Fluorimetric detection of Mg²⁺ and DNA with 9-(alkoxyphenyl)benzo[*b*]quinolizinium derivatives

Maoqun Tian, Heiko Ihmels* and Shite Ye

University of Siegen, Organic Chemistry II, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany E-mail: ihmels@chemie.uni-siegen.de

Electronic Supplementary Information (ESI)

Figure 3B with enlarged inset
Figure 6A and 6B with enlarged insets
Fluorimetric titration of Mg²⁺ to 2a
Scatchard Plots from photometric titrations of DNA to 2a, 2b, and 2c
S4

5. ¹H and ¹³C NMR spectra of all new compounds

Fig. S1 (Fig. 3B in main manuscript) Spectrofluorimetric titration of Mg²⁺ to compound 2a ($c = 10 \mu$ M, $\lambda_{ex} = 395$ nm) in MeCN. The arrows indicate the changes of emission upon addition of Mg²⁺. Insets: Plot of the emission intensity at 495 nm versus Mg²⁺ concentration, and picture of the emission color of 2a in the absence and in the presence of Mg²⁺.

S5

Fig. S2 (Fig. 6A and 6B in main manuscript) Spectrofluorimetric titrations of 2a (A, $\lambda_{ex} = 425$ nm), 2b (B, $\lambda_{ex} = 438$ nm) with ct DNA in BPE buffer ($c = 10 \mu$ M). The arrows indicate the changes of the bands upon addition of ct DNA. Insets: plot of the relative emission intensity versus c_{DNA} , and picture of the emission color of 2a and 2b in the absence and in the presence of ct DNA.

Fig. S3 Spectrofluorimetric titration of Mg²⁺ to compound **2a** ($c = 10 \mu$ M, $\lambda_{ex} = 395$ nm) in MeCN; plot of the emission intensity versus Mg²⁺ concentration and fit of the experimental data to the theoretical model; numerical fit calculated for $K = 0.9 \times 10^5$ M⁻¹.

Fig. S4 Scatchard plots, r/c vs r; r = ligand-to-DNA ratio, obtained from spectrophotometric titrations of **2a** (A), **2b** (B) and **2c** with ct DNA in BPE buffer ($c = 50 \mu$ M). The experimental data points were fitted to the model of McGhee and von Hippel.

The concentration of the DNA-bound ligand was calculated according to equation S1.

$$c_{\rm b} = c_{\rm L} \times \frac{A_{\rm f} - A}{A_{\rm f} - A_{\rm b}} \tag{eq. S1}$$

The bulk concentration of the ligand is c_L , A_f is the absorbance of the free ligand at a given wavelength, A_b is the absorbance of the bound ligand, and A is the absorbance at a given ligand-to-DNA ratio. The concentration of the unbound ligand (*c*) and he ratio of bound ligand molecules per DNA base pair (*r*) were determined according to equation S2 and S3.

$$c = c_{\rm L} - c_{\rm b}$$
(eq. S2)
$$r = \frac{c_{\rm b}}{c_{\rm DNA}}$$
(eq. S1)

The data were given as Scatchard plots, r/c vs. r, and numerically fitted to the neighbor exclusion model of McGhee and von Hippel (eq S4),¹ to deduce the binding constant *K*. The numerical fitting was performed using the Levenberg–Marquardt non-linear curve fitting algorithm implemented into calculus software.

$$\frac{r}{c} = K(1 - nr) \left(\frac{1 - nr}{1 - (n - 1)r}\right)^{n - 1}$$
(eq. S4)

¹ J. D. McGhee and P. H. von Hippel, J. Mol. Biol., 1974, 86, 469–489.

Fig. S5 ¹H-NMR spectrum of 2a in [D₆]DMSO

Fig. S6 ¹³C-NMR spectrum of 2a in [D₆]DMSO

Fig. S7 ¹H-NMR spectrum of **2b** in [D₆]DMSO

Fig. S8 ¹³C-NMR spectrum of 2b in [D₆]DMSO

Fig. S9 ¹H-NMR spectrum of 2c in [D₆]DMSO

Fig. S10¹³C-NMR spectrum of 2c in [D₆]DMSO