Supplementary Information

$>$ Contents

1. Experimental of $\mathbf{1 0} \mathbf{- 1 8}$.
2. UV/Vis spectra and continuous change in the visible spectra of $\mathbf{1 0} \mathbf{- 1 8}$.
3. Cyclic voltammograms of $\mathbf{1 0} \mathbf{- 1 8}$.
4. Theoretical calculations of $\mathbf{1 0}$ 'and $\mathbf{1 2}$ '.

$>$ General

Melting points were determined with a Yanagimoto MPS3 micro melting apparatus and are uncorrected. Mass spectra were obtained with a JEOL HX-110, a Hitachi M-2500, or a Bruker APEX II instrument, usually at 70 eV . IR and UV/Vis spectra were measured with a Shimadzu FTIR-8100M and Shimadzu UV-2550 spectrophotometer, respectively. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a JEOL ECA500 at 500 MHz and 125 MHz or a Bruker AVANCE 400 at 400 MHz and 100 MHz , respectively. Gel permeation chromatography (GPC) purification was performed with a TSKgel ${\mathrm{G} 2000 \mathrm{H}_{6} \text { with } \mathrm{CHCl}_{3}, ~}_{\text {(}}$ as an eluent. Voltammetry measurements were carried out with a BAS 100B/W electrochemical workstation equipped with Pt working and auxiliary electrodes and a reference electrode formed from $\mathrm{Ag} / \mathrm{AgNO}_{3}(0.01 \mathrm{M})$ in acetonitrile containing tetrabutylammonium perchlorate $(0.1 \mathrm{M})$. Elemental analyses were performed at the Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University.

Compound (10)

To a solution of $\mathbf{1}(73 \mathrm{mg}, 0.25 \mathrm{mmol})$ in ethyl acetate (5 mL) was added TCNQ ($76 \mathrm{mg}, 0.37 \mathrm{mmol}$). The resulting mixture was refluxed for 4 h under an Ar atmosphere. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with ethyl acetate and Bio-Beads ${ }^{\circledR}$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{1 0}(119 \mathrm{mg}, 91 \%)$ as dark blue crystals. m.p. $151.0-154.0{ }^{\circ} \mathrm{C}$; IR (KBr disk): $\mathrm{v}_{\max }=3058$ (w), 2963 (w), 2926 (w), 2869 (w), 2211 (s, C $=\mathrm{N}$), 1748 (s, C=O), 1713 (w), 1653 (w), 1586 (m), 1559 (w), 1509 (m), 1474 (s), 1412 (s), 1314 (m), 1271 (s), 1246 (m), 1221 (w), 1192 (m), 841 (w), 799 (w), 768 (w), 758 (w), 743 (w), 714 (w), 693 (w), 658 (w), 604 (w), 469 (w), 419 $\mathrm{cm}^{-1}(\mathrm{w}) ;$ UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=271$ (4.44), 306 (4.19), 374 (4.27), $430 \mathrm{sh}(4.20), 615 \mathrm{~nm}$ (4.33); UV/Vis (hexane): $\lambda_{\max }(\log \varepsilon)=268$ (4.47), 301 (4.23), 362 (4.30), $430 \mathrm{sh}(4.22), 588 \mathrm{~nm}(4.35)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.66(\mathrm{dd}, 2 \mathrm{H}, J=7.2,1.6 \mathrm{~Hz}, o-\mathrm{Ph}), 7.55(\mathrm{dd}, 1 \mathrm{H}, J=7.2,1.6 \mathrm{~Hz}$, $p-\mathrm{Ph}), 7.47(\mathrm{dd}, 2 \mathrm{H}, J=7.2,7.2 \mathrm{~Hz}, m-\mathrm{Ph}), 7.40(\mathrm{dd}, 1 \mathrm{H}, J=10.8,9.2 \mathrm{~Hz}, 7-\mathrm{H}), 7.30(\mathrm{dd}, 1 \mathrm{H}, J=9.2$, $0.8 \mathrm{~Hz}, 8-\mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}, 6-\mathrm{H}$ and H of DCNQ), $7.13(\mathrm{dd}, 1 \mathrm{H}, J=9.6,1.6 \mathrm{~Hz}$, H of DCNQ), 7.03 (dd, $1 \mathrm{H}, J=9.6,1.6 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 2.91 (sept, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \mathrm{Pr}$), $1.25 \mathrm{ppm}(\mathrm{d}$, $6 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \mathrm{Pr}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=171.34$ (C of ipso-Ph), $165.46(\mathrm{C}-2), 162.44$ (C-5), 158.81 ($\mathrm{C}-3 \mathrm{a}$ or 8 a), 153.51 (C of DCNQ), 150.08 (C-3a or 8a), $141.02\left(\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}\right), 136.10(\mathrm{C}-7)$, 135.92 (C of DCNQ), 135.63 (C of DCNQ), 134.86 (C of DCNQ), 134.21 (C of DCNQ), 133.44 (C of DCNQ), 133.19 (C of $p-\mathrm{Ph}$), 129.78 (C of $o-\mathrm{Ph}$), 129.42 (C of $m-\mathrm{Ph}$), 126.01 (C-6), 125.14 (C-4), 118.19 $(\mathrm{C}-8), 113.38(\mathrm{CN}), 113.31(\mathrm{CN}), 112.83(\mathrm{CN}), 112.52(\mathrm{CN}), 105.31(\mathrm{C}-3), 87.62\left(\mathrm{C}(\mathrm{CN})_{2}\right), 78.48$ $\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 39.48(i \operatorname{Pr}), 23.59 \mathrm{ppm}(i \operatorname{Pr})$; HRMS (ESI): Calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$515.1478. Found: 515.1477; elemental analysis calcd (\%) for $\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 77.33 ; \mathrm{H}, 4.16 ; \mathrm{N}, 11.27$. Found: C, 77.38; H, 4.17; N, 11.37.

Compound (11)

The procedure used for the preparation of $\mathbf{1 0}$ was adopted here. The reaction of $\mathbf{2}(83 \mathrm{mg}, 0.25 \mathrm{mmol})$ with TCNQ ($76 \mathrm{mg}, 0.37 \mathrm{mmol}$) in refluxing ethyl acetate (5 mL) for 24 h afforded $\mathbf{1 1}(121 \mathrm{mg}, 90 \%)$ as dark blue crystals. m.p. $117.0-119.0^{\circ} \mathrm{C}$; IR (KBr disk): $v_{\max }=2965$ (w), 2926 (w), 2854 (w), $2211(\mathrm{~m})$, 1747 (m), 1600 (m), 1587 (m), 1521 (m), 1472 (s$), 1414$ (s$), 1349$ (m), 1315 (m), 1272 (s$), 1247$ (m), 1192 (m), 1148 (w), 1114 (w), 1064 (w), 1043 (w), 1015 (w), 974 (w), 949 (w), 908 (w), 863 (m), 848 $(\mathrm{m}), 800(\mathrm{~m}), 766(\mathrm{~m}), 759(\mathrm{~m}), 744(\mathrm{~m}), 715 \mathrm{~cm}^{-1}(\mathrm{~m})$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\log \varepsilon)=272(4.53), 312$ (4.31), 381 (4.37), $457 \mathrm{sh}(4.15), 626 \mathrm{~nm}$ (4.33); UV/Vis (hexane): $\lambda_{\max }(\log \varepsilon)=270$ (4.52), 312 (4.28), 378 (4.38), $457 \mathrm{sh}(4.11), 597 \mathrm{~nm}(4.32) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.30(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}$, $m-\mathrm{Ph}), 7.85(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, o-\mathrm{Ph}), 7.48(\mathrm{dd}, 1 \mathrm{H}, J=11.0,9.5 \mathrm{~Hz}, 7-\mathrm{H}), 7.57(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, 8-\mathrm{H})$, $7.29-7.25(\mathrm{~m}, 4 \mathrm{H}, 4,6-\mathrm{H}$ and H of DCNQ), $7.10(\mathrm{dd}, 1 \mathrm{H}, J=9.5,1.0 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), $7.03(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.5 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 2.92 (sept, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}, i \mathrm{Pr}), 1.25 \mathrm{ppm}(\mathrm{d}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}, i \mathrm{Pr}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=169.12(\mathrm{C}$ of ipso-Ph), $165.60(\mathrm{C}-2), 163.16(\mathrm{C}-5), 158.95(\mathrm{C}-3 \mathrm{a}$ or 8 a$), 153.02(\mathrm{C}$ of DCNQ), 150.14 ($\mathrm{C}-3 \mathrm{a}$ or 8 a), 149.79 (C of $p-\mathrm{Ph}$), $140.40(\mathrm{C}$ of DCNQ$), 139.50\left(\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}\right), 136.54$ (C-7), 136.26 (C of DCNQ), 135.36 (C of DCNQ), 133.79 (C of DCNQ), 132.64 (C of DCNQ), 130.91 (C of $o-\mathrm{Ph}$), 126.60 (C of DCNQ), 126.56 (C-6), 125.27 (C-4), 124.39 (C of $m-\mathrm{Ph}$), 118.83 (C-8), 113.16 $(\mathrm{CN}), 113.08(\mathrm{CN}), 112.05(\mathrm{CN}), 111.75(\mathrm{CN}), 104.67(\mathrm{C}-3), 90.67\left(\mathrm{C}(\mathrm{CN})_{2}\right), 79.60\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 39.59$ ($i \mathrm{Pr}$), $23.67 \mathrm{ppm}(i \operatorname{Pr})$; HRMS (FAB): Calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$538.1515. Found: 538.1520; elemental analysis calcd (\%) for $\mathrm{C}_{32} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 71.50; H, 3.56; $\mathrm{N}, 13.03$. Found: C, 71.38; H, 3.72; N , 12.96.

Compound (12)

The procedure used for the preparation of $\mathbf{1 0}$ was adopted here. The reaction of $\mathbf{3}(47 \mathrm{mg}, 0.12 \mathrm{mmol})$ with TCNQ ($48 \mathrm{mg}, 0.24 \mathrm{mmol}$) in refluxing ethyl acetate (5 mL) for 24 h afforded $\mathbf{1 2}(66 \mathrm{mg}, 92 \%$) as dark blue crystals. m.p. $206.0-208.0^{\circ} \mathrm{C}$; IR (KBr disk): $v_{\text {max }}=2962(\mathrm{w}), 2869(\mathrm{w}), 2209(\mathrm{~m}, \mathrm{C} \equiv \mathrm{N}), 1750$ (s, C=O), 1586 (m), 1515 (s), 1474 (s), 1402 (s), 1314 (m), 1272 (s), 1245 (m), 1233 (m), 1190 (m), 1149 (w), 1045 (w), 938 (w), $841(\mathrm{w}), 800(\mathrm{w}), 761(\mathrm{w}), 711 \mathrm{~cm}^{-1}(\mathrm{w})$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }(\log \varepsilon)=$ 267 (4.69), 304 sh (4.29), 372 sh (4.37), 449 (4.68), 624 nm (4.49); UV/Vis (hexane): $\lambda_{\max }(\log \varepsilon)=259$ (4.73), 302 sh (4.33), 363 (4.40), 446 (4.73), $590 \mathrm{~nm}(4.49)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.69(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, 4-\mathrm{H}), 7.53$ (dd, 1H, $J=10.8,9.2 \mathrm{~Hz}, 7-\mathrm{H}), 7.45-7.30\left(\mathrm{~m}, 6 \mathrm{H}, 6,8,4^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}-\mathrm{H}\right.$), 7.25-7.19 (m, $3 \mathrm{H}, \mathrm{H}$ of DCNQ), 7.09 (d, 1H, $J=9.2 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 3.18 (br s, 1H, $i \mathrm{Pr}$), 2.89 (sept, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $i \operatorname{Pr}), 1.44(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, i \operatorname{Pr}), 1.22 \mathrm{ppm}(\mathrm{d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \operatorname{Pr})$; Low solubility hampered the measurement of ${ }^{13} \mathrm{C}$ NMR. HRMS (ESI): Calcd for $\left[\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$625.1846. Found: 625.1842; elemental analysis calcd (\%) for $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, 74.62 ; H, 4.45; N, 9.16. Found: C, 74.46; H, 4.59; N, 9.16.

Compound (13)

The procedure used for the preparation of $\mathbf{1 0}$ was adopted here. The reaction of $\mathbf{4}(78 \mathrm{mg}, 0.26 \mathrm{mmol})$ with TCNQ ($80 \mathrm{mg}, 0.39 \mathrm{mmol}$) in refluxing ethyl acetate (5 mL) for 6 h afforded $\mathbf{1 3}(119 \mathrm{mg}, 91 \%)$ as dark blue crystals. m.p. $158.5-161.5^{\circ} \mathrm{C}$; IR (KBr disk): $v_{\max }=3154$ (w), 3102 (w), 2963 (w), 2872 (w), 2211 ($\mathrm{s}, \mathrm{C} \equiv \mathrm{N}$), 1750 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1601 (m), 1584 (m), 1512 (s$), 1472$ (s$), 1406$ (s$), 1364$ (s), 1347 (m), 1314 (m), 1271 (s), 1244 (m), 1192 (s), 970 (w), 939 (w), 841 (m), 795 (w), 764 (m), 714 (m), 662 (m), $642(\mathrm{w}), 467 \mathrm{~cm}^{-1}(\mathrm{w}) ; \mathrm{UV} / \mathrm{V}$ is $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\log \varepsilon)=236(4.41), 270(4.46), 344 \mathrm{sh}(4.48), 368$ (4.53), 440 sh (4.19), $607 \mathrm{~nm}(4.48) ;$ UV/Vis (hexane): $\lambda_{\max }(\log \varepsilon)=267$ (4.43), 362 (4.48), 437 sh (4.08), 585 $\mathrm{nm}(4.39) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.04\left(\mathrm{dd}, 1 \mathrm{H}, J=4.0,0.8 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right.$ of Th$), 7.86(\mathrm{dd}, 1 \mathrm{H}, J$ $=5.2,0.8 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}$ of Th$), 7.45(\mathrm{dd}, 1 \mathrm{H}, J=10.8,9.2 \mathrm{~Hz}, 7-\mathrm{H}), 7.37(\mathrm{dd}, 1 \mathrm{H}, J=9.2,1.2 \mathrm{~Hz}, 8-\mathrm{H}), 7.37$ (d, 1H, J = $1.2 \mathrm{~Hz}, 4-\mathrm{H}$), 7.27 (dd, $1 \mathrm{H}, J=5.2,4.0 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}$ of Th), 7.26 (ddd, $1 \mathrm{H}, J=10.8,1.2,1.2 \mathrm{~Hz}$, $6-\mathrm{H}), 7.24(\mathrm{dd}, 1 \mathrm{H}, J=9.6,2.0 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 7.19 (dd, $1 \mathrm{H}, J=9.6,2.0 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 7.16 (dd, $1 \mathrm{H}, J=9.6,2.0 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), $6.99(\mathrm{dd}, 1 \mathrm{H}, J=9.6,2.0 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 2.91 (sept, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $i \operatorname{Pr}), 1.23 \mathrm{ppm}(\mathrm{d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \mathrm{Pr}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=165.15(\mathrm{C}-2), 162.65(\mathrm{C}-5)$, $161.53\left(\underline{C}=\mathrm{C}(\mathrm{CN})_{2}\right), 158.97$ ($\mathrm{C}-3 \mathrm{a}$ or 8 a), 153.79 (C of DCNQ), 149.88 (C-3a or 8a), 140.63 (C of DCNQ), 138.11 (C-2' of Th), 137.23 (C-5' of Th), 136.31 (C-4' of Th), 136.22 (C-7), 135.82 (C-3' of Th), 133.90 (C of DCNQ), 133.81 (C of DCNQ), 133.36 (C of DCNQ), 129.84 (C-6), 125.78 (C-4), 125.72 (C of DCNQ), 125.57 (C of DCNQ), 118.38 (C-8), 113.48 (CN), 113.39 (CN), 112.91 (CN), $104.86(\mathrm{C}-3), 80.70\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 77.96\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 39.46(i \operatorname{Pr}), 23.56 \mathrm{ppm}(i \operatorname{Pr}) ;$ HRMS (ESI): Calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}+\mathrm{Na}\right]^{+}$521.1043. Found: 521.1042; elemental analysis calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 71.41 ; \mathrm{H}, 3.73$; $\mathrm{N}, 11.10$. Found: C, $71.45 ; \mathrm{H}, 3.86 ; \mathrm{N}, 11.18$.

Compound (14)

The procedure used for the preparation of $\mathbf{1 0}$ was adopted here. The reaction of $\mathbf{5}(83 \mathrm{mg}, 0.25 \mathrm{mmol})$ with TCNQ ($82 \mathrm{mg}, 0.40 \mathrm{mmol}$) in refluxing ethyl acetate (5 mL) for 2 h afforded $\mathbf{1 4}(117 \mathrm{mg}, 87 \%)$ as dark purple crystals. m.p. $206.0-210.0^{\circ} \mathrm{C}$; IR (KBr disk): $v_{\max }=2966(\mathrm{w}), 2193(\mathrm{~m}, \mathrm{C} \equiv \mathrm{N}), 1760(\mathrm{~m}$, C=O), 1612 (w), 1578 (s), 1519 (w), 1477 (m), 1392 (m), 1365 (s), 1348 (s), 1322 (m), 1275 (m), 1231 (w), 1210 (w), 1167 (s), 1130 (m), 1066 (w), 1050 (w), 942 (w), 908 (w), 836 (w), 798 (w), 762 (w), 744 (w), $730(\mathrm{w}), 718 \mathrm{~cm}^{-1}(\mathrm{w})$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=254$ (4.38), 267 (4.37), 344 (4.16), 429 (4.34), 496 (4.43), 718 nm (4.46); UV/Vis (hexane): $\lambda_{\max }(\log \varepsilon)=254$ (4.40), 265 sh (4.39), 343 (4.13), 424 (4.34), 480 (4.41), $657 \mathrm{~nm}(4.46) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.51$ (dd, $1 \mathrm{H}, J=9.6,9.6 \mathrm{~Hz}$, $7-\mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}$ and H of DCNQ$), 7.32(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, 8-\mathrm{H}), 7.29-7.25(\mathrm{~m}$, $3 \mathrm{H}, o-\mathrm{Ph}$ and H of DCNQ), 7.18 (dd, $1 \mathrm{H}, J=9.6,1.2 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), $7.09(\mathrm{dd}, 1 \mathrm{H}, J=9.6,1.2 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 6.70 (d, 2H, $J=9.2 \mathrm{~Hz}, m-\mathrm{Ph}$), 3.13 (s, $6 \mathrm{H}, \mathrm{NMe}_{2}$), 2.98 (sept, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \operatorname{Pr}$), 1.25 ppm (d, $6 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \mathrm{Pr}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=163.64(\mathrm{C}-2), 163.46(\mathrm{C}-5), 163.23$ (C-3a or 8a), 159.04 (C-3a or 8a), $153.98\left(\underline{C}=\mathrm{C}(\mathrm{CN})_{2}\right), 153.06$ (C of $\left.i p s o-\mathrm{Ph}\right), 151.94$ (C of DCNQ), 149.11 (C of DCNQ), 137.04 (C-8), 136.42 (C-7), 136.34 (C of DCNQ), 135.10 (C of m-Ph), 134.29 (C of DCNQ), 133.34 (C of DCNQ), 126.36 (C-4), 125.33 (C of DCNQ), 124.85 (C of DCNQ), 124.47 (C of $p-\mathrm{Ph}), 119.53(\mathrm{C}-6), 114.89(\mathrm{CN}), 113.01(\mathrm{CN}), 112.77(\mathrm{CN}), 112.38(\mathrm{C}$ of $o-\mathrm{Ph}), 104.37(\mathrm{C}-3), 87.24$ $\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 71.30\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 40.18\left(\mathrm{NMe}_{2}\right), 39.83(i \mathrm{Pr}), 23.61 \mathrm{ppm}(i \operatorname{Pr}) ; H R M S ~(\mathrm{FAB}): C a l c d ~ f o r ~$ $\left[\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$536.2087. Found: 536.2086; elemental analysis calcd (\%) for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 76.24; H, 4.70; N, 13.08. Found: C, 76.12; H, 4.74; N, 13.01.

Compound (15)

The procedure used for the preparation of $\mathbf{1 0}$ was adopted here. The reaction of $\mathbf{6}(105 \mathrm{mg}, 0.27 \mathrm{mmol})$ with TCNQ ($80 \mathrm{mg}, 0.39 \mathrm{mmol}$) in refluxing ethyl acetate (5 mL) for 13 h afforded $\mathbf{1 5}(156 \mathrm{mg}, 98 \%)$ as dark blue crystals. m.p. $175.0-180.0^{\circ} \mathrm{C}$; IR (KBr disk): $v_{\max }=3093$ (w), 3085 (w), 3069 (w), 3060 (w), 2962 (w), 2872 (w), 2210 (s, C $\equiv \mathrm{N}$), 1750 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1601 (w), 1585 (s), 1512 (s), 1472 (s), 1438 (s), 1412 (s), 1313 (s), 1272 (s), 1245 (s), 1191 (s), 1107 (m), 1040 (m), 1003 (m), 930 (m), 840 (w), 796 (m), 742 (w), $712(\mathrm{~m}), 668(\mathrm{~m}), 498(\mathrm{w}), 426 \mathrm{~cm}^{-1}(\mathrm{w})$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=267(4.46), 332 \mathrm{sh}(4.35)$, 361 (4.37), $406 \mathrm{sh}(4.31), 590 \mathrm{~nm}(4.40)$; UV/Vis (hexane): $\lambda_{\max }(\log \varepsilon)=265$ (4.47), $324 \mathrm{sh}(4.29), 358$ (4.42), $394 \mathrm{sh}(4.32), 573 \mathrm{~nm}(4.36) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.55$ (br s, 1H, 4-H), 7.39 (dd, $1 \mathrm{H}, J=10.8,9.2 \mathrm{~Hz}, 7-\mathrm{H}), 7.32(\mathrm{dd}, 1 \mathrm{H}, J=9.2,0.8 \mathrm{~Hz}, 8-\mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}, 6-\mathrm{H}$ and H of DCNQ), 7.12 (dd, 1H, $J=9.6,2.0 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 7.10 (dd, $1 \mathrm{H}, J=9.6,2.0 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 4.99 (br s, 1H, H of Fc), 4.87 (br s, 1H, H of Fc), 4.82 (br s, 1H, H of Fc), 4.76 (br s, 1H, H of Fc), 4.40 (s, 5H, H of Cp), 2.88 (sept, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \operatorname{Pr}), 1.24 \mathrm{ppm}(\mathrm{d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \operatorname{Pr}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=$ 165.42 (C-2), 162.11 (C-4), 158.68 (C-8a), 154.07 (C-3a), $149.99(\mathrm{C}-6), 140.91\left(\underline{C}=\mathrm{C}(\mathrm{CN})_{2}\right), 135.96$, 135.81 (C-7), 134.44 (C of DCNQ), 134.08 (C of DCNQ), 133.30 (C of DCNQ), 131.20 (C-4), 125.65 (C of DCNQ), 125.36 (C of DCNQ), 125.33 (C of DCNQ), 117.89 (C-8), $114.54(\mathrm{CN}), 114.18(\mathrm{CN})$, $113.54(\mathrm{CN}), 113.53(\mathrm{CN}), 104.90(\mathrm{C}-3), 78.60\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 77.64\left(\underline{C}(\mathrm{CN})_{2}\right), 74.76(\mathrm{C}$ of Fc), $74.32(\mathrm{C}$ of Fc), 72.74 (C of Fc), 72.11 (C of Fc), 71.98 (C of Cp), 39.43 ($i \mathrm{Pr}$), 23.64 (iPr), $23.39 \mathrm{ppm}(i \operatorname{Pr})$; HRMS (ESI): Calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{FeN}_{4} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$623.1141. Found: 623.1144; elemental analysis calcd (\%) for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{FeN}_{4} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, $70.95 ; \mathrm{H}, 4.13$; N, 9.19. Found: C, 70.91; H, 4.19; N, 9.38.

Compound (16)

The procedure used for the preparation of $\mathbf{1 0}$ was adopted here. The reaction of $\mathbf{7}(110 \mathrm{mg}, 0.25 \mathrm{mmol})$ with TCNQ ($82 \mathrm{mg}, 0.40 \mathrm{mmol}$) in refluxing ethyl acetate (5 mL) for 3 h afforded $\mathbf{1 6}(156 \mathrm{mg}, 97 \%)$ as greenish blue crystals. m.p. 176.0-179.0 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$; IR (KBr disk): $v_{\max }=2964$ (w), 2207 (m, $\mathrm{C} \equiv \mathrm{N}$), 1756 ($\mathrm{m}, \mathrm{C}=\mathrm{O}$), 1698 (m, C=O), 1588 (m), 1506 (m), 1473 (s), 1441 (s), 1420 (s), 1399 (s), 1378 (m), 1315 (w), 1275 (m), 1233 (m), 1213 (s), 1190 (s), 1130 (w), 1057 (w), 932 (w), 897 (w), 842 (w), $806(\mathrm{w}), 778(\mathrm{w}), 718 \mathrm{~cm}^{-1}(\mathrm{~m}) ;$ UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=241(4.62), 273 \mathrm{sh}(4.52), 294 \mathrm{sh}(4.48)$, 431 (4.46), 653 nm (4.35); UV/Vis (hexane): $\lambda_{\max }(\log \varepsilon)=243$ (4.14), 294 (4.49), 426 (4.47), 604 nm (4.31); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=9.84\left(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right.$ of Az$), 8.35(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}$, $8^{\prime}-\mathrm{H}$ of Az), $8.22\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ of Az), $7.97\left(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right.$ of Az), $7.66(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}$, $7^{\prime}-\mathrm{H}$ of Az), 7.51 (dd, $1 \mathrm{H}, J=10.8,9.6 \mathrm{~Hz}, 7-\mathrm{H}$), 7.49 (s, 1H, 4-H), 7.36-7.31 (m, 4H, 6,8-H and H of DCNQ), 7.23 (dd, $1 \mathrm{H}, J=10.4,1.6 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 7.13 (dd, $1 \mathrm{H}, J=10.4,1.6 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 3.91 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.28 (sept, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \operatorname{Pr}$), 3.07 (sept, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \operatorname{Pr}$ of Az), 1.43 (d, $6 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}, i \operatorname{Pr}$ of Az), $1.35(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \operatorname{Pr}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=164.71(\mathrm{C}-3 \mathrm{a})$, $164.12(\mathrm{C}-5), 163.71(\mathrm{C}-2), 163.47\left(\mathrm{CO}_{2} \mathrm{Me}\right), 159.03(\mathrm{C}-8 \mathrm{a}), 154.79(\mathrm{C}-5$ ' of Az$), 153.84\left(\underline{\mathrm{C}}=\mathrm{C}(\mathrm{CN})_{2}\right)$, 149.00 (C of DCNQ), 145.43 (C-1' of Az), 144.98 (C-8a' of Az), 144.06 (C-2' of Az), 141.65 (C-6' of Az), 139.92 (C-4' of Az), 137.08 (C-8’ of Az), 136.95 (C-7), 136.70 (C of DCNQ), 136.32 (C of DCNQ), 135.84 (C of DCNQ), 133.97 (C-8), 131.24 (C-7’ of Az), 126.83 (C of DCNQ), 126.13 (C-4), 125.59 (C of DCNQ), 119.51 (C-6), 118.33 (CN), 114.26 (CN), 113.09 (CN), 112.71 (CN), 103.95 (C-3), 86.36 $\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 74.55\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 51.44\left(\mathrm{CO}_{2} \mathrm{Me}\right), 40.02(i \mathrm{Pr}), 39.34(i \operatorname{Pr}$ of Az), $24.45(i \operatorname{Pr}$ of Az), 23.64 ppm (iPr); HRMS (FAB): Calcd for $\left[\mathrm{C}_{41} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+}$642.2267. Found: 642.2266; elemental analysis calcd (\%) for $\mathrm{C}_{41} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 76.62; H, 4.70; N, 8.72. Found: C, 76.45; H, 4.86; N, 8.49.

Compound (17)

The procedure used for the preparation of $\mathbf{1 0}$ was adopted here. The reaction of $\mathbf{8}(126 \mathrm{mg}, 0.25 \mathrm{mmol})$ with TCNQ ($204 \mathrm{mg}, 1.00 \mathrm{mmol}$) in refluxing ethyl acetate (5 mL) for 48 h afforded $17(210 \mathrm{mg}, 92 \%)$ as dark blue crystals. m.p. $211.0-215.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr disk): $v_{\max }=2980(\mathrm{w}), 2965(\mathrm{w}), 2211(\mathrm{~s}$, $\mathrm{C} \equiv \mathrm{N}$), 1757 ($\mathrm{m}, \mathrm{C}=\mathrm{O}$), 1602 (m), 1587 (m), 1514 (m), 1472 (s$), 1416$ (s$), 1314$ (m), 1272 (s$), 1247$ (m), 1192 (m), 1145 (w), 1110 (w), 1064 (w), 1045 (w), 974 (w), 945 (w), 841 (m), 802 (m), 765 (m), 742 (m), $714 \mathrm{~cm}^{-1}(\mathrm{~m})$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\log \varepsilon)=269(4.83), 350 \mathrm{sh}(4.74), 407$ (4.87), 597 nm (4.77); UV/Vis (hexane): $\lambda_{\max }(\log \varepsilon)=272$ (4.58), $353 \mathrm{sh}(4.50), 411$ (4.60), $635 \mathrm{~nm}(4.53) ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.95(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}$ of Th), $7.51(\mathrm{dd}, 2 \mathrm{H}, J=10.8,9.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=9.6$ $\mathrm{Hz}, 8-\mathrm{H}), 7.33$ (s, 2H, 4-H), 7.30 (d, 1H, J = $10.8 \mathrm{~Hz}, 6-\mathrm{H}$), $7.24-7.22$ (m, 2H, H of DCNQ), 7.07 (d, 2H, $J=9.6 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 6.95 (dd, 2H, $J=9.6 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 2.93 (sept, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \operatorname{Pr}$), 1.24 ppm (d, $12 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \operatorname{Pr}$); Low solubility hampered the measurement of ${ }^{13} \mathrm{C}$ NMR. HRMS (FAB): Calcd for $\left[\mathrm{C}_{56} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}+\mathrm{H}\right]^{+}$913.2345. Found: 913.2347; elemental analysis calcd (\%) for $\mathrm{C}_{56} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 73.67$; H, 3.53; N, 12.27. Found: C, 73.48; H, 3.68; N, 12.20.

Compound (18)

The procedure used for the preparation of $\mathbf{1 0}$ was adopted here. The reaction of $\mathbf{9}(147 \mathrm{mg}, 0.25 \mathrm{mmol})$ with TCNQ ($204 \mathrm{mg}, 1.00 \mathrm{mmol}$) in refluxing ethyl acetate (5 mL) for 48 h afforded $\mathbf{1 8 (2 3 9 \mathrm { mg } , 9 6 \%) ~}$ as dark purple crystals. m.p. $237.0-240.0^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$; IR (KBr disk): $v_{\max }=2965$ (w), 2210 (s, $\mathrm{C} \equiv \mathrm{N}$), 1750 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1584 (m), 1512 (s$), 1470$ (s$), 1416$ (s$), 1331$ (w), 1314 (m), 1272 (s$), 1245$ (m), 1192 (m), 1061 (w), 1042 (w), 943 (w), 840 (m), 800 (w), 764 (w), 742 (w), 713 (w), $661 \mathrm{~cm}^{-1}$ (w); UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=269$ (4.72), 382 (4.64), $407 \mathrm{sh}(4.66), 450(4.71), 541$ (4.72), 601 nm (4.70); UV/Vis (hexane): $\lambda_{\max }(\log \varepsilon)=270$ (4.60), 384 sh (4.51), 410 sh (4.54), 459 (4.58), 600 nm (4.59); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.89(\mathrm{~d}, 2 \mathrm{H}, J=1.2 \mathrm{~Hz}, 4-\mathrm{H}), 7.48(\mathrm{dd}, 2 \mathrm{H}, J=10.8,9.6 \mathrm{~Hz}$, $7-\mathrm{H}), 7.42(\mathrm{~m}, 6 \mathrm{H}, 8-\mathrm{H}$ and H of Th), $7.29(\mathrm{dd}, 2 \mathrm{H}, J=9.6,1.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.24(\mathrm{dd}, 2 \mathrm{H}, J=9.6,2.0 \mathrm{~Hz}$, H of DCNQ), 7.19 (dd, 2H, $J=9.6,2.0 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 7.13 (dd, $2 \mathrm{H}, J=9.6,2.0 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 6.98 (dd, 2H, $J=9.6,2.0 \mathrm{~Hz}, \mathrm{H}$ of DCNQ), 2.92 (sept, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}, i \operatorname{Pr}$), $1.23 \mathrm{ppm}(\mathrm{d}, 12 \mathrm{H}, J=6.8$ $\mathrm{Hz}, i \mathrm{Pr}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=165.31(\mathrm{C}-5), 162.94(\mathrm{C}-2), 160.55(\mathrm{C}-8 \mathrm{a}), 159.01(\mathrm{C}$ of Th), $153.62\left(\underline{C}=C(C N)_{2}\right), 150.00(C-3 a), 145.48(C$ of Th), 140.07 (C of DCNQ), 139.21(C of DCNQ), 137.04 (C of DCNQ), 136.50 (C-7), 136.35 (C-6), 133.61 (C of DCNQ), 133.47 (C of DCNQ), 133.11 (C of DCNQ), 128.30 (C of Th), 126.04 (C of DCNQ), 125.90 (C of Th), 118.65 (C-8), 113.41 (CN), $\left.113.35(\mathrm{CN}), 113.27(\mathrm{CN}), 112.86(\mathrm{CN}), 104.72(\mathrm{C}-3), 80.80\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 78.52(\underline{(C N})_{2}\right), 39.50(i \mathrm{Pr})$, 23.60 ppm (iPr); HRMS (FAB): Calcd for $\left[\mathrm{C}_{60} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}+\mathrm{H}\right]^{+}$995.2223. Found: 995.2203; elemental analysis calcd (\%) for $\mathrm{C}_{60} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 71.13 ; \mathrm{H}, 3.58$; N, 11.06. Found: C, 71.07; H, 3.62; N, 11.01.

Figure S-1. UV/Vis spectrum of $\mathbf{1 0}$ in each solvent.

Figure S-2. Continuous change in the visible spectrum of 10: (a) constant-current electrochemical reduction $(50 \mathrm{uA})$ and (b) reverse oxidation of the reduced species (50 uA) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ at 30 sec intervals.
(a)

(b)

(c)

Figure S-3. Color changes of $\mathbf{1 0}$ upon the electrochromic analysis in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}$ (0.1 M) upon (50 uA): (a) before electrochemical reduction, (b) after electrochemical reduction, and (c) after reverse electrochemical oxidation of the reduced species.

Figure S-4. UV/V is spectrum of $\mathbf{1 1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (blue line) and $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (red line).

Figure S-5. Continuous change in the visible spectrum of 11: (a) constant-current electrochemical reduction (50 uA) and (b) reverse oxidation of the reduced species (50 uA) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ at 30 sec intervals.
(a)

(b)

(c)

Figure S-6. Color changes of $\mathbf{1 1}$ upon the electrochromic analysis in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}$ (0.1 M) upon (50 uA): (a) before electrochemical reduction, (b) after electrochemical reduction, and (c) after reverse electrochemical oxidation of the reduced species.

Figure S-7. UV/V is spectrum of $\mathbf{1 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (blue line) and $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (red line).

Figure S-8. Continuous change in the visible spectrum of 12: (a) constant-current electrochemical reduction $(50 \mathrm{uA})$ and (b) reverse oxidation of the reduced species (50 uA) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ at 30 sec intervals.
(a)

(b)

(c)

Figure S-9. Color changes of $\mathbf{1 2}$ upon the electrochromic analysis in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}$ (0.1 M) upon (50 uA): (a) before electrochemical reduction, (b) after electrochemical reduction, and (c) after reverse electrochemical oxidation of the reduced species.

Figure S-10. UV/V is spectrum of $\mathbf{1 3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (blue line) and $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (red line).

Figure S-11. Continuous change in the visible spectrum of 13: (a) constant-current electrochemical reduction (50 uA) and (b) reverse oxidation of the reduced species (50 uA) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ at 30 sec intervals.
(a)

(b)

(c)

Figure S-12. Color changes of $\mathbf{1 3}$ upon the electrochromic analysis in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}$ (0.1 M) upon (50 uA): (a) before electrochemical reduction, (b) after electrochemical reduction, and (c) after reverse electrochemical oxidation of the reduced species.

Figure S-13. UV/V is spectrum of $\mathbf{1 4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (blue line) and $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (red line).

Figure S-14. Continuous change in the visible spectrum of 14: (a) constant-current electrochemical reduction (50 uA) and (b) reverse oxidation of the reduced species (50 uA) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ at 30 sec intervals.
(a)

(b)

(c)

Figure S-15. Color changes of $\mathbf{1 4}$ upon the electrochromic analysis in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}$ (0.1 M) upon (50 uA): (a) before electrochemical reduction, (b) after electrochemical reduction, and (c) after reverse electrochemical oxidation of the reduced species.

Figure S-16. UV/V is spectrum of $\mathbf{1 5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (blue line) and $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (red line).

Figure S-17. Continuous change in the visible spectrum of 15: (a) constant-current electrochemical reduction (50 uA) and (b) reverse oxidation of the reduced species (50 uA) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ at 30 sec intervals.
(a)

(b)

(c)

Figure S-18. Color changes of $\mathbf{1 5}$ upon the electrochromic analysis in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}$ (0.1 M) upon (50 uA): (a) before electrochemical reduction, (b) after electrochemical reduction, and (c) after reverse electrochemical oxidation of the reduced species.

Figure S-19. UV/Vis spectrum of 16 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (blue line) and $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (red line).

Figure S-20. Continuous change in the visible spectrum of 16: (a) constant-current electrochemical reduction $(50 \mathrm{uA})$ and (b) reverse oxidation of the reduced species (50 uA) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ at 30 sec intervals.
(a)

(b)

(c)

Figure S-21. Color changes of $\mathbf{1 6}$ upon the electrochromic analysis in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}$ (0.1 M) upon (50 uA): (a) before electrochemical reduction, (b) after electrochemical reduction, and (c) after reverse electrochemical oxidation of the reduced species.

Figure S-22. UV/V is spectrum of $\mathbf{1 7}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (blue line) and $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (red line).
(a)

(b)

(c)

Figure S-23. Color changes of $\mathbf{1 7}$ upon the electrochromic analysis in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}$ (0.1 M) upon (50 uA): (a) before electrochemical reduction, (b) after electrochemical reduction, and (c) after reverse electrochemical oxidation of the reduced species.

Figure S-24. UV/Vis spectrum of $\mathbf{1 8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (blue line) and $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (red line).

Figure S-25. Continuous change in the visible spectrum of 18: (a) constant-current electrochemical reduction (50 uA) and (b) reverse oxidation of the reduced species (50 uA) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ at 30 sec intervals.
(a)

(b)

(c)

Figure S-26. Color changes of $\mathbf{1 8}$ upon the electrochromic analysis in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}$ (0.1 M) upon (50 uA): (a) before electrochemical reduction, (b) after electrochemical reduction, and (c) after reverse electrochemical oxidation of the reduced species.

Table S-1. Redox potentials and band gap of DCNQ chromophores 10-18.

Sample	Method	$E_{1}{ }^{\text {ox }}[\mathrm{V}]$	$E_{2}{ }^{\text {ox }}[\mathrm{V}]$	$E_{1}^{\text {red }}[\mathrm{V}]$	$E_{2}{ }^{\text {red }}$ [V]	$E_{3}{ }^{\text {red }}[\mathrm{V}]$	$E_{4}^{\text {red }}[\mathrm{V}]$	$E_{1}^{\text {ox }}-E_{1}{ }^{\text {red }}[\mathrm{V}]$
10	CV			-0.37	-0.53			
	(DPV)	(+0.79)		(-0.35)	(-0.51)			(1.14)
11	CV			-0.29	-0.43			
	(DPV)	(+0.80)		(-0.27)	(-0.41)	(-1.46)	(-1.80)	(1.07)
12	CV			-0.38	-0.49			
	(DPV)	(+0.79)		(-0.36)	(-0.47)	(-1.92)		(1.15)
13	CV			-0.42	-0.50			
	(DPV)	(+0.78)		(-0.40)	(-0.48)			(1.18)
14	CV			-0.47	-0.58			
	(DPV)	(+0.74)	(+0.88)	(-0.45)	(-0.58)	(-1.73)		(1.19)
15	CV	+0.46		-0.49	-0.62			
	(DPV)	$(+0.45)$	(+0.82)	(-0.47)	(-0.60)			(0.92)
16	CV			-0.42	-0.57			
	(DPV)	(+0.69)		(-0.40)	(-0.55)	(-1.92)		(1.09)
17	CV			-0.26	-0.37	-0.52 (2e)		
	(DPV)	$(+0.82)$		(-0.24)	(-0.35)	(-0.50)	(-1.77)	(1.06)
18	CV			-0.50 (4e)				
	(DPV)	(+0.78)		(-0.36)	(-0.48)			(1.14)

$\overline{\text { Redox potentials were measured by CV and DPV [V vs } \mathrm{Ag} / \mathrm{AgNO}_{3}, 1 \mathrm{mM} \text { in benzonitrile containing }}$ $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$, Pt electrode (internal diameter: 1.6 mm), scan rate $=100 \mathrm{mVs}^{-1}$, and $\mathrm{Fc} / \mathrm{Fc}+=+0.15$ V]. In the case of reversible waves, redox potentials measured by CV are presented. The peak potentials measured by DPV are shown in parentheses.

Figure S-27. Cyclic voltammograms of oxidation (left) and reduction (right) of $\mathbf{1 0}$ (1 mM) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte; scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S-28. Cyclic voltammograms of oxidation (left) and reduction (right) of $\mathbf{1 1}(1 \mathrm{mM})$ in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte; scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S-29. Cyclic voltammograms of oxidation (left) and reduction (right) of $\mathbf{1 2}$ ($1 \mathbf{m M}$) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte; scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S-30. Cyclic voltammograms of oxidation (left) and reduction (right) of $\mathbf{1 3}$ (1 mM) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte; scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S-31. Cyclic voltammograms of oxidation (left) and reduction (right) of $\mathbf{1 4}(1 \mathrm{mM})$ in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte; scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S-32. Cyclic voltammograms of oxidation (left) and reduction (right) of $\mathbf{1 5}$ (1 mM) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte; scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S-33. Cyclic voltammograms of oxidation (left) and reduction (right) of $\mathbf{1 6}$ (1 mM) in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte; scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S-34. Cyclic voltammograms of oxidation (left) and reduction (right) of $\mathbf{1 8}(1 \mathrm{mM})$ in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte; scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S-35. Frontier Kohn-Sham orbitals and their energy levels of $\mathbf{1 0}$ ' at the B3LYP/6-31G ${ }^{* * *}$ level.

Figure S-36. Frontier Kohn-Sham orbitals and their energy levels of 12' at the B3LYP/6-31G ${ }^{* *}$ level.

