Iron (III) Catalysed Synthesis of unsymmetrical di and trisubstituted ureas -A variation of classical Ritter reaction

Hosamani Basavaprabhu and Vommina V. Sureshbabu*

109, Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Dr. B. R. Ambedkar Veedhi, Bangalore University: Bangalore-560 001, India Email: hariccb@hotmail.com; sureshbabuvommina@rediffmail.com;hariccb@gmail.com

Supporting information

Table of contents in supporting information

S3 Ge	eneral methods
S3 Ex	xperimental [Typical procedure for the preparation of
c	yanamides (2)
S3-S5C	haracterization data for cyanamides (2)
S6 T	ypical procedure for the preparation of urea (4)
S6-12	Characterization data for ureas (4)
S12-13	References for reported molecules
S14 ¹ H	NMR Spectrum of Compound 2h
S14 ¹ H	NMR Spectrum of Compound 2j
S15 ¹ H	I NMR Spectrum of Compound 4a
S15 ¹³ (C NMR Spectrum of Compound 4a
S16 ¹ H	I NMR Spectrum of Compound 4b
S16 ¹³ (C NMR Spectrum of Compound 4b
S17 ¹ H	I NMR Spectrum of Compound 4c
S17 ¹³	C NMR Spectrum of Compound 4c
S18 ¹ H	I NMR Spectrum of Compound 4d
S18 ¹³ (C NMR Spectrum of Compound 4d

S19of Compound 4e
S19of Compound 4f
S20 ¹³ C NMR Spectrum of Compound 4f
S20 of Compound 4g
S21 ¹³ C NMR Spectrum of Compound 4g
S21 of Compound 4h
S22of Compound 4h
S22of Compound 4i
S23of Compound 4i
S23of Compound 4j
S24of Compound 4j
S24of Compound 4k
S25of Compound 4k
S25of Compound 4l
S26 ¹ H NMR Spectrum of Compound 4m
S26of Compound 4m
S27 HRMS Spectrum of Compound 4n
S27 ¹ H NMR Spectrum of Compound 40
S28of Compound 40
S28of Compound 4p
S29of Compound 4q
S29of Compound 4r
S30 ¹³ C NMR Spectrum of Compound 4r
S30 ¹ H NMR Spectrum of Compound 4s
S31 ¹³ C NMR Spectrum of Compound 4s
S31of Compound A
S32 ¹ H NMR Spectrum of Compound 4t
S32 ¹³ C NMR Spectrum of Compound 4t
S33of Compound 4u
S33 ¹³ C NMR Spectrum of Compound 4u

GENERAL METHODS:

All solvents were freshly distilled prior to use. Melting points were determined using capillary method and are uncorrected. Analytical thin-layer chromatography (TLC) was performed on glass plates and aluminum sheets precoated with silica gel (Silica gel GF_{254} , layer thickness 0.25 and 0.2 mm, respectively) using the following solvent systems as mobile phases: (a) Ethyl acetate: Hexane (1:9) for cyanamides and (b) Ethyl acetate: Hexane (4:6) for ureas and the visualization was accomplished by UV light (254 nm). IR spectra were recorded on a 400D FT-IR spectrometer (KBr pellets). Nuclear magnetic resonance spectra were recorded in CDCl₃ and DMSO on a AMX 400 MHz spectrometer.

Experimental Section:

Typical procedure for the preparation of cyanamides (2)

To a solution of amine (1.0 mmol) in dry diethyl ether (10 mL) at 0 °C was added a solution of CNBr (1.5 mmol) in diethyl ether (4 mL). The mixture was stirred till the completion of the reaction as judged by TLC and then the reaction mixture was filtered to remove the residual salt and concentrated to yield corresponding cyanamide. The crude is then diluted with EtOAc and washed twice with 10% HCl (10 mL), water and brine. Organic extract was dried over anhydrous Na_2SO_4 and evaporation of the solvent *in vacuo* results in cyanamide which was further purified by silica gel column chromatography (EtOAc /hexane system).

Phenyl cyanamide¹ (2a).

Oily liquid; yield = 83 %; IR (neat) 3176, 2226 cm⁻¹;

¹H NMR (400 MHz, CDCl₃) δ (ppm) 5.81 (s, br, 1H), 6.98-7.09 (m, 3H), 7.21-7.32 (m, 2H). **3-Chloro-phenyl cyanamide**² (2b).

White Solid; yield = 84 %; Mp 94-96 °C (Lit. 93-95 °C); IR (KBr) 3156, 2232 cm⁻¹.

4-Hydroxy-phenyl cyanamide³ (2c).

White Solid; yield = 89 %; Mp 258-260 °C (Lit. 259-261 °C); IR (KBr) 3215, 2231 cm⁻¹.

2-Cyanamido benzoic acid (2d).

Yellow Solid; yield = 68 %; Mp 154-156 °C; IR (KBr) 3493, 3256, 2232 cm⁻¹;

Piperidine-1-carbonitrile⁴ (2e).

Oil; yield = 81 %; IR (neat) 2210 cm^{-1} ;

¹**H NMR** (60 MHz, CDCl₃) δ (ppm) 1.10-1.26 (m, 6H), 2.93-3.20 (t, J = 4.2, 4H).

(S)-Methyl-1-cyanopyrrolidine-3-carboxylate (2f).

Gummy; yield = 74 %; IR (neat) 2230, 1738 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 1.75 (m, 2H), 1.89 (m, 2H), 2.84 (t, *J* = 5.2 Hz, 2H), 3.48 (m 1H), 3.63 (d, *J* = 2.4 Hz, 2H).

Morpholine-4-carbonitrile⁴ (2g).

Oil; yield = 82 %; IR (neat) 2220 cm^{-1} ;

¹**H NMR** (60 MHz, CDCl₃) δ (ppm) 3.18 (t, J = 4.2 Hz, 4H), 3.68 (t, J = 4.2 Hz, 4H).

N, N –Diethyl cyanamide⁴ (2h).

Oil; yield = 78 %; IR (neat) 2206 cm^{-1} ;

¹**H NMR** (60 MHz, CDCl₃) δ (ppm) 1.20 (t, J = 6.4 Hz, 6H), 3.00 (q, J = 6.2 Hz, 4H).

Benzyl cyanamide³ (2i).

Gummy; yield = 92 %; IR (neat) 3208, 2221 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) 4.13 (d, J = 5.2 Hz, 2H), 4.69 (s, br, 1H), 7.25-7.38 (m, 5H).

p-Tolyl cyanamide² (2j).

Gummy; yield = 83 %; IR (neat) 3167, 2229 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) 2.27 (s, 3H), 4.12 (s, br, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H).

Cyclohexyl cyanamide² (2k).

Gummy; yield = 88 %; IR (neat) 3192, 2219 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) *δ* (ppm) 1.12-1.54 (m, 6H), 1.75-2.01 (m, 4H), 3.10-3.15 (m, 1H), 3.51 (s, br, 1H).

4-Nitro-phenyl cyanamide² (21).

Yellow Solid; yield = 82 %; Mp 180-182 °C (Lit. 178-180 °C); IR (KBr) 3362, 2226 cm⁻¹.

Typical procedure for the preparation of urea (4)

To a mixture of cyanamide (1.0 mmol) and an alcohol (2.0 mmol) in DCE (10 mL), was added a 20 mol% FeCl₃. The reaction mixture was refluxed at an elevated temperature till the completion of the reaction as monitored by TLC. Upon complete consumption of the cyanamide, the reaction medium was evaporated under reduced pressure and the product was extracted using EtOAc (15

mL). The EtOAc layer was then washed with 5% $Na_2S_2O_3$ (5 mL), water (2 x 5 mL) and brine (5 mL). The organic layer was dried over anhydrous Na_2SO_4 and the solvent was evaporated *in vacuo* to afford the crude which was then purified through silica gel column chromatography (EtOAc/hexane).

1-benzyl-3-phenylurea⁵(**4a**).

White Solid; yield =86 %; Mp 176-178 °C (Lit. 175-176 °C);

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 4.17 (d, *J* = 4.96 Hz, 2H), 6.26 (t, *J* = 5.96 Hz, 1H), 6.86 – 7.38 (m, 10H), 8.50 (s, 1H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 44.1, 117.7, 121.0, 128.6, 140.5, 156.0.

HRMS Calcd for C₁₄H₁₄N₂O *m/z* 249.1004 (M⁺+Na); found 249.1005.

1-benzyl-3-(3-chlorophenyl) urea (4b).

White Solid; yield = 80 %; Mp 187-189 °C;

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 4.28 (d, J = 6.8 Hz, 2H), 5.51 (s, br, 1H), 6.36 (s, 1H),

6.91-7.38 (m, 8H), 8.11-8.13 (m, 1H);

¹³**C NMR** (100 MHz, DMSO- d_6) δ (ppm) 43.7, 121.0, 121.2, 122.5, 127.3, 129.0, 132.5, 136.3,

139.8, 155.5.

HRMS Calcd for C₁₄H₁₃ClN₂O *m/z* 283.0614 (M⁺+Na); found 283.0618.

1-benzyl-3-(4-hydroxyphenyl) urea (4c).

White Solid; yield = 74 %; Mp 197-198 °C;

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 4.21 (d, J = 4.8 Hz, 2H), 6.40 (t, J = 4.8 Hz, 1H), 7.19-

7.31 (m, 8H), 7.93 (s, br, 1H), 9.13 (s, br, 1H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 43.5, 121.0, 121.2, 122.5, 127.3, 129.0, 132.4, 136.3,

139.8, 142.3, 155.5.

HRMS Calcd for C₁₄H₁₄N₂O₂ *m/z* 265.0953 (M⁺+Na); found 265.0961.

2-(3-benzylureido) benzoic acid (4d).

White Solid; yield = 63 %; Mp 168-169 °C;

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 4.21 (d, J = 4.8 Hz, 2H), 6.39 (t, J = 4.4 Hz, 1H), 7.11

- 7.31 (m, 9H), 7.79 (s, br, 1H), 10.19 (s, br, 1H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 42.9, 126.5, 126.7, 126.8, 126.9, 127.1, 127.4, 128.0,

128.1, 138.5, 139.4, 140.8, 158.1, 172.6.

HRMS Calcd for C₁₅H₁₄N₂O₃ *m/z* 293.0902 (M⁺+Na); found 293.0914.

N-benzylpiperidine-1-carboxamide⁶ (4e).

White Solid; yield = 79 %; Mp 103-104 °C (Lit. 102 °C);

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 1.50–1.61 (m, 6H), 3.30–3.34 (m, 4H), 4.43 (d, *J* = 5.6 Hz,

2H,), 4.75 (br s, 1H, NH), 7.24–7.34 (m, 5H);

¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 15.6, 26.1, 45.4, 47.1, 127.1, 127.8, 128.6, 138.5,

157.6. HRMS Calcd for $C_{13}H_{18}N_2O$ *m/z* 241.1540 (M⁺+Na); found 241.1556.

(R)-methyl 1-(benzylcarbamoyl) pyrrolidine-2-carboxylate (4f).

White Solid; yield = 71 %; Mp 227-230 °C;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 1.65 (m, 2H), 1.92 (m, 2H), 2.87 (m, 2H), 3.52 (m, 1H),

3.66 (m, 2H), 4.36 (s, 2H), 5.18 (s, br, 1H), 7.31-7.54 (m, 5H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 16.1, 21.7, 46.9, 47.7, 67.2, 120.5, 125.5, 128.20, 141.83, 155.81, 171.33.

HRMS Calcd for C₁₄H₁₈N₂O₃ *m/z* 285.1215 (M⁺+Na); found 285.1224.

N-benzylmorpholine-4-carboxamide⁷ (4g).

White Solid; yield = 82 %; Mp 139-141 °C (Lit. 136-139 °C);

¹**H NMR** (400 MHz, DMSO- *d*₆) δ (ppm) 3.24 (s, 4H), 4.21- 4.24 (m, 4H), 4.64 (s, 2H), 6.41 (s,

br, 1H), 7.14-7.29 (m, 5H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 43.5, 45.4, 65.6, 126.9, 127.1, 127.7, 139.8, 156.4.

HRMS Calcd for $C_{12}H_{16}N_2O_2 m/z$ 243.1109 (M⁺+Na); found 243.1112.

3-benzyl-1,1-diethylurea (4h).

White Solid; yield = 78 %; Mp 89-93 °C;

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 2.49 (t, J = 4.2 Hz, 6H), 3.31 (s, 4H), 4.22 (d, J = 4.8

Hz, 2H), 6.40 (t, *J* = 4.4 Hz, 1H), 7.19-7.31 (m, 5H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 13.3, 40.0, 42.9, 44.1, 126.5, 126.9, 128.2, 140.9,

158.0. HRMS Calcd for C₁₂H₁₈N₂O *m/z* 229.1317 (M⁺+Na); found 229.1319.

1-tert-butyl-3-phenylurea⁸ (4i).

White Solid; yield = 85 %; Mp 172-174 °C (Lit. 171-172 °C);

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 1.27 (s, 9H), 5.96 (s, br, 1H), 6.68 (s, br, 1H), 7.18-

7.38 (m, 5H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 29.1, 49.5, 121.2, 124.8, 128.7, 140.7, 156.1.

HRMS Calcd for $C_{11}H_{16}N_2O m/z$ 215.1160 (M⁺+Na); found 215.1163.

1-benzyl-3-tert-butylurea⁹ (4j).

White Solid; yield = 91 %; Mp 111-114 °C (Lit. 109-112 °C);

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 1.22 (s, 9H), 4.14 (d, J = 5.96 Hz, 2H), 5.73 (s,

br,1H), 6.06 (t, *J* = 4.8 Hz, 1H), 7.21-7.30 (m, 5H);

¹³C NMR (100 MHz DMSO- *d*₆) δ (ppm) 29.4, 42.6, 49.2, 126.6, 127.0, 128.3, 141.0, 157.5.

HRMS Calcd for C₁₂H₁₈N₂O *m/z* 229.1317 (M⁺+Na); found 229.1321.

1-tert-butyl-3-(3-chlorophenyl) urea (4k).

White Solid; yield = 81 %; Mp 175-177 °C;

¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 1.26 (s, 9H), 5.43 (s, br, 1H), 6.16 (s, br, 1H), 6.90-

7.22 (m, 3H), 7.68 (d, *J* = 8.1 Hz, 1H);

¹³**C NMR** (100 MHz, DMSO- d_6) δ (ppm) 30.3, 42.9, 120.6, 123.5, 127.0, 128.2, 132.9, 137.7,

158.0.

HRMS Calcd for C₁₁H₁₅ClN₂O *m/z* 249.0771 (M⁺+Na); found 249.0779.

1-tert-butyl-3-*p*-tolylurea¹⁰ (4l).

White Solid; yield = 83 %; Mp 185-186 °C (Lit. 184-186 °C);

¹**H NMR** (400 MHz, DMSO- *d*₆) δ (ppm) 1.35 (s, 9H), 4.76 (br s, 1H, NH), 6.23 (br s, 1H, NH),

7.10-7.21 (m, 4H).

¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 20.4, 28.8, 50.6, 123.8, 128.8, 132.4, 138.2, 155.2.

HRMS Calcd for C₁₂H₁₈N₂O *m/z* 229.1696 (M⁺+Na); found 229.1685.

1-tert-butyl-3-cyclohexylurea⁹ (4m).

White Solid; yield = 87 %; Mp 224-226 °C (Lit. 223-224 °C);

¹H NMR (400 MHz, DMSO- *d*₆) δ (ppm) 0.93 (s, 9H), 1.02-1.24 (m, 6H), 1.69-1.72 (m, 4H),

3.27-3.29 (m, 1H), 5.30 (s, br, 1H), 5.84 (s, br, 1H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 24.6, 25.4, 33.3, 47.7, 158.2.

HRMS Calcd for $C_{11}H_{22}N_2O m/z$ 221.1630 (M⁺+Na); found 221.1631.

1-tert-butyl-3-(4-nitrophenyl) urea¹⁰ (4n).

White Solid; yield = 77 %; Mp 143-145 °C (Lit. 142-143 °C);

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 1.39 (s, 9H), 4.80 (s, br, 1H, NH), 6.75 (br s, 1H,

NH), 7.48 (d, *J* = 9.2 Hz, 2H), 8.14 (d, *J* = 9.2 Hz, 2H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 23.4, 50.8, 121.7, 128.8, 139.5, 143.6, 157.6.

HRMS Calcd for C₁₁H₁₅N₃O₃ *m/z* 260.1166 (M⁺+Na); found 260.1155.

1-benzhydryl-3-benzylurea (40).

White Solid; yield =83 %; Mp 241-244 °C;

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 4.23 (s, 2H), 5.80 (d, J = 6.8 Hz, 1H), 6.47 (s, 1H),

7.19-7.31 (m, 15 H), 8.17 (s, 1H);

¹³**C NMR** (100 MHz, DMSO- *d*₆) δ (ppm) 44.5, 56.5, 117.7, 121.0, 128.5, 132.3, 140.5, 141.9, 156.0.

HRMS Calcd for C₂₁H₂₀N₂O *m/z* 339.1473 (M⁺+Na); found 339.1478.

1-benzhydrylmorpholine-4-carboxamide¹¹ (4p).

White Solid; yield =81 %; Mp 181-182 °C (Lit. 180 °C);

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 3.28 (s, 4H), 3.58 (s, 4H), 5.27 (d, J = 6.0 Hz, 1H),

6.11 (d, *J* = 6.2 Hz, 1H), 7.23-7.18 (m, 6H), 7.32-7.26 (m, 4H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 44.2, 58.4, 65.6, 127.2, 128.2, 140.2, 156.5.

HRMS Calcd for $C_{18}H_{20}N_2O_2 m/z$ 319.1326 (M⁺+Na); found 319.1330.

N- (1-phenylethyl) morpholine-4-carboxamide^{11,12} (4q).

White pluffy Solid; yield =80 %; $Mp = 84-86 \text{ }^{\circ}C$ (Lit. 83-84 $^{\circ}C$);

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 1.48 (d, J = 6.4 Hz, 3H), 3.30 (m, 4H), 3.66 (m, 4H),

4.62 (d, *J* = 6.4 Hz, 1H), 5.04 (m, 1H), 7.32-7.28 (m, 5H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 22.1, 44.5, 50.6, 66.8, 127.1, 127.6, 128.2, 142.2,

156.8. HRMS Calcd for $C_{13}H_{18}N_2O_2 m/z$ 257.1309 (M⁺+Na); found 257.1317.

1-allyl-3-(3-chlorophenyl) urea (4r).

White Solid; yield =68 %; Mp 214-216 $^{\circ}$ C;

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 3.88 (d, J = 6.8 Hz, 2H), 4.61-4.64 (m, 1H), 5.55-5.58

(m, 2H), 6.80 (s, br, 1H), 6.90-7.22 (m, 3H), 7.67-7.68 (m, 1H), 8.18 (s, br, 1H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 42.7, 116.0, 117.0, 120.6, 130.2, 133.0, 137.5, 142.1,

155.7.

HRMS Calcd for C₁₀H₁₁ClN₂O *m/z* 233.0458 (M⁺+Na); found 233.0463.

1-allyl-3-phenylurea (4s).

White Solid; yield = 73 %; Mp 191-193 °C;

¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm) 3.90 (d, J = 6.7 Hz, 2H), 4.62-4.65 (m, 2H), 5.54-5.57 (m, 1H), 5.90 (s, 1H), 6.54 (s, 1H), 7.19-7.31 (m, 5H);

¹³C NMR (100 MHz, DMSO- d₆) δ (ppm) 43.6, 117.7, 121.0, 127.6, 128.5, 131.1, 140.5, 155.9.
HRMS Calcd for C₁₀H₁₂N₂O *m/z* 199.0847 (M⁺+Na); found 199.0852.

1-(4-methylbenzyl)-3-phenylurea¹³ (4t).

White Solid; yield = 83 %; Mp 186-188 °C;

¹H NMR (400 MHz, DMSO- *d*₆) δ (ppm) 2.08 (s, 3H), 4.19 (s, 2H), 6.25 (s, 1H), 6.86-6.89 (m, 1H), 7.18-7.38 (m, 8H), 7.72 (s, 1H);

¹³**C NMR** (100 MHz, DMSO- d_6) δ (ppm) 26.2, 49.1, 118.3, 121.1, 126.8, 128.8, 132.3, 140.8, 156.7. HRMS Calcd for C₁₅H₁₆N₂O *m/z* 263.1217 (M⁺+Na); found 263.1220.

1-(4-nitrobenzyl)-3-phenylurea (4u).

Yellow Solid; yield = 81 %; Mp 196-198 °C;

¹**H NMR** (400 MHz, DMSO- *d*₆) δ (ppm) 4.08 (s, 2H), 5.78 (s, 1H), 6.8-6.89 (m, 1H), 7.18-7.39 (m, 6H), 7.82-7.83 (m, 2H), 8.05 (s, 1H);

¹³C NMR (100 MHz, DMSO- *d*₆) δ (ppm) 50.0, 116.8, 119.1, 121.8, 128.2, 130.9, 138.2, 140.3,

142.6, 158.2. HRMS Calcd for C₁₄H₁₃N₃O₃ *m/z* 294.0923 (M⁺+Na); found 294.0925.

Dibenzyl ether¹⁴ (A)

Colourless oil;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.35 (s, 10H), 5.10 (s, 4H).

References:

- Chen, C. -Y.; Wong, F. F.; Huang, J. -J.; Lin, S. -K.; Yeh, M. -Y. *Tetrahedron Lett.* 2008, 49, 6505-6507.
- 2. Wong, F. F.; Chen, C. -Y.; Yeh, M. -Y. Synlett 2006, 559-562.
- Ghosh, H.; Yella, R.; Ali, A. R.; Sahoo, S. K.; Patil, B. K. *Tetrahedron Lett.* 2009, 50, 2407-2818.
- Chaudhari, K. H.; Mahajan, U. S.; Bhalerao, D. S.; Akamanchi, K. G. Synlett 2007, 2815-2818.
- 5. Izdebski, J.; Pawlak, D. Synthesis 1989, 423-425.
- 6. Lee, S.; Matsushita, H.; Clapham, B.; Janda, K. D. Tetrahedron 2004, 60, 3439-3443.
- Bolshan, Y. M.; Tomaszewski, J.; Santhakumar, V. Tetrahedron Lett. 2007, 48, 4925-4927.
- Azad, S.; Kumamoto, K.; Uegaki, K.; Ichikawa, Y.; Kotsuki, H. *Tetrahedron Lett.*, 2006, 47, 587- 590.

- 9. Takeda, K.; Ogura, H. Synth. Commun. 1982, 12, 213.
- 10. Anderson, J. C.; Bou-Moreno, R. Tetrahedron 2010, 66, 9182-9186.
- Dube, P.; Nathel, N. F. F.; Vetelino, M.; Couturier, M.; Aboussafy, C. L.; Pichette, S.; Jorgensen, M. L.; Hardink, M. Org. Lett. 2009, 11, 5622-5625.
- 12. Braverman, S.; Cherkinsky, M.; Kedrova, L.; Reiselman, A. Tetrahedron Lett. 1999, 40, 3235-3238.
- 13. Peterson, S. L.; Stucka, S. M.; Dinsmore, C. J. Org. Lett. 2010, 12, 1340-1343.
- 14. Suryaprakash Rao, H.; Senthilkumar, S. P. Proc. Indian Acad. Sci. 2001, 113, 191-196.

S18

S26

