|----------|
| 0.25                | 96.4  | 0.6 | 1.4   | 0.3 | 0     |       | 98.7     |
| 22                  | 87.2  | 0   | 5.4   | 1.6 | 4.2   | 0     | 98.3     |
| 167                 | 74.8  |     | 1.1   | 0.5 | 15.4  | 6.9   | 98.7     |
| 214                 | 72.7  |     | 0.9   | 0.4 | 15.3  | 8.5   | 97.7     |
| <sup>1</sup> H DOSY | -8.92 |     | -9.73 |     | -9.85 | -9.98 |          |
| 672                 | 64.5  |     | 0.3   |     | 12.1  | 18.4  | 95.3     |

<sup>a</sup> Percentage of the acetonitrile turned into the corresponding product as determined from the <sup>1</sup>H NMR spectra.

## MeCN-TfOH (4:1 m/m, 0.4 ml), CD<sub>2</sub>Cl<sub>2</sub> (0.1 ml); <sup>1</sup>H NMR spectra; CH region



## MeCN-TfOH (4:1 m/m, 0.4 ml), CD<sub>2</sub>Cl<sub>2</sub> (0.1 ml); <sup>1</sup>H NMR spectra; CH region





#### ESI-MS spectra

MeCN-TfOH (4:1 m/m, 5000 h, 5mg) in MeCN (1 mL) FIA, MeCN 0.1 ml/min, 2  $\mu L$  , ES 100-3000





### MeCN-TfOH (4:1 m/m, 5000 h, 5mg) in MeCN (1 mL)

FIA, MeCN, 0.1 ml/min, 4  $\mu$ L,, tune\_high.m , ES 200-10000 Heavy ions detection



<sup>1</sup>H chemical shifts of MeCN, TfOH (molar ratio 17:1, 34 h at r.t.) and of the products of their interaction.



Table 5. Products of the interaction of MeCN with TfOH (mol. ratio 17:1, 1 M TfOH).<sup>a</sup>

| Time (h) | MeCN | 13   | 12   | 11   | 17   | 18   | acetamide $H^+$ | Sum MeCN |
|----------|------|------|------|------|------|------|-----------------|----------|
| 3        | 99.2 | 0.42 | 0.22 | 0.02 | 0    |      | 0.02            | 99.8     |
| 34       | 95.9 | 0.32 | 0.33 | 0.35 | 2.43 | 0.10 | 0.13            | 99.5     |
| 74       | 94.8 | 0.19 | 0.15 | 0.19 | 3.43 | 0.32 | 0.16            | 99.2     |

<sup>a</sup> Percentage of the acetonitrile turned into the corresponding product as determined from the <sup>1</sup>H NMR spectra.









# MeCN-TfOH (1:20 m/m, 0.4 ml), CD<sub>2</sub>Cl<sub>2</sub> (0.1 ml); 5 h at 82°C; <sup>13</sup>C NMR spectrum



