Supporting Information

Borondipyrromethene-derived Cu^{2+} sensing chemodosimeter for fast and selective detection

Chunchang Zhao, * Peng Feng, Jian Cao, Xuzhe Wang, Yang Yang, Yulin Zhang,

Jinxing Zhang, Yanfen Zhang

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China; Tel:

+86-21-64252388; E-mail: zhaocchang@ecust.edu.cn

- S2 General Methods and preparation of cells
- S3 Spectra of **BODIPY-EP** in the presence Cu^{2+} with different counter anions.
- S4 Kinetics of fluorescence enhancement profile of **BODIPY-EP**.
- S5 Fluorescence change of **BODIPY-EP** as function of pH.
- S6-S7 UPLC-mass spectra
- S8 ¹H NMR spectrum of **BODIPY-OH**.
- S9-S10 Absorption and Fluorescence spectra of **BODIPY-EP** in the absence and presence of 2-pyridinecarboxylic acid (1000 equiv) upon addition of Cu^{2+} .
- S11 Kinetics of fluorescence enhancement profile of **BODIPY-EP** in the presence 6 equiv of Zn^{2+} , Hg^{2+} , Cu^{2+} .
- S12 Fluorescence image of HEK293A cells incubated with **BODIPY-EP**
- S13 HPLC analysis of **BODIPY-EP**
- S14 NMR spectra of **BODIPY-EP**.
- S15 HRMS of **BODIPY-EP**.

General Methods

All chemical reagents and solvents for synthesis were purchased from commercial suppliers and were used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer with chemical shifts reported in ppm at room temperature. Mass spectra were measured on a HP 1100 LC-MS spectrometer.

UV-vis absorption spectra were recorded on a Varian Cary 100 spectrophotometer. Fluorescence spectra were measured with a Varian Cary Eclipse Fluorescence spectrophotometer. Spectral-grade solvents were used for measurements of UV-vis absorption and fluorescence.

Fluorometric measurements. A stock solution of probe $(5 \times 10^{-3} \text{ M})$ was prepared in DMSO. The test solutions of probe $(5\mu\text{M})$ in H₂O/DMSO buffer solution (0.05 M Tris-HCl, 50% DMSO, pH = 7.5) were prepared by placing 3 µL of the stock solution, 3 mL H₂O/DMSO buffer solution into a quartz cell.

Preparation of Cells. HEK293A cells were cultured in Dulbecco's modified Eagle's medium (DMEM) (GIBCO), supplemented with 10% fetal bovine serum (HyClone), at 37 °C in a 5/95 CO₂/air incubator.

For fluorescence imaging, cells were passed on a 24-well plate (3×10^4 cells per well) and incubated for 24 h. Copper uptake experiments were performed in the same medium for 30 min at 37°C. Then cells were washed with PBS buffer, incubated with 5 μ M **BODIPY-EP** in culture medium containing 10% DMSO for 30 min at 37 °C, washed with PBS, and mounted on the microscope stage. The cell images were collected with a fluorescence microscope (OLYMPUS) with a 530-550 nm filter.

Figure S1. Spectra of **BODIPY-EP** (5×10⁻⁶ M) in the presence 6equiv of Cu²⁺ with different counter anions in H₂O/DMSO buffer solution (0.05 M Tris-HCl, 50% DMSO, pH = 7.5). (up) Absorption spectra. (bottom) Fluorescence titration spectra ($\lambda_{ex} = 523$ nm).

Figure S2. Kinetics of fluorescence enhancement profile of **BODIPY-EP** (5 μ M) at 577 nm in the presence of various concentrations of Cu²⁺. The experiment was carried out in H₂O/DMSO buffer solution (0.05 M Tris-HCl, 50% DMSO, pH = 7.5) at room temperature. $\lambda_{ex} = 523$ nm. The observed rate constant is calculated to be: K_{0.3equiv} = 0.071, K_{0.6equiv} = 0.068, K_{1equiv} = 0.06, K_{3equiv} = 0.138, K_{5equiv} = 0.206, K_{6equiv} = 0.372.

Figure S3. Fluorescence change of **BODIPY-EP** (5 μ M) in intensity at 577 nm as function of pH. The experiment was carried out in H₂O/DMSO buffer solution (50% DMSO). $\lambda_{ex} = 523$ nm.

Figure S4. UPLC-Mass spectra of BODIPY-EP and BODIPY-EPY + CuCl₂.

Figure S5. ¹H NMR (400 MHz, CDCl₃) spectrum of **BODIPY-OH** from the reaction of **BODIPY-EP** with Cu^{2+} in H₂O/DMSO buffer solution.

Figure S6. Absorption spectra of **BODIPY-EP** (5×10^{-6} M) in the absence and presence of 2-pyridinecarboxylic acid (PCA, 1000 equiv) upon addition of 6 equiv of Cu²⁺ in H₂O/DMSO buffer solution (0.05 M Tris-HCl, 50% DMSO, pH = 7.5). (a) **BODIPY-EP** only. (b) **BODIPY-EP** + PCA + Cu²⁺. (c) **BODIPY-EP** + Cu²⁺.

Figure S7. Fluorescnce spectra of **BODIPY-EP** (5×10^{-6} M) in the absence and presence of 2-pyridinecarboxylic acid (PCA, 1000 equiv) upon addition of 6equiv of Cu²⁺ in H₂O/DMSO buffer solution (0.05 M Tris-HCl, 50% DMSO, pH = 7.5). (a) **BODIPY-EP** only. (b) **BODIPY-EP** + PCA + Cu²⁺. (c) **BODIPY-EP** + Cu²⁺.

Figure S8. Kinetics of fluorescence enhancement profile of **BODIPY-EP** (5 μ M) at 577 nm in the presence 6 equiv of Zn²⁺, Hg²⁺, Cu²⁺. The experiment was carried out in H₂O/DMSO buffer solution (0.05 M Tris-HCl, 50% DMSO, pH = 7.5) at room temperature. $\lambda_{ex} = 523$ nm.

Figure S9. Fluorescence image of HEK293A cells incubated with 10 μ M **BODIPY-EP** for 120 min.

O'OTTATI OTATI	m CH3cn		
Injection Date Sample Name Acq. Operator Acq. Instrument	: 2012-1-7 18:04:45 : 0106 : ml : Instrument 1	Location : Vial 1	
Method Last changed	: C:\HPCHEM\1\METHODS\JPW.M : 2012-1-7 17:29:37 by (modified after loading)	ml	
VWD1 A, Wa	velength=514 nm (ML\FENG.D)		
mAU _ - -		9 4 4	
4000 -			
3000 -			
		[}	
2000 -			
		{ }	
1000 -		{ }	
		•	
1 1			· · · · · ·
1 0	2 4	6 8	10 12
1 · · ·	2 4		10 12
1 · · · ·	2 4 Area Percent Repor	t	10 12
Corted Py	2 4		10 12
Jorted By Multiplier	Area Percent Repor : Sigmal : 2.0000	t	10 12
o Sorted By Multiplier Dilution Use Multiplier &	Area Percent Repor : Signal : 2.0000 : 1.0000 Dilution Factor with ISTDs		<u>10</u> 12
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VMDLA	Area Percent Repor : Signal : 2.0000 : 1.0000 Dilution Factor with ISTDs . Wavelength=514 nm		<u>10</u> <u>12</u>
Jorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A Peak RetTime Typ # [min]	Area Percent Repor : Signal : 2.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=514 nm e Width Area Heig [min] mAU *s [mAU	ht Area	
Jorded By Multiplier Dilution Use Multiplier & Signal 1: VWD1 Å Peak RetTime Typ # [min] 	2 4 Area Percent Repor : 2,0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=514 nm e Width Area Heig [min] mAU 0.3802 104.87571 0.2333 8.62643e4 4893.5 1.0141 531.73151	ht Area 1 * 	
Joreal RetTime Typ # fmin] 	Area Percent Repor : Signal : 2.0000 Dilution Factor with ISTDs , Wavelength=514 nm e Width Area Heig [min] mAU *s [mAU 0.3802 104.87571 3.4 0.2333 8.62643e4 4893.5 1.0141 531.73151 6.4 8.69009e4 4903.4	ht Area 1 % 	
J Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 Å Peak RetTime Typ # [min] 	2 4 Area Percent Repor : 2,0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=514 nm e Width Area Heig [min] mAU -!	ht Area 1 * 	
Jordan Signal 1: VWD1 A Peak RetTime Typ # [min] 	2 4 Area Percent Repor : 2,0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=514 nm e Width Area Heig [min] mAU 0.3802 104.87571 3.4 0.2333 8.62643e4 8.69009e4 4903.4 d with enhanced integrator! *** End of Report	ht Area 1 % 	

Instrument 1 2012-1-7 18:17:41 下午 ml

Page 1 of 1

Figure S10. HPLC analysis of **BODIPY-EP**.

