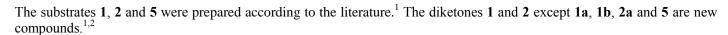
Electronic Supporting Information

Cyclization-Carbonylation-Cyclization Coupling Reactions of γ-Propynyl-1,3-diketones with Palladium(II)-Bisoxazoline Catalyst


Taichi Kusakabe^a, Yasuko Kawai^a, Shen Rong^a, Tomoyuki Mochida^b and Keisuke Kato*^a

^aFaculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan. ^bDepartment of Chemistry, Faculty of Science, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan.

General Information.

All melting points were measured on a Yanaco MP-3S micro melting point apparatus and are uncorrected. ¹H, ¹³C NMR and HMBC spectra were recorded on JEOL AL 400 and JEOL Lambda 500 spectrometer spectrometers in CDCl₃ with Me₄Si as an internal reference. In the case of CD₃CN, solvent peaks were used as a reference (1.93ppm for ¹H, and 118.2ppm for ¹³C). ¹³C NMR spectra were recorded at 100 MHz. High-resolution mass spectra (HR-MS) were obtained with JEOL GC Mate II, JMS-SX102 and JEOL JMS 600H spectrometer. IR spectra were recorded with JASCO FT/IR-300 spectrometer. All reagents were purchased from commercial sources and used without purification. All evaporations were performed under reduced pressure. For column chromatography, silica gel (Kieselgel 60) was employed.

Keto: enol = 7: 3, Colorless powder, mp. 84-86°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.11 (3H, t, J = 7.6 Hz), 1.65-2.78 (9.3H, m), 3.39-3.50 (1.4H, m), 5.47 (0.3H, s); 13 C-NMR (100 MHz, CDCl₃, major isomer) δ 12.4 (CH₂), 14.2 (CH₃), 19.1 (CH₂), 23.9 (CH₂), 39.8 (CH₂), 48.6 (CH), 58.2 (CH₂), 75.8 (C), 84.1 (C), 203.3 (C), 203.9 (C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₁H₁₄O₂: 178.0994; found: 178.0993; IR (KBr): 2971, 2323, 1633, 1589, 1535, 1191 cm $^{-1}$.

Keto: enol = 7: 3. Pale yellow powder, mp. 46-48°C; 1 H- NMR (400 MHz, CDCl₃) δ 0.89 (3H, t, J = 7.2 Hz), 1.25-1.49 (8H, m), 1.69-2.74 (9.3H, m), 3.39-3.49 (1.4H, m), 5.46 (0.3H, s); 13 C-NMR (100 MHz, CDCl₃, major isomer) δ 14.0 (CH₃), 18.7 (CH₂), 19.1 (CH₂), 22.6 (CH₂), 23.9 (CH₂), 28.6 (CH₂), 28.9 (CH₂), 31.3 (CH₂), 39.8 (CH₂), 48.7 (CH), 58.2 (CH₂), 76.5 (C), 82.8 (C), 203.3 (C), 203.9 (C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₅H₂₂O₂: 234.1620; found: 234.1618; IR (KBr): 2956, 2331, 1597, 1518, 1201 cm $^{-1}$.

Keto: enol = 6: 4. Colorless powder, mp. 81-83°C; 1 H- NMR (400 MHz, CDCl₃) δ 0.59-0.74 (4H, m), 1.17-1.23 (1H, m), 1.62-1.95 (1H, m), 2.19-2.79 (6H, m), 3.39-3.50 (1.2H, m), 5.45 (0.4H, s), 5.88 (0.4H, br-s); 13 C-NMR (100 MHz, CDCl₃, major isomer) δ -0.5 (CH), 8.1 (2C, CH₂), 19.1 (CH₂), 23.9 (CH₂), 39.8 (CH₂), 48.6 (CH), 58.2 (CH₂), 71.9 (C), 85.7 (C), 203.3 (C), 203.9 (C); HRMS-EI:m/z [M $^+$] calcd for C₁₂H₁₄O₂: 190.0994; found: 190.0992; IR (KBr): 2887, 2334, 1604, 1531, 1202 cm $^{-1}$.

Keto: enol = 1: 1. Colorless powder, mp. 125-127°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.69-1.79 (0.5H, m), 1.94-2.03 (0.5H, m), 2.28-2.33 (0.5H, m), 2.54-2.68 (3.5H, m), 2.75-2.80 (1H, m), 2.93-2.99 (1H, m), 3.42-3.53 (1H, m), 7.25-7.30 (3H, m), 7.37-7.40 (2H, m), 9.88 (0.5H, br-s); 13 C-NMR (100 MHz, CDCl₃) δ 1.97 (0.5C, CH₂), 20.7 (0.5C, CH₂), 24.0 (0.5C, CH₂), 26.1 (0.5C, CH₂), 30.2 (0.5C, CH₂), 39.8 (0.5C, CH₂), 41.8 (0.5C, CH), 48.5 (0.5C, CH), 58.2 (0.5C, CH₂), 82.4 (0.5C, CH), 82.7 (0.5C, CH), 86.5 (0.5C, CH), 87.4 (0.5C, CH), 104.3 (0.5C, CH), 123.2 (0.5C, C), 123.6 (0.5C, C), 127.8 (0.5C, CH), 128.0 (0.5C, CH), 128.2 (1C, CH), 128.3 (1C, CH), 131.6 (2C, CH), 188.0 (0.5C, C), 195.5 (0.5C, C), 202.9 (0.5C, C), 203.7 (0.5C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₅H₁₄O₂: 226.0994; found: 226.0994; IR (KBr): 2950, 2335, 1616, 1490, 1200, 753, 690 cm $^{-1}$.

Keto: enol = 4:1. Pale yellow powder, mp. 135-137°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.70-1.80 (0.8H, m), 1.96-2.01 (0.2H, m), 2.30-2.35 (0.2H, m), 2.48-2.68 (3.2H, m), 2.72-2.81 (1.6H, m), 2.93-2.98 (1H, m), 3.42-3.51 (1.6H, m), 3.79 (0.6H, s), 3.80 (2.4H, s), 5.50 (0.2H, s), 6.79-6.84 (2H, m), 7.31-7.33 (2H, m); 13 C-NMR (100 MHz, CDCl₃, major isomer) δ 19.7 (CH₂), 24.1 (CH₂), 39.9 (CH₂), 48.6 (CH₃), 55.3 (CH₃), 58.2 (CH₂), 82.5 (C), 84.9 (C), 113.9 (2C, CH), 115.4 (C), 133.0 (CH), 159.4 (C), 203.0 (C), 203.6 (C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₆H₁₆O₃: 256.1100; found: 256.1103; IR (KBr): 2935, 1607, 1551, 1509, 1246, 1197, 1034, 832 cm $^{-1}$.

Keto: enol = 7: 3. Pale yellow powder, mp. 152-154°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.75 (0.7H, qd, J = 13.2, 4.4 Hz), 1.98-2.01 (0.3H, m), 2.31-2.35 (0.3H, m), 2.46-2.81 (4.7H, m), 2.97-3.02 (1H, m), 3.43-3.55 (1.4H, m), 5.52 (0.3H, s), 7.48-7.56 (4H, m); 13 C-NMR (100 MHz, CDCl₃) δ 19.7 (CH₂), 24.1 (CH₂), 39.9 (CH₂), 48.4 (CH), 58.2 (CH₂), 81.4 (C), 89.3 (C), 123.9 (1 J_{C-F} = 270.9 Hz, C), 125.2 (3 J_{C-F} = 3.3 Hz, CH), 127.1 (C), 129.8 (2 J_{C-F} = 32.1 Hz, C), 131.9 (CH), 202.5 (C), 203.3 (C); HRMS-EI:m/z [M⁺] calcd for C₁₆H₁₃O₂F₃: 294.0868; found: 294.0870; IR (KBr): 2221, 1619, 1594, 1529, 1325, 841 cm⁻¹.

Keto: enol = 3: 1. Colorless powder, mp. 145-146°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.69-1.79 (0.75H, m), 1.93-2.03 (0.75H, m), 2.29-2.34 (0.25H, m), 2.47-2.99 (5.85H, m), 3.42-3.51 (1.5H, m), 5.50 (0.25H, s), 7.25-7.32 (4H, m); 13 C-NMR (100 MHz, CDCl₃, major isomer) δ 19.7 (CH₂), 24.1 (CH₂), 39.9 (CH₂), 48.4 (CH), 58.2 (CH₂), 81.6 (C), 87.6 (C), 121.7 (C), 128.6 (2C, CH), 132.8 (2C, CH), 134.0 (C), 202.7 (C), 203.4 (C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₅H₁₃O₂Cl: 260.0604; found: 260.0601; IR (KBr): 2252, 1620, 1538, 1488, 1201, 1088 cm $^{-1}$.

diastereomeric mixture, ratio = 25 : 1. Yellow oil ; 1 H- NMR (400 MHz, CDCl₃, major isomer) δ 0.86 (3H, s), 1.27 (3H, s), 2.57-2.69 (3H, m), 2.85-2.88 (1H, m), 2.95-3.01 (1H, m), 3.43-5.34 (2H, m), 7.26-7.29 (3H, m), 7.35-7.38 (2H, m); 13 C- NMR (100 MHz, CDCl₃, major isomer) δ 15.1 (CH₂), 22.2 (CH₃), 29.0 (CH₃), 34.0 (C), 55.2 (CH₂), 58.1 (CH₂), 59.5 (CH), 81.8 (C), 88.1 (C), 123.4 (C), 127.9 (CH), 128.3 (2C, CH), 131.5 (2C, CH), 202.6 (C), 202.7 (C); HRMS-EI:m/z [M $^{+}$] calcd for $C_{17}H_{18}O_{2}$: 254.1307; found: 254.1305; IR (KBr): 2963, 2238, 1710, 1597, 757, 692 cm $^{-1}$.

Enol form. Pale yellow powder, mp. 80-82°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.07 (3H, t, J = 7.6 Hz), 2.08-2.15 (2H, m), 2.43-2.61 (3H, m), 2.70-2.76 (1H, m), 2.82-2.86 (1H, m), 5.31 (1H, s), 9.14-9.24 (1H, m); 13 C-NMR (100 MHz, CDCl₃) δ 12.3 (CH₂), 14.2 (CH₃), 20.9 (CH₂), 37.1 (CH₂), 42.2 (CH), 74.8 (C), 83.9 (C), 105.7 (CH), 201.7 (C), 203.2 (C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₀H₁₂O₂: 164.0837; found: 164.0830; IR (KBr): 2973, 1607, 1168, 819 cm $^{-1}$.

Enol form. Yellow oil; ^{1}H - NMR (400 MHz, CDCl₃) δ 0.88 (3H, t, J = 7.2 Hz), 1.23-1.35 (7H, m), 1.40-1.47 (2H, m), 2.08-2.12 (2H, m), 2.41-2.84 (5H, m), 5.30 (1H, s), 9.78 (1H, br-s); ^{13}C -NMR (100 MHz, CDCl₃) δ 14.1 (CH₃), 18.7 (CH₂), 21.0 (CH₂), 22.6 (CH₂), 28.5 (CH₂), 28.9 (CH₂), 31.3 (CH₂), 37.1 (CH₂), 42.3 (CH), 75.5 (C), 82.5 (C), 105.7 (CH), 201.5 (C), 203.2 (C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₄H₂₀O₂: 220.1463; found: 220.1461; IR (KBr): 2929, 2336, 1652, 1573, 1173, 833 cm $^{-1}$.

Enol form. Pale yellow powder, mp. $102-104^{\circ}\text{C}$; ${}^{1}\text{H}$ - NMR (400 MHz, CDCl₃) δ 2.56-2.90 (5H, m), 5.35 (1H, s), 7.23-7.26 (3H, m), 7.32-7.34 (2H, m), 11.3 (1H, br-s); ${}^{13}\text{C}$ -NMR (100 MHz, CDCl₃) δ 21.5 (CH₂), 37.1 (CH₂), 42.0 (CH), 82.5 (C), 85.5 (C), 105.7 (CH), 123.2 (C), 128.0 (CH), 128.3 (2C, CH), 131.7 (2C, CH), 201.6 (C), 203.1 (C); HRMS-EI:m/z [M $^{+}$] calcd for $C_{14}H_{12}O_{2}$: 212.0837; found: 212.0838; IR (KBr): 2334, 1598, 1522, 1490, 1167, 756 cm $^{-1}$.

General procedure for the CCC-coupling reaction of 1 or 2

A 50 mL two-neck round-bottom flask containing a magnetic stirring bar, $Pd(tfa)_2$ (0.025 mmol or 0.05 mmol), ligand (0.038 mmol or 0.06 mmol), p-benzoquinone (1 mmol) and MeOH (4 mL) was fitted with a rubber septum and a three-way stopcock connected to a balloon filled with carbon monoxide. The apparatus was purged with carbon monoxide by pump-filling via the three-way stopcock. A MeOH (or CH_2Cl_2) solution (1 mL) of substrate 1 or 2 (0.5 mmol) was added to the stirred solution via syringe at an appropriate temperature. The remaining substrate was washed in MeOH (or CH_2Cl_2) (1 mL) twice. In the case of 1g-1i, CH_2Cl_2 was used instead of MeOH, because of their poor solubility in MeOH. After stirring for the period of time at the appropriate temperature, the mixture was diluted with CH_2Cl_2 (50 mL) and washed with 3% NaOH (40 mL). The aqueous layer was extracted with CH_2Cl_2 (50 mL) twice and the combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by flash chromatography on silica gel. The fraction eluted with hexane / acetone (4/1-2/1) afforded dimeric ketone 6 or 9. The product 6 or 9 was then precipitated from the reaction mixture and the resulting precipitate collected by filtration and washed with cold MeOH (1 mL \times 2). The filtrate was reprocessed via the above procedure to provide additional product after flash chromatography.

Diastereomeric mixture, ratio = 1:1. Pale yellow powder, mp. 219-222°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.76-1.87 (2H, m), 2.33-2.42 (4H, m), 2.55-2.66 (4H, m), 3.06-3.16 (2H, m), 3.79-3.88 (2H, m), 5.69 (2H, d, J = 2.4 Hz), 6.11-6.12 (2H, m); 13 C-NMR (100 MHz, CDCl₃) δ 27.8 (2C, CH₂), 34.0 (1C, CH₂), 34.0 (1C, CH₂), 36.8 (2C, CH₂), 37.5 (1C, CH), 104.3 (2C, CH), 105.7 (1C, CH), 171.0 (1C, C), 171.1 (1C, C), 177.8 (1C, C), 188.3 (1C, C), 198.3 (2C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₉H₁₈O₅: 326.1154; found: 326.1128; IR (KBr): 2948, 1654, 1607, 1359, 1161, 1065, 1033 cm $^{-1}$.

Diastereomeric mixture, ratio = 1:1. Colorless powder, mp. 205-208°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.73-1.85 (2H, m), 1.96-1.98 (6H, m), 2.33-2.58 (8H, m), 3.06-3.12 (2H, m), 3.12-3.21 (1H, m), 3.35-3.41 (1H, m), 5.69 (2H, d, J = 1.6 Hz); 13 C-NMR (100 MHz, CDCl₃) δ 12.7 (1C, CH₃), 12.8 (1C, CH₃), 27.7 (1C, CH₂), 27.8 (1C, CH₂), 32.8 (1C, CH₂), 33.7 (1C, CH₂), 36.7 (1C, CH₂), 36.7 (1C, CH₂), 38.2 (1C, CH), 38.3 (1C, CH), 103.6 (1C, CH), 103.7 (1C, CH), 113.4 (1C, C), 113.6 (1C, C), 160.8 (1C, C), 161.4 (1C, C), 178.3 (1C, C), 178.3 (1C, C), 197.5 (0.5C, C), 197.8 (0.5C, C), 198.5 (1C, C), 198.5 (1C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₂₁H₂₂O₅: 354.1467; found: 354.1470; IR (KBr): 2948, 1631, 1367, 1172, 1151 cm $^{-1}$.

Diastereomeric mixture, ratio = 1:1. Pale yellow powder, mp. 204-206°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.03-1.07 (6H, m), 1.73-1.83 (2H, m), 2.32-2.58 (12H, m), 3.05-3.17 (3H, m), 3.24-3.33 (1H, m), 5.68 (2H, s); 13 C-NMR (100 MHz, CDCl₃) δ 13.7 (1C, CH₃), 13.8 (1C, CH₃), 21.0 (1C, CH₂), 21.0 (1C, CH₂), 27.7 (1C, CH₂), 27.7 (1C, CH₂), 32.8 (1C, CH₂), 33.5 (1C, CH₂), 36.7 (1C, CH₂), 36.7 (1C, CH₂), 38.2 (1C, CH), 38.2 (1C, CH), 103.6 (1C, CH), 103.6 (1C, CH), 120.6 (1C, C), 120.8 (1C, C), 159.6 (1C, C), 160.0 (1C, C), 178.2 (1C, C), 178.2 (1C, C), 197.7 (0.5C, C), 197.8 (0.5C, C), 198.4 (1C, C), 198.4 (1C, C); HRMS-EI:m/z [M $^{+}$] calcd for $C_{23}H_{26}O_{5}$: 382.1780; found: 382.1783; IR (KBr): 2965, 1623, 1366, 1165 cm $^{-1}$.

Diastereomeric mixture, ratio = 1:1. Pale yellow oil; ^1H - NMR (400 MHz, CDCl₃) δ 0.86-0.89 (6H, m), 1.27-1.42 (16H, m), 1.73-1.83 (2H, m), 2.29-2.57 (12H, m), 3.03-3.14 (3H, m), 3.26-3.32 (1H, m), 5.68 (2H, s); ^{13}C -NMR (100 MHz, CDCl₃) δ 14.1 (2C, CH₃), 22.6 (1C, CH₂), 22.6 (1C, CH₂), 27.6 (1C, CH₂), 27.7 (2C, CH₂), 27.8 (1C, CH₂), 29.1 (1C, CH₂), 29.1 (1C, CH₂), 29.2 (1C, CH₂), 29.3 (1C, CH₂), 31.5 (1C, CH₂), 31.6 (1C, CH₂), 32.8 (1C, CH₂), 33.5 (1C, CH₂), 36.7 (1C, CH₂), 36.7 (1C, CH₂), 38.2 (2C, CH), 103.6 (1C, CH), 103.6 (1C, CH), 119.5 (1C, C), 119.7 (1C, C), 159.8 (1C, C), 160.2 (1C, C), 178.2 (1C, C), 178.3 (1C, C), 198.1 (0.5C, C), 198.2 (0.5C, C), 198.4 (1C, C), 198.4 (1C, C); HRMS-EI:m/z [M $^+$] calcd for C₃₁H₄₂O₅: 490.3032; found: 490.3031; IR (KBr): 2926, 1661, 1626, 1367, 1166 cm $^{-1}$.

Diastereomeric mixture, ratio = 1:1. Pale yellow powder, mp. 184-186°C; 1 H- NMR (400 MHz, CDCl₃) δ 0.42-0.59 (4H, m), 0.75-0.95 (4H, m), 1.70-1.84 (2H, m), 2.32-2.58 (8H, m), 3.04-3.13 (2H, m), 3.17-3.23 (1H, m), 3.39-3.45 (1H, m), 5.71 (2H, d, J = 1.6 Hz); 13 C-NMR (100 MHz, CDCl₃) δ 6.2 (1C, CH₂), 6.7 (1C, CH₂), 6.8 (1C, CH₂), 7.3 (1C, CH₂), 8.6 (1C, CH₃), 8.7 (1C, CH₃), 27.7 (1C, CH₂), 27.7 (1C, CH₂), 33.3 (1C, CH₂), 34.1 (1C, CH₂), 36.7 (2C, CH₂), 37.9 (1C, CH), 38.0 (1C, CH), 103.7 (1C, CH), 103.7 (1C, CH), 119.9 (1C, C), 120.0 (1C, C), 163.3 (1C, C), 163.8 (1C, C), 178.5 (1C, C), 178.6 (1C, C), 196.8 (0.5C, C), 197.0 (0.5C, C), 198.5 (2C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₂₅H₂₆O₅: 406.1780; found: 406.1775; IR (KBr): 3008, 1656, 1615, 1151, 1113 cm $^{-1}$.

Diastereomeric mixture, ratio = 1:1. Pale yellow powder, mp. 213-215°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.77-1.88 (2H, m), 2.32-2.43 (4H, m), 2.53-2.58 (2H, m), 2.71 (1H, dd, J = 11.2, 17.6 Hz), 2.86 (1H, dd, J = 11.2, 17.6 Hz), 3.11-3.25 (2H, m), 3.51 (1H, dd, J = 9.2, 17.2 Hz), 3.77 (1H, dd, J = 9.2, 17.2 Hz), 5.53 (2H, s), 6.67-6.71 (4H, m), 7.06-7.14 (6H, m); 13 C-NMR (100 MHz, CDCl₃) δ 27.7 (2C, CH₂), 33.6 (1C, CH₂), 34.5 (1C, CH₂), 36.7 (1C, CH₂), 36.7 (1C, CH₂), 37.7 (1C, CH), 37.9 (1C, CH), 104.1 (1C, CH), 104.1 (1C, CH), 120.4 (1C, C), 120.4 (1C, C), 127.2 (1C, CH), 127.2 (1C, CH), 127.9 (4C, CH), 129.2 (4C, CH), 133.1 (1C, C), 133.1 (1C, C), 162.6 (1C, C), 163.1 (1C, C), 178.1 (1C, C), 178.2 (1C, C), 195.4 (0.5C, C), 195.5 (0.5C, C), 198.3 (1C, C), 198.3 (1C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₃₁H₂₆O₅: 478.1780; found: 478.1778; IR (KBr): 2951, 1660, 1617, 1148, 1125, 815 cm $^{-1}$.

Diastereomeric mixture, ratio = 1.5:1. Pale yellow needles, mp. 150-152°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.77-1.87 (2H, m), 2.33-2.42 (4H, m), 2.52-2.57 (2H, m), 2.67 (0.8H, dd, J = 11.2, 17.6 Hz), 2.82 (1.2H, dd, J = 11.2, 17.6 Hz), 3.13-3.19 (2H, m), 3.46 (1.2H, dd, J = 9.2, 17.2 Hz), 3.72 (0.8H, dd, J = 9.2, 17.2 Hz), 3.76-3.77 (6H, m), 5.54 (2H, s), 6.64-6.66 (8H, m); 13 C-NMR (100 MHz, CDCl₃) δ 27.7 (2C, CH₂), 33.5 (0.8C, CH₂), 34.4 (1.2C, CH₂), 36.7 (2C, CH₂), 37.8 (0.8C, CH), 38.0 (1.2C, CH), 55.3 (2C, CH₃), 104.0 (0.8C, CH), 104.1 (1.2C, CH), 113.4 (4C, CH), 120.0 (1.2C, C), 120.1 (0.8C, C), 125.5 (0.8C, CH), 125.5 (1.2C, CH), 130.3 (4C, CH), 158.8 (1.2C, C), 158.8 (0.8C, C), 161.9 (0.8C, C), 162.4 (1.2C, C), 178.3 (0.8C, C), 178.3 (1.2C, C), 195.9 (0.6C, C), 196.0 (0.4C, C), 198.3 (1.2C, C), 198.4 (0.8C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₃₃H₃₀O₇: 538.1992; found: 538.1991; IR (KBr): 2953, 1656, 1614, 1513, 1149, 1123, 814 cm $^{-1}$.

Diastereomeric mixture, ratio = 1.5:1. Pale yellow powder, mp. 215-217°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.81-1.90 (2H, m), 2.33-2.63 (6H, m), 2.77 (0.8H, dd, J = 11.0, 17.6 Hz), 2.93 (1.2H, dd, J = 11.0, 17.6 Hz), 3.19-3.24 (2H, m), 3.57 (1.2H, dd, J = 9.2, 17.6), 3.86 (0.8H, dd, J = 9.2, 17.6 Hz), 5.53-5.55 (2H, m), 6.76-6.79 (4H, m), 7.26-7.31 (4H, m); 13 C-NMR (100 MHz, CDCl₃) δ 27.7 (2C, CH₂), 33.9 (0.8C, CH₂), 34.9 (1.2C, CH₂), 36.7 (1.2C, CH₂), 36.7 (0.8C, CH₂), 37.5 (0.8C, CH), 37.7 (1.2C, CH), 104.6 (0.8C, CH), 104.6 (1.2C, CH), 118.7 (1.2C, C), 118.7 (0.8C, C), 123.9 (2C, C, 1 1 1 1 C-F = 270.7 Hz), 124.8 (4C, C, 3 1 1 C-F = 4.1 Hz), 129.4 (1.2C, C, 2 1 C-F = 32.6 Hz), 129.4 (0.8C, C, 2 1 C-F = 32.6 Hz), 129.7 (1.6C, CH), 129.7 (2.4C, CH), 137.0 (2C, C), 165.0 (0.8C, C), 165.5 (1.2C, C), 177.5 (0.8C, C), 177.6 (1.2C, C), 193.2 (0.6C, C), 193.3 (0.4C, C), 198.0 (0.8C, C), 198.0 (1.2C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₃₃H₂₄O₅F₆: 614.1528; found: 614.1527; IR (KBr): 3006, 1656, 1609, 1326, 1122, 817, 754 cm $^{-1}$.

Diastereomeric mixture, ratio = 1.2:1. Pale yellow powder, mp. 233-235°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.78-1.88 (2H, m), 2.32-2.58 (6H, m), 2.71 (0.9H, dd, J = 11.2, 17.6 Hz), 2.86 (1.1H, dd, J = 11.2, 17.6 Hz), 3.15-3.21 (2H, m), 3.49 (1.1H, dd, J = 9.0, 17.2 Hz), 3.76 (0.9H, dd, J = 9.0, 17.2 Hz), 5.53-5.55 (2H, m), 6.62-6.66 (4H, m), 7.07-7.10 (4H, m); 13 C-NMR (100 MHz, CDCl₃) δ 27.7 (2C, CH₂), 33.7 (0.9C, CH₂), 34.6 (1.1C, CH₂), 36.7 (2C, CH₂), 37.6 (0.9C, CH), 37.8 (1.1C, CH), 104.3 (0.9C, CH), 104.4 (1.1C, CH), 119.0 (1.1C, CH), 119.0 (0.9C, C), 128.2 (4C, CH), 130.5 (1.8C, CH), 130.6 (2.2C, CH), 131.6 (0.9C, C), 131.6 (1.1C, C), 133.4 (1.1C, C), 133.5 (0.9C, C), 163.6 (0.9C, C), 164.1 (1.1C, C), 177.7 (0.9C, C), 177.8 (1.1C, C), 194.2 (0.55C, C), 194.3 (0.45C, C), 198.1 (0.9C, C), 198.1 (1.1C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₃₁H₂₄Cl₂O₅: 546.1001; found: 546.0996; IR (KBr): 2952, 1656, 1614, 1149, 1123, 813 cm $^{-1}$.

Diastereomeric mixture, ratio = 1.5:1. Yellow powder, mp. 204-206°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.00, 1.01 (total 6H, s each, ratio = 1.5:1), 1.21, 1.21 (total 6H, s each, ratio = 1.5:1), 2.31, 2.32 (total 4H, s each, ratio = 1.5:1), 2.83-3.84 (6H, m), 5.53, 5.54 (total 2H, s each, ratio = 1.5:1), 6.66-6.71 (4H, m), 7.03-7.27 (6H, m); 13 C-NMR (100 MHz, CDCl₃) δ 19.8 (1.2C, CH₃), 19.8 (0.8C, CH₃), 28.1 (1.2C, CH₂), 29.1 (0.8C, CH₂), 29.2 (2C, CH₃), 35.7 (1.2C, CH), 35.7 (0.8C, CH),47.9 (0.8C, CH), 48.1 (1.2H, CH), 52.4 (0.8H, CH₂), 52.5 (1.2C, CH₂), 103.3 (0.8C, CH), 103.4 (1.2C, CH), 120.4 (1.2C, C), 120.4 (0.8C, C), 127.1 (1.2C, CH), 127.2 (0.8C, CH), 127.8 (4C, CH), 129.2 (4C, CH), 133.1 (0.8C, C), 133.1 (1.2C, C), 162.7 (0.8C, C), 163.4 (1.2C, C), 176.1 (0.8C, C), 176.1 (1.2C, C), 195.7 (0.6C, C),195.8 (0.4C, C), 198.0 (2C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₃₅H₃₄O₅: 534.2406; found: 534.2411; IR (KBr): 2962, 1655, 1611, 1361, 1149, 818 cm $^{-1}$.

CCC-coupling reaction of 5

A 50 mL two-neck round-bottom flask containing a magnetic stirring bar, $Pd(tfa)_2$ (0.015 mmol), ligand (0.023 mmol), p-benzoquinone (0.6 mmol) and $MeOH / CH_2Cl_2 = 1 / 1$ (5 mL) was fitted with a rubber septum and a three-way stopcock connected to a balloon filled with carbon monoxide. The apparatus was purged with carbon monoxide by pump-filling via the three-way stopcock. A $MeOH / CH_2Cl_2 = 1 / 1$ solution (1 mL) of substrate 5 (0.3 mmol) was added to the stirred solution via syringe at an appropriate temperature. The remaining substrate was washed in $MeOH / CH_2Cl_2 = 1 / 1$ (1 mL) twice. After stirring for the period of time at the appropriate temperature, the mixture was diluted with CH_2Cl_2 (50 mL) and washed with 3% NaOH (40 mL). The aqueous layer was extracted with CH_2Cl_2 (50 mL) twice and the combined organic layers were dried over $MgSO_4$ and concentrated *in vacuo*. The crude product was purified by flash chromatography on silica gel. The fraction eluted with hexane / ethyl acetate (3/1-0/1) afforded dimeric ketone 7 and 8.

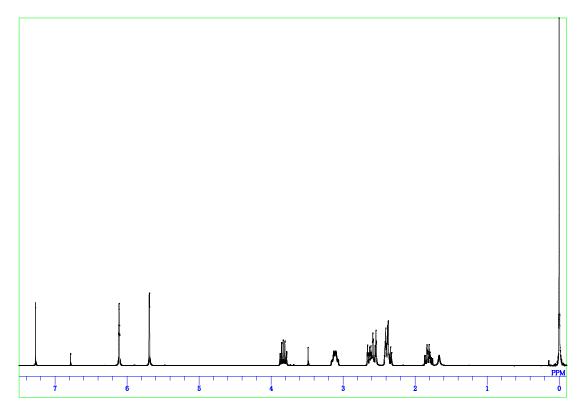
Pale yellow powder, mp. 180-182; °C ¹H- NMR (400 MHz, CDCl₃) δ 2.97-3.01 (4H, m), 3.25-3.29 (4H, m), 6.24 (4H, s), 7.43-7.55 (6H, m), 7.92 (4H, d, J = 7.2 Hz); ¹³C-NMR (100 MHz, CDCl₃) δ 26.6 (2C, CH₂), 29.1 (2C, CH₂), 98.2 (2C, CH), 105.4 (2C, CH), 128.0 (4C, CH), 128.5 (4C, CH), 132.4 (2C, CH), 138.8 (2C, C), 166.8 (2C, C), 172.6 (2C, C), 189.2 (1C, C); HRMS-EI:m/z [M⁺] calcd for C₂₇H₂₂O₅: 426.1467; found: 426.1467; IR (KBr): 3056, 1639, 1598, 1287, 1216, 1066, 941 cm⁻¹.

Pale yellow powder, mp. 122-124°C; 1 H- NMR (400 MHz, CDCl₃) δ 3.27-3.32 (2H, m), 3.38-3.43 (2H, m), 3.73 (3H, s), 5.67-5.68 (1H, m), 6.80-6.81 (1H, m), 7.45-7.57 (3H, m), 7.91-7.93 (2H, m); 13 C-NMR (100 MHz, CDCl₃) δ 27.5 (CH₂), 28.5 (CH₂), 51.3 (CH₃), 94.9 (CH), 98.8 (CH), 127.8 (CH) 128.6 (CH), 132.5 (CH), 138.9 (C), 167.5 (C), 172.2 (C), 174.0 (C), 190.1 (C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₅H₁₄O₄: 258.0892; found: 258.0889; IR (KBr): 2952, 1713, 1649, 1598, 1159, 1122, 703 cm $^{-1}$.

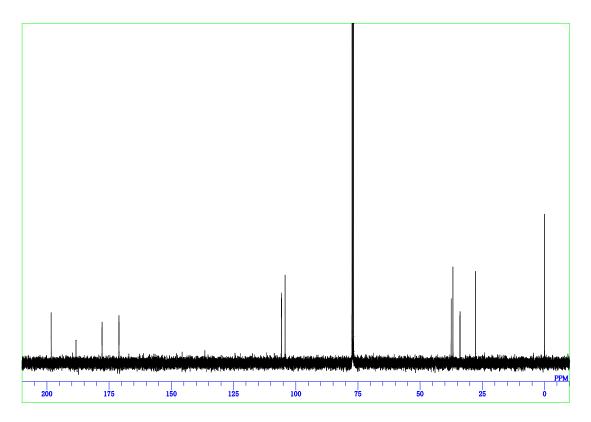
Diastereomeric mixture, ratio = 1.5:1. Pale yellow powder, mp. 183-184°C; 1 H- NMR (400 MHz, CDCl₃) δ 2.09-2.22 (10H, m), 2.71-2.85 (4H, m), 2.93-2.97 (2H, m), 5.60 (2H, s); 13 C-NMR (100 MHz, CDCl₃) δ 18.0 (1.2C, CH₃), 18.1 (0.8C, CH₃), 27.3 (1.2C, CH₂), 27.4 (0.8C, CH₂), 32.7 (1.2C, CH₃), 32.7 (0.8C, CH), 41.3 (0.8C, CH₂), 41.3 (1.2C, CH₂), 109.0 (0.8C, CH), 109.0 (1.2C, CH), 114.9 (0.8C, C), 115.0 (1.2C, C), 155.4 (1.2C, C), 156.1 (0.8C, C), 182.8 (1.2C, C), 182.9 (0.8C, C), 194.7 (0.4C, C), 195.1 (0.6C, C), 203.1 (0.8C, C), 203.1 (1.2C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₉H₁₈O₅: 326.1154; found: 326.1152; IR (KBr): 3101, 2913, 1704, 1618, 1359, 1222, 1156, 961, 839 cm $^{-1}$.

Diastereomeric mixture, ratio = 1.5:1. Pale yellow powder, mp. 116-118°C; 1 H- NMR (400 MHz, CDCl₃) δ 1.19 (3H, t, J = 7.6 Hz), 1.20 (3H, t, J = 7.6 Hz), 2.13-2.21 (4H, m), 2.47-2.59 (4H, m), 2.67-2.85 (4H, m), 2.92-2.95 (2H, m), 5.61-5.62 (2H, m); 13 C-NMR (100 MHz, CDCl₃) δ 11.9 (1.2C, CH₃), 11.9 (0.8C, CH₃), 24.9 (1.2C, CH₂), 24.9 (0.8C, CH₂), 27.5 (0.8C, CH₂), 27.5 (1.2C, CH₂) 32.7 (1.2C, CH₃), 32.8 (0.8C, CH), 41.3 (0.8C, CH₂), 41.3 (1.2C, CH₂), 108.9 (0.8C, CH), 109.0 (1.2C, CH), 114.1 (0.8C, C), 114.2 (1.2C, C), 159.8 (1.2C, C), 160.5 (0.8C, C), 183.1 (1.2C, C), 183.2 (0.8C, C), 194.7 (0.4C, C), 195.1 (0.6C, C), 203.2 (0.8C, C), 203.2 (1.2C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₂₁H₂₂O₅: 354.1467; found: 354.1461; IR (KBr): 2976, 2940, 1703, 1620, 1360, 1217, 1156, 835 cm $^{-1}$.

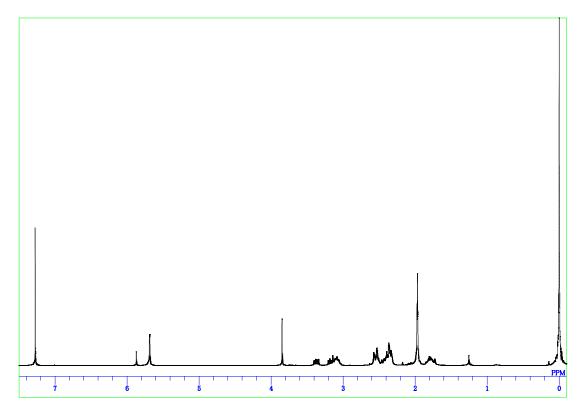
Diastereomeric mixture, ratio = 1.5:1. Yellow oil; 1 H- NMR (400 MHz, CDCl₃) δ 0.88 (6H, t, J = 6.8 Hz), 1.23-1.33 (12H, m), 1.56-1.61 (4H, m), 2.09-2.21 (4H, m), 2.47-2.56 (4H, s), 2.64-2.93 (6H, m), 5.60 (2H, s); 13 C-NMR (100 MHz, CDCl₃) δ 14.0 (2C, CH₃), 22.5 (1.2C, CH₂), 22.5 (0.8C, CH₂), 27.2 (1.2C, CH₂), 27.3 (0.8C, CH₃), 27.6 (0.8C, CH₂) 27.6 (1.2C, CH₂), 28.9 (1.2C, CH₂), 29.0 (0.8C, CH₂), 31.4 (0.8C, CH₂), 31.4 (0.8C, CH₂), 31.4 (1.2C, CH₂), 31.5 (1.2C, CH₂), 32.8 (1.2C, CH), 32.8 (0.8C, CH), 108.9 (0.8C, CH), 108.9 (1.2C, CH), 114.7 (0.8C, C), 114.7 (1.2C, C), 158.9 (1.2C, C), 159.5 (0.8C, C), 183.1 (1.2C, C), 183.2 (0.8C, C), 194.8 (0.8C, C), 195.1 (1.2C, C), 203.2 (0.8C, C), 203.2 (1.2C, C); HRMS-EI:m/z [M $^{+}$] calcd for C₂₉H₃₈O₅ : 466.2719; found: 466.2717; IR (KBr): 2955, 2929, 1708, 1657, 1615, 1362, 1216, 1158, 836 cm $^{-1}$.

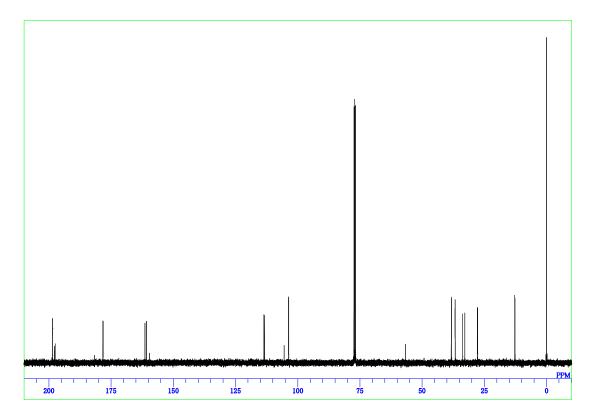

Yellow oil, ${}^{1}\text{H}$ - NMR (400 MHz, CDCl₃) δ 0.89 (3H, t, J = 6.8 Hz), 1.29-1.39 (6H, m), 1.58-1.65 (2H, m), 2.04-2.11 (1H, m), 2.18 (1H, dd, J = 17.6, 3.2 Hz), 2.75-2.87 (4H, m), 2.99 (1H, dd, J = 16.4, 6.8 Hz), 3.76 (3H, s), 5.58 (1H, d, J = 1.6 Hz); ${}^{13}\text{C}$ -NMR (100 MHz, CDCl₃) δ 14.1 (CH₃), 22.5 (CH₂), 26.5 (CH₂), 27.4 (CH₂), 29.0 (CH₂), 31.5 (CH₂), 31.9 (CH₂), 32.5 (CH), 41.4 (CH₂), 51.8 (CH₃), 105.9 (C), 108.6 (CH), 164.0 (C), 166.9 (C), 183.6 (C), 203.7 (C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₆H₂₂O₄: 278.1518; found: 278.1519; IR (KBr): 2954, 2930, 1714, 1624, 1362, 1216, 1160 cm $^{-1}$.

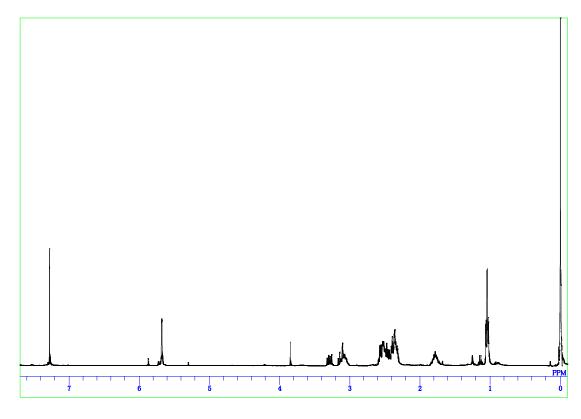
Pale yellow powder, mp. 125-127°C 1 H- NMR (400 MHz, CDCl₃) δ 2.23-2.32 (2H, m), 2.87 (1H, dd, J = 17.8, 6.8 Hz), 3.02-3.10 (1H, m), 3.14 (1H, dd, J = 16.0, 7.2 Hz), 3.56 (3H, s), 5.65 (1H, d, J = 1.6 Hz), 7.42-7.46 (5H, m); 13 C-NMR (100 MHz, CDCl₃) δ 27.4 (CH₂), 32.3 (CH), 41.5 (CH₂), 51.9 (CH₃), 107.9 (C), 109.3 (CH) 128.1 (CH), 128.6 (CH), 130.1 (CH), 133.5 (C), 157.9 (C), 167.2 (C), 183.2 (C), 203.4 (C); HRMS-EI:m/z [M $^{+}$] calcd for C₁₆H₁₄O₄: 270.0892; found: 270.0888; IR (KBr): 2986, 2945, 1701, 1626, 1226, 1165, 1054, 768 cm $^{-1}$.

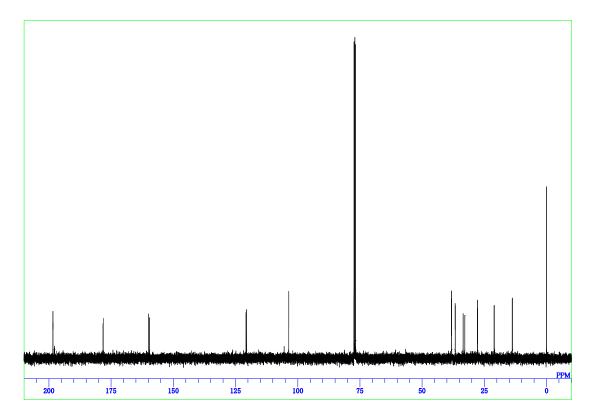

References

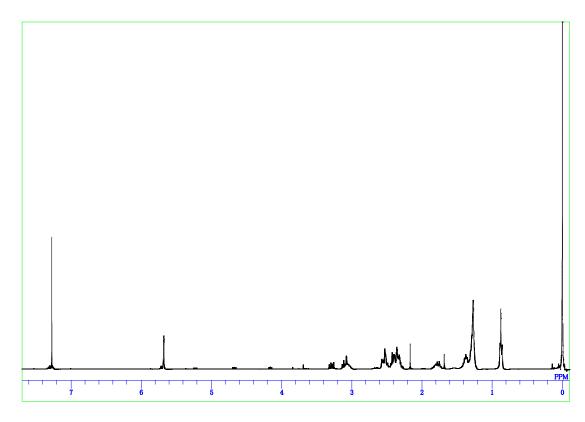
- 1 M. Gulías, J. R. Rodríguez, L. Castedo, J. L. Mascareñas, Org. Lett. 2003, 5, 1975.
- 2 Y. Li, Z. Yu, J. Org. Chem. 2009, 74, 8904.

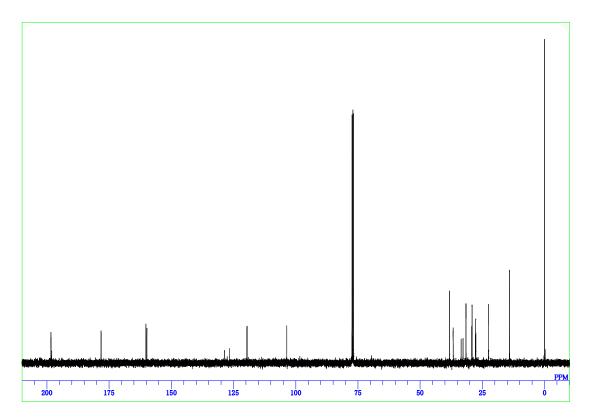

6a-1H

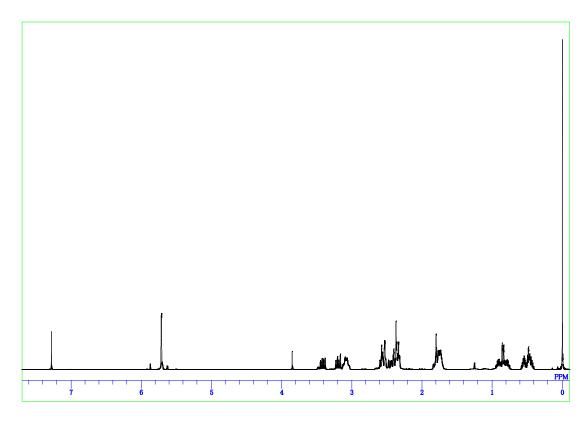

6a-BCM

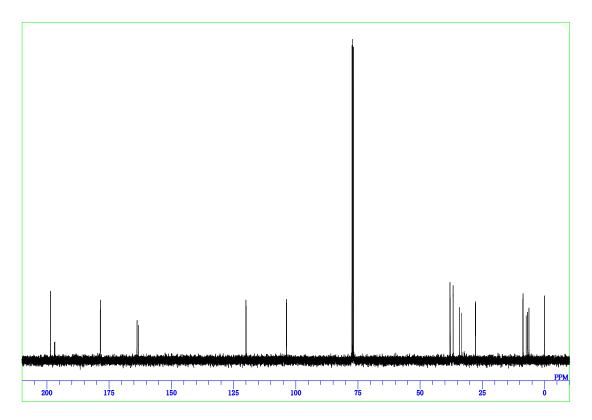

6b-1H

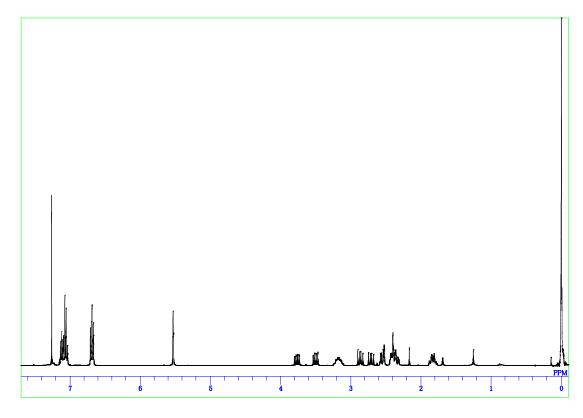

6b-BCM

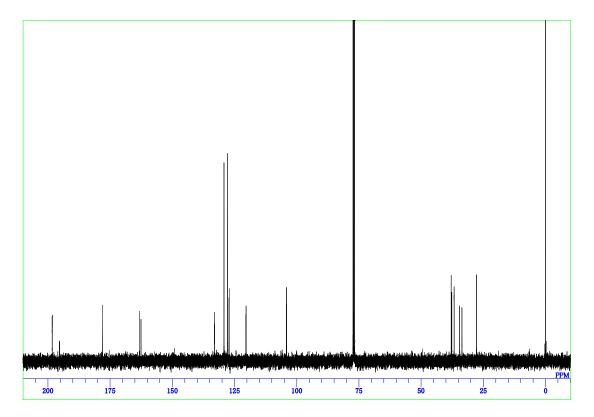

6c-1H

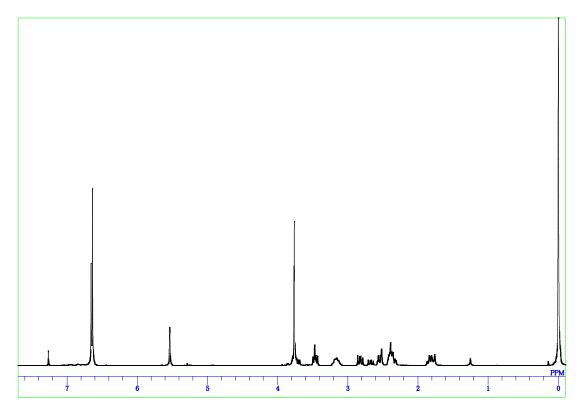

6c-BCM

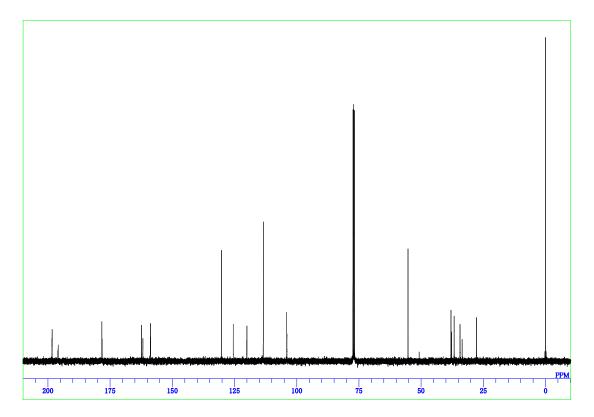

6d-1H

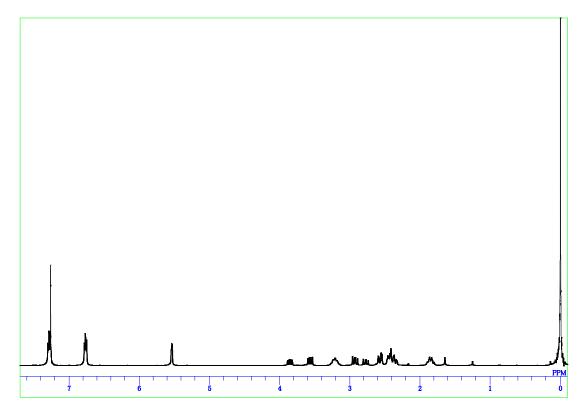

6d-BCM

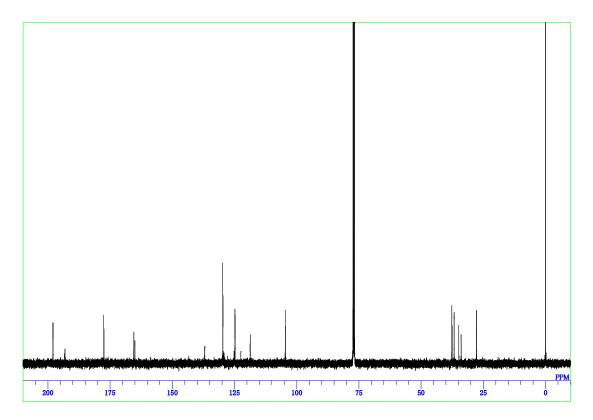

6e-1H

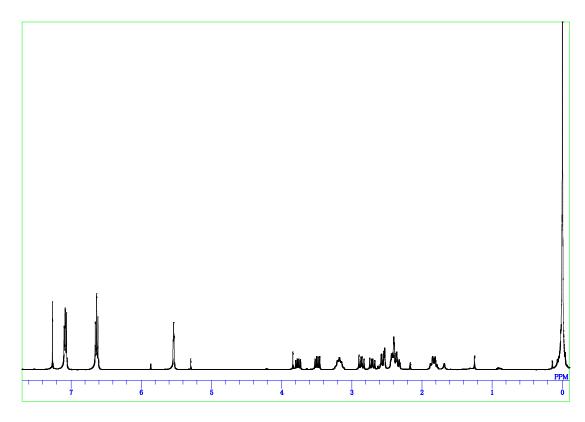

6e-BCM

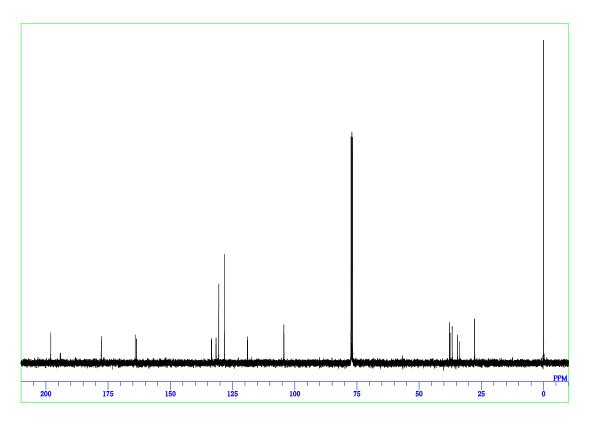

6f-1H

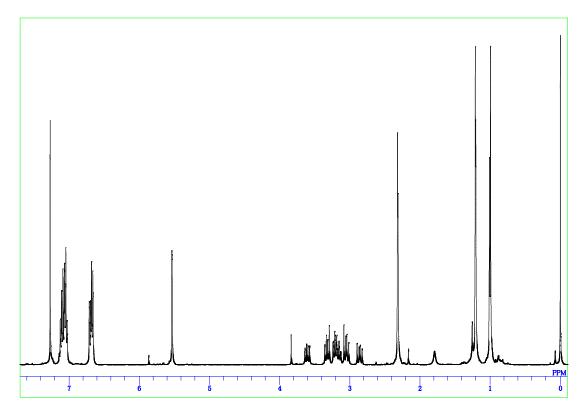

6f-BCM

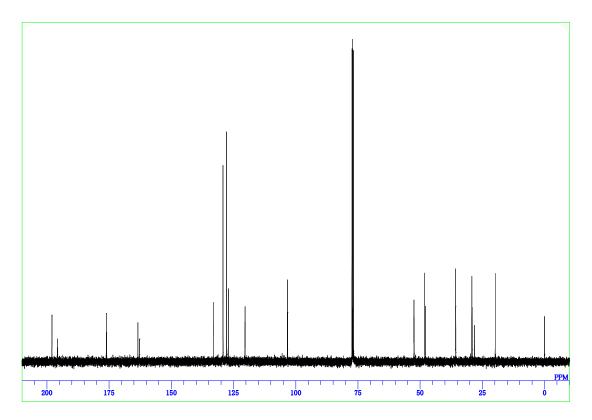

6g-1H

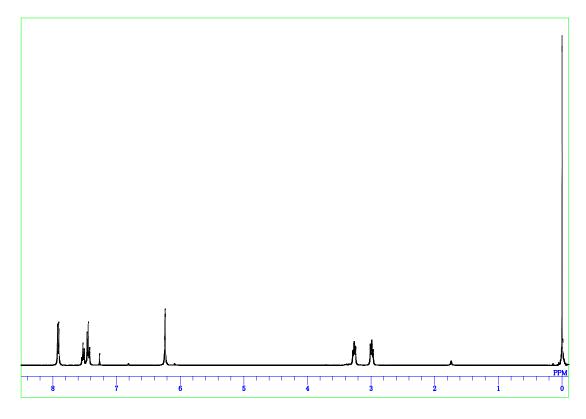

6g-BCM

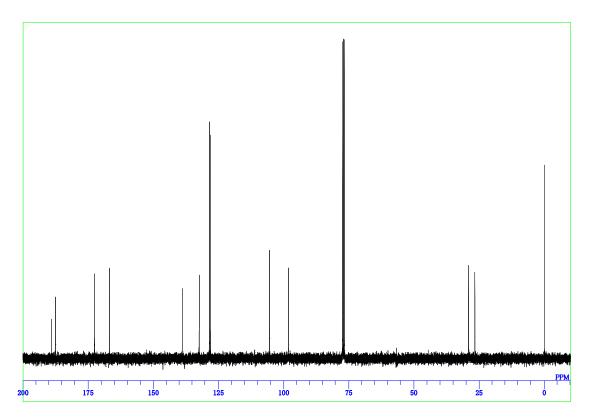

6h-1H

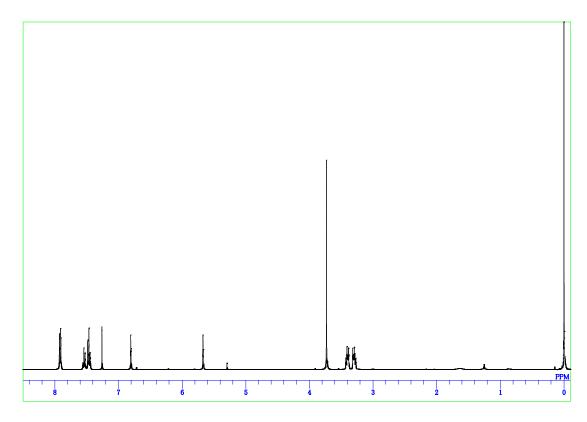

6h-BCM

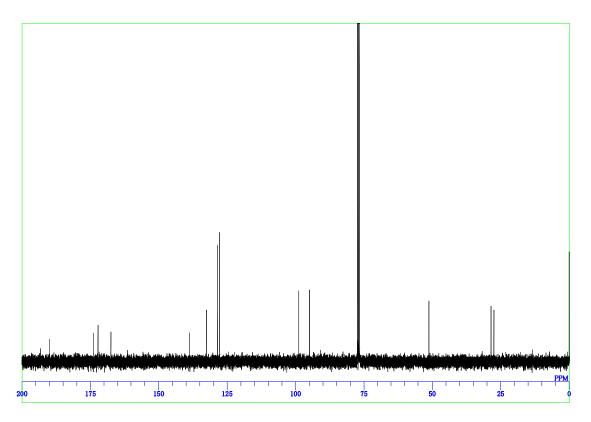

6i-1H

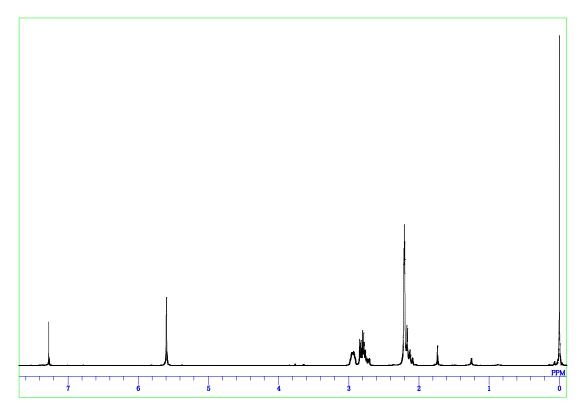

6i-BCM

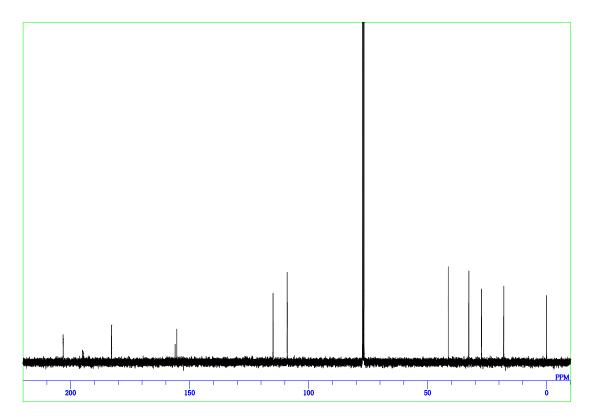

6j-1H

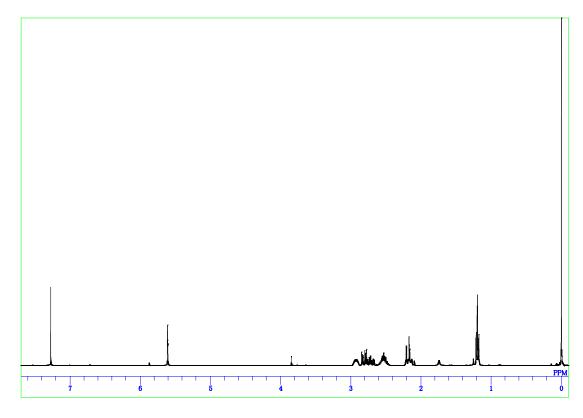

6j-BCM

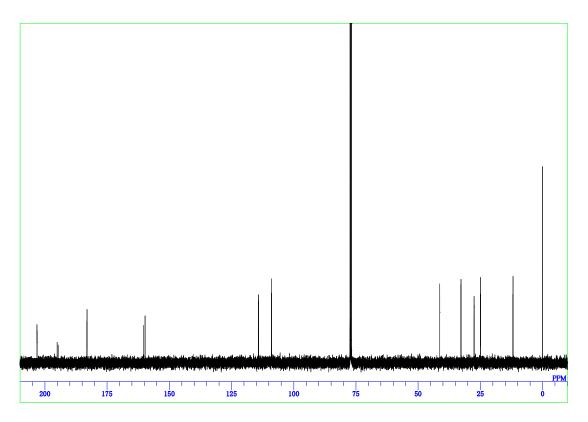

7-1H

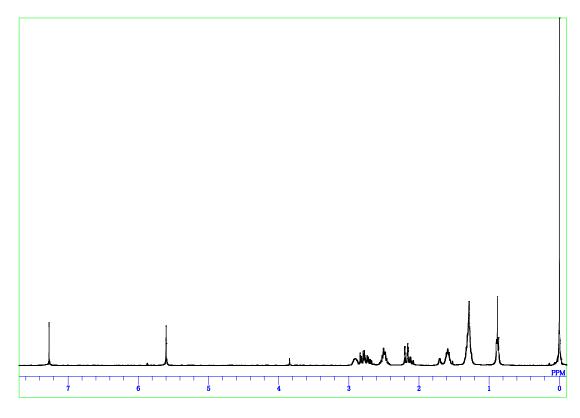

7-BCM

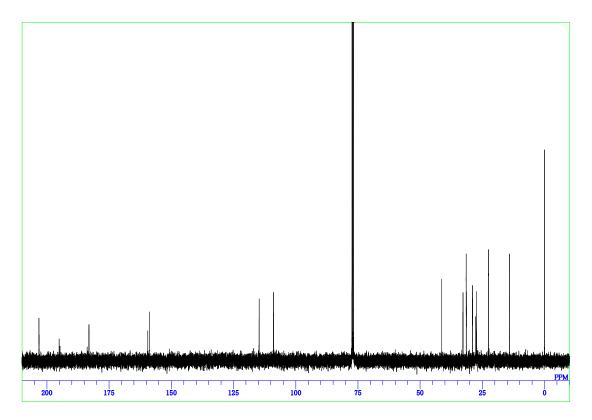

8-1H

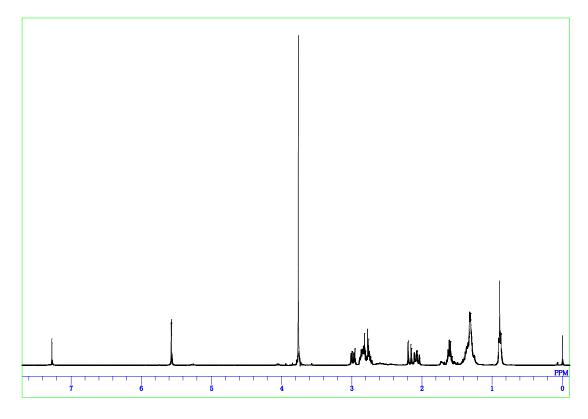

8-BCM


9a-1H

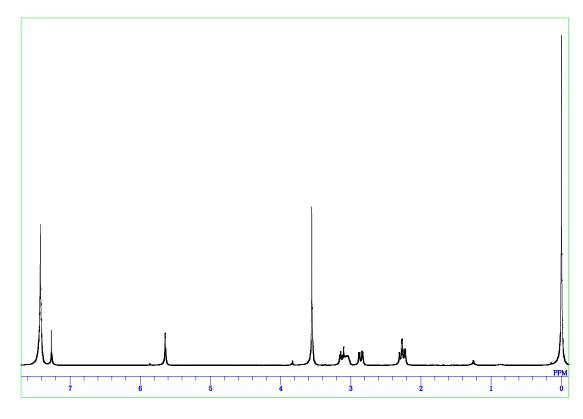

9a-BCM

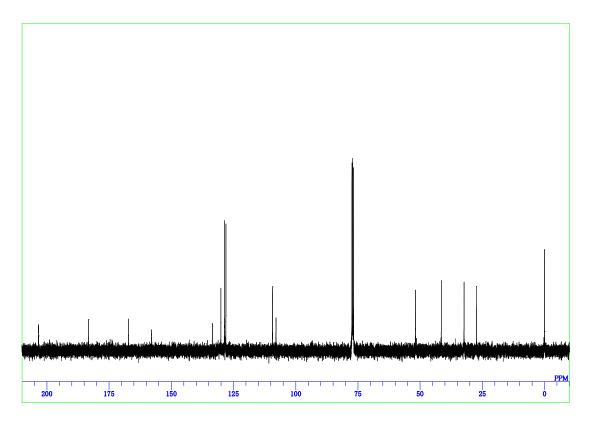

9b-1H


9b-BCM


9c-1H

9c-BCM


10c-1H


10c-BCM

10d-1H

10d-BCM

