## Synthesis and photophysical evaluation of a pyridinium 4-amino-1,8-naphthalimide derivative that upon intercalation displays preference for AT-rich double stranded DNA

Swagata Banerjee, Jonathan A Kitchen, Thorfinnur Gunnlaugsson* and John M. Kelly *

The association constant, K for the binding of mononucleotide $5^{\prime}$ 'monophosphate with $\mathbf{1}$ was determined from the slope of Scatchard plot using the equation 1. ${ }^{1}$

$$
\begin{equation*}
\frac{\Delta A}{[N I][X M P]}=K \Delta \epsilon-K \frac{\Delta A}{[N I]} \tag{1}
\end{equation*}
$$

$\Delta \mathrm{A}$ is the change in absorbance of $\mathbf{1}$ at 435 nm in the presence of mononucleotide XMP, $\Delta \varepsilon=$ $\left(\varepsilon_{\mathrm{f}}-\varepsilon_{\mathrm{b}}\right) . \varepsilon_{\mathrm{f}}$ and $\varepsilon_{\mathrm{b}}$ are the molar extinction coefficients of free and bound naphthalimide, respectively. [NI], [XMP] refer to the total concentration of naphthalimide and mononucleotide respectively.
The binding constant for the association of $\mathbf{1}$ with GMP was also determined assuming 1:1 complex formation using equation $2 .{ }^{2}$

$$
\begin{equation*}
\frac{\Delta A}{[N I]}=\frac{K \Delta \varepsilon[G M P]}{1+K[G M P]} \tag{2}
\end{equation*}
$$

The binding constant for the association of 1 with AMP was estimated from equation 3 assuming both $1: 1$ and $1: 2$ complex formations. ${ }^{3}$

$$
\begin{equation*}
\frac{\Delta A}{[N I]}=\frac{K_{1} \Delta \epsilon_{1}[A M P]+K_{1} K_{2} \Delta \epsilon_{2}[A M P]^{2}}{1+K_{1}[A M P]+K_{1} K_{2}[A M P]^{2}} \tag{3}
\end{equation*}
$$

The absorbance change at 435 nm was analysed and fitted to the noncooperative model of McGhee and von Hippel described in equation 4 using the non-linear curve fitting algorithm in OriginPro 8 softwareto determine the binding constant, K , where $r$ is the binding density and given by $r=\mathrm{C}_{\mathrm{b}}$ /total DNA concentration and $n$ is the average no of occupied sites, $C_{f}$ and $C_{b}$ are the concentrations of free and bound ligand, respectively.

$$
\begin{align*}
& =K(1  \tag{4}\\
& -n r)\left[\frac{1-n r}{1-(n-1) r}\right]^{n-1}
\end{align*}
$$

$C_{b}$ and $C_{f}$ were calculated from the absorbance data using the equations 5 and 6 , respectively.

$$
\begin{align*}
& C_{b}=\frac{\mathrm{Af}-\mathrm{A}}{\mathrm{Af}-\mathrm{Ab}}  \tag{6}\\
& C_{f}=C-C_{b}
\end{align*}
$$

$A_{f}$ and $A_{b}$ are the absorbance values corresponding to free and fully bound ligand. A is the absorbance of the mixture at any point during titration and C is the total ligand concentration.


Figure ESI 1A: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3}$ in DMSO-d6 ( 400 MHz )


Figure ESI 1B: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3}$ in DMSO-d6 $(400 \mathrm{MHz})$


Figure ESI 1C: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4 in DMSO-d6 (400 MHz)


Figure ESI 1D: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 4 in DMSO-d6 ( 400 MHz )


Figure ESI 1E: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{1}$ in DMSO-d6 ( 600 MHz )


Figure ESI 1F:13-C NMR of 1 in DMSO-d6 (150 MHz)


Figure ESI 2: (a) UV/vis absorption and (b) emission of $\mathbf{1}$ in water containing 10 mM NaCl as a function of pH . Insets: Normalised absorbance or fluorescence intensity as a function of pH


Figure ESI 3: (a) Overlaid ${ }^{1} \mathrm{H}-\mathrm{NHR}$ spectra of $\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O}(600 \mathrm{MHz})$ at
(b)


(b) Plot of chemical shift ( $\delta$ ) $v s$. $\log$ (naphthalimide concentration) (Assuming no aggregation at 0.001 M , chemical shift for each proton has been normalized using the equation ( $\delta-\delta$ at 0.001 $\mathrm{M}) / \delta$ at 0.001 mM )

| $\mathbf{H}$ | $\boldsymbol{\delta i n} \mathbf{1 0}$ <br> $\mathbf{m M}$ | $\boldsymbol{\delta} \mathbf{\text { in 1 }}$ <br> $\mathbf{m M}$ | $\boldsymbol{\delta} \mathbf{\text { in 0.1 }}$ <br> $\mathbf{m M}$ | $\boldsymbol{\delta} \mathbf{\text { in 0.01 }}$ <br> $\mathbf{m M}$ | $\boldsymbol{\delta} \mathbf{\text { in }}$ <br> $\mathbf{0 . 0 0 1}$ <br> $\mathbf{m M}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | 7.56 | 7.88 | 8.05 | 8.18 | 8.18 |
| $\mathbf{3}$ | 6.46 | 6.72 | 6.85 | 6.93 | 6.93 |
| $\mathbf{5}$ | 7.91 | 8.23 | 8.37 | 8.42 | 8.43 |
| $\mathbf{6}$ | 7.26 | 7.50 | 7.61 | 7.68 | 7.68 |
| $\mathbf{7}$ | 7.84 | 8.14 | 8.31 | 8.42 | 8.42 |
| $\mathbf{9}$ | 4.43 | 4.59 | - | - | - |
| $\mathbf{1 0}$ | 4.80 | 4.88 | - | - | - |
| $\mathbf{1 1}$ | 8.74 | 8.76 | 8.79 | 8.82 | 8.82 |
| $\mathbf{1 2}$ | 7.89 | 7.88 | 7.90 | 7.92 | 7.92 |
| $\mathbf{1 3}$ | 8.46 | 8.46 | 8.48 | 8.47 | 8.48 |

Table 1: Summary of chemical shifts at various concentration of $\mathbf{1}$

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
sb07
$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$
463.32

112(2) K
$0.71073 \AA$
Monoclinic
P2(1)/c
$\mathrm{a}=9.4536(19) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=9.3865(19) \AA \quad \beta=100.03(3)^{\circ}$.
$\mathrm{c}=21.293(4) \AA \quad \gamma=90^{\circ}$.
1860.6(7) $\AA^{3}$

4
$1.654 \mathrm{Mg} / \mathrm{m}^{3}$
$0.230 \mathrm{~mm}^{-1}$
944
$0.63 \times 0.44 \times 0.43 \mathrm{~mm}^{3}$
2.19 to $25.00^{\circ}$.
$-11<=\mathrm{h}<=10,-7<=\mathrm{k}<=11,-16<=1<=25$
6793
$3184[\mathrm{R}(\mathrm{int})=0.0428]$
97.2 \%

Semi-empirical from equivalents
1.0000 and 0.5575

Full-matrix least-squares on $\mathrm{F}^{2}$
3184 / $0 / 282$
1.085
$\mathrm{R} 1=0.0548, \mathrm{wR} 2=0.1447$
$\mathrm{R} 1=0.0600, \mathrm{wR} 2=0.1512$
0.721 and -0.408 e. $\AA^{-3}$

Table 2. Crystal data and structure refinement for $\mathbf{1}$.

## References

1. G. Scatchard, Proc. New York Acad. Sci., 1949,51, 660
2. D. A. Deranleau, J.Am. Chem. Soc. 1969,91, 4044.
3. D. A. Deranleau, J.Am. Chem. Soc. 1969,91, 4050.
4. J. D. McGhee and P.H. von Hippel, J.Mol.Biol. 1974, 86, 469.
