Electronic Supplementary Information (ESI)

Selective recognition of sulfate ions by tripodal cyclic peptides functionalised with (thio)urea binding sites

Philip G. Young^a and Katrina A. Jolliffe^a*

^a School of Chemistry, The University of Sydney, 2006, NSW, Australia.
E-mail: kate.jolliffe@sydney.edu.au; Fax: +61 2 9351 3329; Tel: +61 2 9351 2297.

Contents:

1	¹ H and ¹³ C NMR spectra of new compounds	S2
2	Maximum concentration dependent chemical shift data (Table S1)	S4
3	¹ H NMR titration curves	S 5
4	Job plots	S15
5	Selected ¹ H NMR titration spectra	S17
6	References	S27

Figure S1 ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of 1. S: solvent residual.

Figure S2 ¹³C NMR (75 MHz, CDCI₃, 298 K) spectrum of 1. S: solvent residual.

Figure S3 ¹H NMR (400 MHz, CDCI₃, 300 K) spectrum of 2. S: solvent residual.

Figure S4 ¹³C NMR (100 MHz, CDCl₃, 300 K) spectrum of 2. S: solvent residual.

2. Maximum concentration dependent ¹H NMR chemical shifts for

dimerisation experiments

Table S1 Changes in chemical shifts ($\Delta\delta$ /ppm) of various proton environments of 1 and 2 throughout ¹H NMR concentration dependent titration experiments. ^[a]

Signal	Change in chemical shift ($\Delta\delta$ /ppm)		
Signal	Receptor 1	Receptor 2	
NH ^a	0.25	0.63	
NH ^b	0.02	0.45	
CH ₂ c	-0.01	-0.08	
CH ^d	-0.01	-0.06	
NH ^e	-0.02	-0.11	
CH_3^f	-0.02	-0.07	
C(CH ₃ <i>9</i>) ₃	-0.01	-0.05	
ArH ^h /H ⁱ [b]	-0.01	-0.07	

^[a] Change in chemical shift $(\Delta \delta) = \delta_{\text{final}} - \delta_{\text{initial}}$, where δ_{final} is the final chemical shift at the end of the titration and δ_{initial} is the initial chemical shift recorded for each respective proton environment listed. ^[b] Signal defined as the centre of the multiplet attributed to the *para*-substituted benzene ring.

3. ¹H NMR titration curves

Non-linear curve fitting of the experimentally obtained titration isotherms (equivalents of anion versus chemical shift of the [thio]urea NH protons) using the programme *Equilibria*¹ enabled the calculation of association constants (K_a/M^{-1}). Final association constants for each anion are an average of the values obtained from monitoring NH^{*a*} and NH^{*b*} of receptor **1** or **2** (Figure S5) by ¹H NMR spectroscopy (400 MHz, 300 K) in the stated deuterated solvents.

Figure S5 (Thio)urea protons, NH^{*a*} and NH^{*b*}, monitored over the course of each titration experiment with 1 (X = S) or 2 (X = O). Other proton environments referred to in the text are highlighted.

Figure S6 Titration of receptor 1 against [Bu₄N][Cl] in CDCl₃.

Figure S7 Titration of receptor 1 against [Bu₄N][Br] in CDCl₃.

Figure S8 Titration of receptor 1 against [Bu₄N][I] in CDCl₃.

Figure S9 Titration of receptor 1 against [Bu₄N][NO₃] in CDCl₃.

Figure S10 Titration of receptor 1 against [Bu₄N][AcO] in CDCI₃.

Figure S11 Titration of receptor 1 against [Bu₄N][BzO] in CDCl₃.

Figure S12 Titration of receptor **1** against [Bu₄N][HSO₄] in CDCl₃. Note: during the course of the titration the protons attributed to NH^{*b*} became obscured.

Figure S13 Titration of receptor 1 against [Bu₄N][TsO] in CDCl₃.

Figure S14 Titration of receptor 2 against [Bu₄N][Cl] in CDCl₃.

Figure S15 Titration of receptor 2 against [Bu₄N][Br] in CDCI₃.

Figure S16 Titration of receptor 2 against [Bu₄N][I] in CDCI₃.

Figure S17 Titration of receptor 2 against [Bu₄N][NO₃] in CDCl₃.

Figure S18 Titration of receptor **2** against [Bu₄N][AcO] in CDCl₃. Note: during the course of the titration the protons attributed to NH^{*b*} became obscured.

Figure S19 Titration of receptor 2 against [Bu₄N][BzO] in CDCI₃.

Figure S20 Titration of receptor 2 against $[Bu_4N][H_2PO_4]$ in CDCI₃. Note: during the course of the titration the protons attributed to NH^{*b*} became obscured.

Figure S21 Titration of receptor **2** against [Bu₄N][HSO₄] in CDCl₃. Note: data could not be fitted to a suitable binding model. During the course of the titration the protons attributed to NH^{*b*} became obscured.

Figure S22 Titration of receptor 2 against [Bu₄N][TsO] in CDCl₃.

Figure S23 Titration of receptor **2** against [Bu₄N]₂[SO₄] in CDCl₃. Note: binding was too strong to accurately determine by NMR titration methods ($K_a > 10^4$ M⁻¹).

Figure S24 Titration of receptor **1** against [Bu₄N][CI] in 10% v/v DMSO-*d*₆/CDCl₃. Note: during the course of the titration the protons attributed to NH^{*b*} became obscured.

Figure S25 Titration of receptor 1 against [Bu₄N][NO₃] in 10% v/v DMSO-d₆/CDCl₃.

Figure S26 Titration of receptor 1 against [Bu₄N][HSO₄] in 10% v/v DMSO-*d*₆/CDCI₃. Note: during the course of the titration the protons attributed to NH^{*b*} became obscured.

Figure S27 Titration of receptor 2 against [Bu₄N][CI] in 10% v/v DMSO-d₆/CDCI₃.

Figure S28 Titration of receptor 2 against [Bu₄N][NO₃] in 10% v/v DMSO-d₆/CDCl₃.

Figure S29 Titration of receptor **2** against [Bu₄N][HSO₄] in 10% v/v DMSO-*d*₆/CDCl₃. Note: during the course of the titration the protons attributed to NH^{*b*} became obscured.

Figure S30 Titration of receptor **2** against $[Bu_4N]_2[SO_4]$ in 10% v/v DMSO-*d*₆/CDCl₃. Note: binding was too strong to accurately determine by NMR titration methods ($K_a > 10^4 \text{ M}^{-1}$).

4. Job plots

Figure S31 Job plot of receptor 1 against [Bu₄N][Cl] in CDCl₃.

Figure S32 Job plot of receptor 2 against [Bu₄N][Cl] in CDCl₃.

Figure S33 Job plot of receptor **2** against [Bu₄N][H₂PO₄] in CDCI₃. Note: during the course of the titration the protons attributed to NH^{*b*} became obscured.

Figure S34 Job plot of receptor 1 against [Bu₄N][HSO₄] in CDCl₃.

Figure S35 Job plot of receptor 2 against [Bu₄N]₂[SO₄] in CDCl₃.

5. Selected ¹H NMR titration spectra

Figure S36 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 1 with [Bu₄N][CI] in CDCI₃. S: solvent residual.

Figure S37 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 1 with [Bu₄N][Br] in CDCl₃. S: solvent residual.

Figure S38 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 1 with [Bu₄N][I] in CDCl₃. S: solvent residual.

Figure S39 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 1 with [Bu₄N][NO₃] in CDCl₃. S: solvent residual.

Figure S40 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 1 with [Bu₄N][AcO] in CDCl₃. S: solvent residual.

Figure S41 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 1 with [Bu₄N][BzO] in CDCl₃. S: solvent residual.

Figure S42 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 1 with [Bu₄N][TsO] in CDCI₃. S: solvent residual.

Figure S43 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 1 with [Bu₄N][HSO₄] in CDCl₃. S: solvent residual.

Figure S44 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 1 with [Bu₄N]₂[SO₄] in CDCl₃. S: solvent residual.

Figure S45 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 2 with [Bu₄N][CI] in CDCI₃. S: solvent residual.

Figure S46 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 2 with [Bu₄N][Br] in CDCl₃. S: solvent residual.

Figure S47 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 2 with [Bu₄N][I] in CDCl₃. S: solvent residual.

Figure S48 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 2 with [Bu₄N][NO₃] in CDCl₃. S: solvent residual.

Figure S49 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 2 with [Bu₄N][AcO] in CDCl₃. S: solvent residual.

Figure S50 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 2 with [Bu₄N][BzO] in CDCl₃. S: solvent residual.

Figure S51 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 2 with [Bu₄N][H₂PO₄] in CDCl₃. S: solvent residual.

Figure S52 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 2 with [Bu₄N][TsO] in CDCl₃. S: solvent residual.

Figure S53 Partial ¹H NMR (400 MHz, 300 K) spectra from titration of 2 with [Bu₄N]₂[SO₄] in CDCl₃. S: solvent residual.

Figure S54: Partial ¹H NMR spectra illustrating the splitting of the signals attributable to the diastereotopic CH_2^c protons (labeled \diamond) upon anion complexation; signals attributable to the tetrabutylammonium counterion are labeled \bullet .

7. References

1. C. E. Marjo, *Equilibria*, University of New South Wales Analytical Centre, Sydney, Australia; <u>http://www.sseau.unsw.edu.au/Index.htm</u>, 2009.