Supporting Information

Asymmetric Catalytic Mannich-type Reaction of Hydrazones with

Difluoroenoxysilanes by using Imidazoline-anchored phosphine

Ligand-Zinc(II) Complexes

Zhiliang Yuan,¹ Liangyong Mei,¹ Yin Wei,¹ Min Shi,^{*,1} Venkatesh Kattamuri,² Patrick McDowell² and Guigen Li^{*,2}

¹State Key laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China ; and ²Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061

CONTENTS

1.	General remarks
2.	General procedure for the preparation and analytical data of difluoroenoxysilane
	2
3.	General procedure of the preparation of chiral imidazoline-phosphine type ligands
	L9-L14
4.	Typical procedure for the zinc(II)-catalyzed asymmetric Mannich-type difluorination of
	hydrazone with difluoroenoxysilane 2 and Table SI-1S-8
5.	Analytical data for Zn(NTf ₂) ₂ -catalyzed Mannich-type adducts 3a-3u S-9
6.	Analytical data for Zn(NTf ₂) ₂ -catalyzed Mannich-type adducts 5a-5f S-22
7.	X-ray crystal structure and crystal data of ligand L9 and Mannich-type adduct
	5c
8.	¹ H NMR and ³¹ P NMR spectroscopic studies of the potential active
	speciesS-29
9.	ReferencesS-29
10.	NMR and HPLC data for Zn(NTf ₂) ₂ -catalyzed Mannich-type adducts
	3a-3u

11. NMR	and	HPLC	data	for	$Zn(NTf_2)_2$ -catalyzed	Mannich-type	adducts
5a-5f				•••••			S-110
12. Transfor	rmation	n of produc	ct 3a				S-136

1. General Remarks. ¹H and ¹³C NMR spectra were recorded on a Bruker AM-300 spectrometer for solution in CDCl₃ with tetramethylsilane (TMS) as an internal standard; *J*-values are in Hz. Mass spectra were recorded by EI methods, and HRMS was measured on a Finnigan MA⁺ mass spectrometer. THF and toluene were distilled from sodium (Na) under argon (Ar) atmosphere. CH₃CN and 1,2-dichloromethane were distilled from CaH₂ under argon (Ar) atmosphere. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF₂₅₄ silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure.

2. General procedure for the preparation of difluoroenoxysilane 2.¹ A mixture of chlorotrimethylsilane (TMSCl) (6.0 mmol), Mg (6.0 mmol) and THF (10 mL) was cooled down to 0 °C under argon atmosphere. Then trifluoroacetophenone (1.5 mmol) was added dropwise and the resulting mixture was stirred for an additional 1.0 h. After the solvent was removed under vacuum, hexane (15 mL) was added to the residue. The resulting salt was filtered and the filtrate was then concentrated to give the crude product of difluoroenoxysilane 2 under reduced pressure. This crude product 2 was used for the Mukaiyama-aldol type reaction without further purification.

((2,2-difluoro-1-phenylvinyl)oxy)trimethylsilane (2a). ¹H NMR (300 MHz, CDCl₃, TMS): δ 0.18 (s, 9H, CH₃), 7.25-7.29 (m, 1H, ArH), 7.34-7.39 (m, 2H, ArH), 7.47-7.50 (m, 2H, ArH); ¹⁹F NMR (282 MHz, CDCl₃, TMS): δ -100.7 (d, 1F, J = 68 Hz), -112.2 (d, 1F, J = 68 Hz).

((2,2-difluoro-1-(p-tolyl)vinyl)oxy)trimethylsilane (2b). ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.18 (s, 9H, CH₃), 2.35 (s, 3H, CH₃), 7.16 (d, 2H, *J* = 8.4 Hz, ArH), 7.36 (d, 2H, *J* = 8.4 Hz, ArH); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -100.7 (d, 1F, *J* = 69 Hz), -112.2 (d, 1F, *J* = 69 Hz).

((2,2-difluoro-1-(thiophen-2-yl)vinyl)oxy)trimethylsilane (2c). ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.24 (s, 9H, CH₃), 7.01-7.04 (m, 1H, ArH), 7.09 (d, 1H, *J* = 4.0 Hz, ArH), 7.36 (dd, 1H, *J* = 4.0, 1.2 Hz, ArH); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -102.2 (d, 1F, *J* = 65 Hz), -112.2 (d, 1F, *J* = 65 Hz).

3. General procedure of the preparation of chiral imidazoline-phosphine type ligands L9-L14.

Synthesis of the precatalysts *SI-2*. The solution of (*R*)-BINDPCA² (0.5 mmol) in DMF (5.0 mL) with 1-ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride (EDCI) (1.0 mmol) and 1-hydroxy-benzotriazole (HOBt) (1.5 mmol) was stirred at 0 °C for 10 min, then a solution of *SI-1* (0.75 mmol) in 2.0 mL DMF was added into the solution by syringe at 0 °C. The mixture was stirred at room temperature for 5 h. The reaction mixture was diluted by the addition of 10 mL of EtOAc, then washed with H₂O and brine, dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography to give the desired product *SI-2* as pale yellow solid.

(*R*)-2-(diphenylphosphoryl)-*N*-((1*S*,2*S*)-2-(4-methylphenylsulfonamido)-1,2-diphenylethyl)-1, 1'-binaphthyl-2-carboxamide *SI-2a*. Yield: (392 mg, 93%). A pale yellow solid, m.p. 133-136 °C; IR (CH₂Cl₂) v 3209, 3059, 2924, 1659, 1566, 1497, 1453, 1439, 1373, 1332, 1262, 1202, 1158, 1114, 1090, 1071, 1029, 1000, 972, 952 cm⁻¹; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.22 (s, 3H, CH₃), 5.05 (dd, 1H, *J* = 10.0, 4.0 Hz, CH), 5.28 (dd, 1H, *J* = 10.0, 4.0 Hz, CH), 6.35 (d, 2H, *J* = 8.0 Hz, ArH), 6.46 (d, 1H, *J* = 8.4 Hz, ArH), 6.73-6.84 (m, 6H, ArH), 6.94 (br, 2H, ArH), 7.06-7.24 (m, 10H, ArH), 7.36-7.55 (m, 7H, ArH), 7.61 (d, 1H, *J* = 8.0 Hz, ArH), 7.80-7.88 (m, 4H, ArH), 7.95 (dd, 1H, J = 8.4, 2.0 Hz, ArH), 10.13 (d, 1H, J = 8.0 Hz, NH); ³¹P NMR (CDCl₃, 162 MHz, 85% H₃PO₄) δ 30.34; MS (ESI) m/z (%): 847.7 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₅₄H₄₄N₂O₄PS⁺¹(M⁺+1) requires 847.2755, Found: 847.2753. [α]²⁰_D = +108.6 (c 0.40, CHCl₃).

(*R*)-2-(bis(3,5-dimethylphenyl)phosphoryl)-*N*-((1*S*,2*S*)-2-(4-methylphenylsulfonamido)-1,2-di phenylethyl)-1,1'-binaphthyl-2-carboxamide *SI-2b*. Yield: (297 mg, 78%). A pale yellow solid, m.p. 130-133 °C; IR (CH₂Cl₂) v 3201, 3059, 3031, 2922, 1725, 1660, 1620, 1566, 1498, 1452, 1422, 1375, 1334, 1305, 1272, 1224, 1203, 1159, 1122, 1092, 1065, 1007, 973, 953 cm⁻¹; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.95 (s, 6H, CH₃), 2.22 (s, 3H, CH₃), 2.38 (s, 6H, CH₃), 4.98 (dd, 1H, *J* = 11.6, 3.6 Hz, CH), 5.29 (dd, 1H, *J* = 11.6, 3.6 Hz, CH), 6.23 (d, 1H, *J* = 7.6 Hz, ArH), 6.45 (s, 1H, ArH), 6.55 (d, 1H, *J* = 7.6 Hz, ArH), 6.70-6.81 (m, 6H, ArH), 6.88-7.03 (m, 3H, ArH), 7.10-7.24 (m, 9H, ArH), 7.39-7.50 (m, 4H, ArH), 7.57-7.72 (m, 4H, ArH), 7.86 (d, 1H, *J* = 8.4 Hz, ArH), 8.02 (dd, 1H, *J* = 8.4, 2.0 Hz, ArH), 8.22 (dd, 1H, *J* = 8.4, 1.6 Hz, ArH), 10.28 (d, 1H, *J* = 9.2 Hz, NH); ³¹P NMR (CDCl₃, 162 MHz, 85% H₃PO₄) δ 29.39; MS (ESI) *m*/*z* (%): 903.7 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₅₈H₅₂N₂O₄PS⁺¹(M⁺+1) requires 903.3388, Found: 903.3380. [α]²⁰_D = +48.0 (c 0.15, CHCl₃).

(*R*)-2-(bis(3,5-dimethoxyphenyl)phosphoryl)-*N*-((1*S*,2*S*)-2-(4-methylphenylsulfonamido)-1,2diphenylethyl)-1,1'-binaphthyl-2-carboxamide *SI-2c*. Yield: (319 mg, 75%). A pale yellow solid, m.p. 137-139 °C; IR (CH₂Cl₂) v 3210, 3060, 3002, 2933, 2838, 1723, 1660, 1585, 1498, 1453, 1419, 1373, 1335, 1303, 1289, 1257, 1206, 1161, 1091, 1063, 973, 953, 925 cm⁻¹; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.22 (s, 3H, CH₃), 3.22 (s, 6H, OCH₃), 3.78 (s, 6H, OCH₃), 4.99 (dd, 1H, J = 9.2, 3.6 Hz, CH), 5.30 (dd, 1H, J = 9.2, 3.6 Hz, CH), 5.89 (s, 1H, ArH), 6.25-6.28 (m, 4H, ArH), 6.53 (d, 1H, J = 8.4 Hz, ArH), 6.66 (s, 1H, ArH), 6.75-6.91 (m, 4H, ArH), 6.93-7.04 (m, 3H, ArH), 7.14-7.21 (m, 9H, ArH), 7.38-7.45 (m, 3H, ArH), 7.53 (d, 1H, J = 8.0 Hz, ArH), 7.65-7.72 (m, 2H, ArH), 7.86 (d, 1H, J = 9.2 Hz, NH); ³¹P NMR (CDCl₃, 162 MHz, 85% H₃PO₄) δ 30.61; MS (ESI) m/z (%): 967.9 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₅₈H₅₂N₂O₈PS⁺¹(M⁺+1) requires 967.3192, Found: 967.3177. [α]²⁰_D = +58.3 (c 0.40, CHCl₃). **Synthesis of the precatalysts** *SI-3*.³ To a dried Schlenk tube was added triphenylphosphine oxide (1.5 mmol) and trifluoromethanesulfonic anhydride (1.5 mmol) in CH₂Cl₂ (5.0 mL) at 0 $^{\circ}$ C, and the mixture was stirred at 0 $^{\circ}$ C for 0.5 h. Then the solution of precatalyst *SI-2* (0.50 mmol) in CH₂Cl₂ (5.0 mL) was added slowly via syringe. After the completion of the addition, the mixture was stirred at 0 $^{\circ}$ C for 3 h. The reaction was quenched with saturated NaHCO₃ (aq), and the aqueous layer was extracted with CH₂Cl₂. The combined organic phase was dried over anhydrous Na₂SO₄, and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography (PE/EA=1/1) to give crude product *SI-3* (mixed with triphenylphosphine oxide).

Synthesis of the chiral imidazoline-phosphine ligands L9-L14. To a dried Schlenk tube filled with argon was added crude precatalyst *SI-3* with Et₃N (10.0 equiv) in 15 mL anhydrous toluene. The mixture was stirred at 0 °C for 10 min, and 10.0 equiv of HSiCl₃ was added at 0 °C and the mixture was stirred at that temperature for 0.5 h. Then the mixture was allowed to warm to room temperature and stirred under reflux overnight. After cooling to room temperature, the reaction was quenched with saturated NaHCO₃ (aq), precipitates settled out, and the aqueous layer was extracted with EtOAc. The combined organic phase was washed with brine and dried over anhydrous Na₂SO₄, and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography (PE/EA=5/1) to give the desired product as pale yellow solid.

(4*S*,5*S*)-2-((*R*)-2'-(diphenylphosphino)-1,1'-binaphthyl-2-yl)-4,5-diphenyl-1-tosyl-4,5-dihydro-1H-imidazoline **L9**. Yield: (110 mg, 55% for two steps). A pale yellow solid, m.p. 150-153 °C; IR (CH₂Cl₂) v 3397, 3055, 2973, 2925, 1725, 1642, 1595, 1479, 1433, 1371, 1306, 1277, 1247, 1205, 1185, 1167, 1089, 1026, 963 cm⁻¹; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.24 (s, 3H, CH₃), 4.49 (d, 1H, *J* = 6.0 Hz, CH), 4.54 (d, 1H, *J* = 6.0 Hz, CH), 5.85 (d, 2H, *J* = 7.2 Hz, ArH), 6.68 (d, 1H, *J* = 8.4 Hz, ArH), 6.78-6.89 (m, 9H, ArH); 6.91-7.01 (m, 5H, ArH), 7.07-7.11 (m, 4H, ArH), 7.12-7.19 (m, 5H, ArH), 7.32 (q, 2H, *J* = 6.0 Hz, ArH), 7.53 (t, 2H, *J* = 8.8 Hz, ArH), 7.80 (d, 1H, *J* = 8.4 Hz, ArH), 7.91 (d, 1H, *J* = 8.4 Hz, ArH), 7.98-8.03 (m, 3H, ArH), 8.15 (d, 1H, *J* = 8.0 Hz, ArH); ³¹P NMR (CDCl₃, 162 MHz, 85% H₃PO₄) δ -14.82; MS (ESI) *m*/*z* (%): 813.6 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₅₄H₄₂N₂O₂PS⁺¹(M⁺+1) requires 817.2702, Found: 817.2699. [α]²⁰_D = +36.5 (c 0.45, CHCl₃).

(4*R*,5*R*)-2-((*R*)-2'-(diphenylphosphino)-1,1'-binaphthyl-2-yl)-4,5-diphenyl-1-tosyl-4,5-dihydro -1H-imidazoline **L10**. Yield: (199 mg, 63% for two steps). A pale yellow solid, m.p. 147-150 °C; IR (CH₂Cl₂) v 3401, 3055, 2970, 2925, 1725, 1655, 1590, 1479, 1433, 1389, 1306, 1271, 1239, 1198, 1185, 1165, 1089, 1026, 969 cm⁻¹; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.20 (s, 3H, CH₃), 4.51 (d, 1H, *J* = 6.0 Hz, CH), 4.53 (d, 1H, *J* = 6.0 Hz, CH), 5.98 (d, 2H, *J* = 7.8 Hz, ArH), 6.68 (d, 1H, *J* = 7.8 Hz, ArH), 6.78-6.89 (m, 9H, ArH); 6.91-7.03 (m, 6H, ArH), 7.07-7.13 (m, 3H, ArH), 7.12-7.19 (m, 5H, ArH), 7.32 (q, 2H, *J* = 6.0 Hz, ArH), 7.53 (t, 2H, *J* = 8.4 Hz, ArH), 7.80 (d, 1H, *J* = 8.0 Hz, ArH), 7.91 (d, 1H, *J* = 8.0 Hz, ArH), 7.98-8.01 (m, 3H, ArH), 8.15 (d, 1H, *J* = 8.0 Hz, ArH); ³¹P NMR (CDCl₃, 162 MHz, 85% H₃PO₄) δ -14.69; MS (ESI) *m*/*z* (%): 813.6 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₅₄H₄₂N₂O₂PS⁺¹(M⁺+1) requires 817.2702, Found: 817.2698. [α]²⁰_D = -19.5 (c 0.35, CHCl₃).

(4*S*,5*S*)-2-((*S*)-2'-(diphenylphosphino)-1,1'-binaphthyl-2-yl)-4,5-diphenyl-1-tosyl-4,5-dihydro-1H-imidazoline **L11**. Yield: (237 mg, 49% for two steps). A pale yellow solid, m.p. 151-153 ^oC; IR (CH₂Cl₂) v 3358, 3075, 2900, 1755, 1642, 1602, 1598, 1459, 1430, 1361, 1300, 1277, 1247, 1215, 1195, 1165, 1089, 1007, 960 cm⁻¹; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.20 (s, 3H, CH₃), 4.50 (d, 1H, *J* = 5.2 Hz, CH), 4.59 (d, 1H, *J* = 5.2 Hz, CH), 5.85 (d, 2H, *J* = 7.2 Hz, ArH), 6.68 (d, 1H, *J* = 8.4 Hz, ArH), 6.78-6.89 (m, 9H, ArH); 6.91-7.01 (m, 5H, ArH), 7.07-7.11 (m, 4H, ArH), 7.12-7.19 (m, 4H, ArH), 7.22 (s, 1H, ArH), 7.32 (q, 2H, *J* = 6.0 Hz, ArH), 7.53 (t, 2H, *J* = 8.4 Hz, ArH), 7.80 (d, 1H, *J* = 8.0 Hz, ArH), 7.91 (d, 1H, *J* = 8.0 Hz, ArH), 7.98-8.03 (m, 3H, ArH), 8.15 (d, 1H, *J* = 8.0 Hz, ArH); ³¹P NMR (CDCl₃, 162 MHz, 85% H₃PO₄) δ -14.70; MS (ESI) *m/z* (%): 813.6 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₅₄H₄₂N₂O₂PS⁺¹(M⁺+1) requires 817.2702, Found: 817.2698. [α]²⁰_D = +16.8 (c 0.45, CHCl₃).

(4R,5R)-2-((S)-2'-(diphenylphosphino)-1,1'-binaphthyl-2-yl)-4,5-diphenyl-1-tosyl-4,5-dihydro -1H-imidazoline **L12**. Yield: (186 mg, 59% for two steps). A pale yellow solid, m.p. 155-158 °C; IR (CH₂Cl₂) v 3411, 3380, 3055, 3020, 2973, 2925, 1725, 1642, 1608, 1479, 1433, 1371, 1300, 1277, 1247, 1205, 1175, 1157, 1089, 1026, 960, 895 cm⁻¹; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.26 (s, 3H, CH₃), 4.48 (d, 1H, J = 6.0 Hz, CH), 4.54 (d, 1H, J = 6.0 Hz, CH), 5.85 (d, 1H, J = 7.2 Hz, ArH), 6.68 (d, 1H, J = 7.2 Hz, ArH), 6.79-6.92 (m, 9H, ArH), 6.97-7.03 (m, 5H, ArH), 7.09-7.12 (m, 4H, ArH), 7.18-7.24 (m, 5H, ArH), 7.31-7.36 (m, 2H, ArH), 7.51-7.56 (m, 2H, ArH), 7.80 (d, 1H, J = 8.4 Hz, ArH); ³¹P NMR (CDCl₃, 162 MHz, 85% H₃PO₄) δ -14.84; MS (ESI) m/z (%): 813.6 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₅₄H₄₂N₂O₂PS⁺¹(M⁺+1) requires 817.2702, Found: 817.2700. [α]²⁰_D = -36.1 (c 0.40, CHCl₃).

(4*S*,5*S*)-2-((*R*)-2'-(

bis(3,5-dimethylphenyl)phosphino)-1,1'-binaphthyl-2-yl)-4,5-diphenyl-1-tosyl-4,5-dihydro-1 H-imidazoline L13. Yield: (138 mg, 50% for two steps). A pale yellow solid, m.p. 150-153 ^oC; IR (CH₂Cl₂) v 3395, 3152, 2958, 2925, 1886, 1725, 1642, 1590, 1485, 1433, 1371, 1316, 1277, 1207, 1185, 1167, 1075, 1029, 1001, 903 cm⁻¹; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 1.88 (s, 6H, CH₃), 2.01 (s, 6H, CH₃), 2.24 (s, 3H, CH₃), 4.48 (dd, 2H, J = 8.0, 6.0 Hz, CH), 5.84 (d, 2H, J = 7.2 Hz, ArH), 6.43 (d, 2H, J = 7.2 Hz, ArH), 6.69-6.91 (m, 13H, ArH), 7.00 (d, 1H, J = 7.2 Hz, ArH), 7.14-7.18 (m, 2H, ArH), 7.40 (d, 1H, J = 8.0 Hz, ArH), 7.51-7.66 (m, 1H, ArH), 7.68 (d, 1H, J = 8.4 Hz, ArH), 7.82-8.00 (m, 3H, ArH), 8.04 (d, 1H, J = 8.4 Hz, ArH), 8.16 (d, 1H, J = 8.4 Hz, ArH); ³¹P NMR (CDCl₃, 162 MHz, 85% H₃PO₄) δ -13.79; MS (ESI) m/z (%): 869.7 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₅₈H₅₀N₂O₂PS⁺¹(M⁺+1) requires 869.3357, Found: 869.3325. [α]²⁰_D = +45.8 (c 0.40, CHCl₃).

(4*S*,5*S*)-2-((*R*)-2'-(

bis(3,5-dimethoxyphenyl)phosphino)-1,1'-binaphthyl-2-yl)-4,5-diphenyl-1-tosyl-4,5-dihydro-1H-imidazoline L14. Yield: (185 mg, 66% for two steps). A pale yellow solid, m.p. 156-159 ^oC; IR (CH₂Cl₂) v 3403, 3295, 3155, 2993, 2725, 1825, 1769, 1642, 1595, 1479, 1333, 1306, 1277, 1219, 1205, 1185, 1167, 1009, 958, 858 cm⁻¹; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 2.26 (s, 3H, CH₃), 3.36 (s, 6H, OCH₃), 3.48 (s, 6H, OCH₃), 4.46 (d, 1H, J = 6.0 Hz, CH), 4.58 (d, 1H, J = 6.0 Hz, CH), 5.79 (d, 1H, J = 7.6 Hz, ArH), 6.00 (dd, 2H, J = 4.8, 2.4 Hz, ArH), 6.20 (dt, 2H, J = 4.8, 2.4 Hz, ArH), 6.34 (dd, 2H, J = 7.2, 2.4 Hz, ArH), 6.63 (d, 1H, J = 8.0 Hz, ArH), 6.77-6.91 (m, 7H, ArH), 6.99 (t, 1H, J = 7.2 Hz, ArH), 7.15-7.24 (m, 5H, ArH), 7.31-7.34 (m, 2H, ArH), 7.35-7.60 (m, 2H, ArH), 7.82 (d, 1H, J = 8.4 Hz, ArH), 8.16 (d, 1H, J = 8.4 Hz, ArH), 8.00 (t, 1H, J = 8.8 Hz, ArH), 8.03 (d, 1H, J = 8.4 Hz, ArH), 8.16 (d, 1H, J = 8.4 Hz, ArH); ³¹P NMR (CDCl₃, 162 MHz, 85% H₃PO₄) δ -9.88; MS (ESI) m/z (%): 934.0 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₅₈H₅₀N₂O₆PS⁺¹(M⁺+1) requires 933.3131, Found: 933.3122. [α]²⁰_D = +47.0 (c 0.20, CHCl₃).

4. Typical procedure for the zinc(II)-catalyzed asymmetric Mannich-type difluorination of hydrazone with difluoroenoxysilane 2. $Zn(NTf_2)_2$ (0.01 mmol) and chiral imidazoline-phosphine ligand L13 (0.02 mmol) were added into a Shlenk tube and then MeOH/THF (1/1) 1.0 mL was added into the reaction vessel. The resulting solution was allowed to stir for 2.0 h at room temperature (25 °C). Then hydrazone 0.10 mmol was added into the mixture, and the reaction mixture was cooled to 5 °C. A freshly prepared difluoroenoxysilane 2 (0.30 mmol) was added dropwise by syringe. The reaction mixture was allowed to stir for 24 h at 5 °C. After being quenched by addition of a saturated aqueous solution of NH₄Cl (5.0 mL), the mixture was extracted by DCM and washed with brine. The organic layer was dried over anhydrous Na₂SO₄. Then the solvent was removed under reduced pressure and the residue was purified by flash column chromatography (SiO₂) to give the corresponding product **3a**.

In the case of hydrazone 1r, bearing a 2-chlorobenzene group, the corresponding product 3r was given in low yield and *ee*, presumably due to the steric effect (Table SI-1, entry 17). However, substrate 1s, bearing a 3-nitrobenzene group afforded 3s in lower yield and enantioselectivity relatively (Table SI-1, entry 18). Experiments showed that hydrazone 1p [R = $CH_3(CH_2)_6$], which bearing a sterically more bulky substituent than 1t, afforded difluorination product 3p in 60% *ee*, an increased enantioselectivity was achieved for the comparison of 3t (Table 3, entry 15 and Table SI-1, entry 19). Similar results were obtained for the comparison of the corresponding adducts 3q (R = cyclopropyl) and 3u (R = cyclohexyl) (up to 78% *ee*, Table 3, entry 16 and Table SI-1, entry 20).

Table SI-1. Scope and limitations of Zn(NTf₂)₂-catalyzed asymmetric Mannich-type reaction of aromatic hydrazones with difluoroenoxysilane **2a**.

NH	Bz – –			BZHN NH O
N ²¹		Zn(NTf ₂) ₂ (10 mol)	%)/ L13 (20 mo l %)	
в∕∼н	' F Ph	THF/MeOH=1/1, 5	°C, MS4A, 24 h	R Ph
1	2a	,	, ,	F F 3
entrv ^a	hydrazone 1	yield ^b (%)	_ee ^c (%)_	absolute
	(R)	3	3	configuration ^d
1	1b (4-CIC ₆ H ₄)	3b , 75	95	S
2	1c (4-BrC ₆ H ₄)	3c , 79	96	S
3	1d (4-FC ₆ H ₄)	3d , 83/67 ^e	87/93 ^e	S
4	1e (4-MeC ₆ H ₄)	3e , 73	92	S
5	1f (4-MeOC ₆ H ₄)	3f , 87	94	S
6 ^f	1g (4-NO ₂ C ₆ H ₄)	3g , 79	90	S
7	1h (4-CNC ₆ H ₄)	3h , 67	91	S
8	1i (4-CF ₃ C ₆ H ₄)	3i , 69	90	S
9	1j (3-CIC ₆ H ₄)	3j , 71	94	S
10	1k (1-Naphthyl)	3k , 69	91	S
11	1I (2-Naphthyl)	3I , 72	94	S
12	1m (2-Furyl)	3m , 77	57	S
13	1n (2-Thienyl)	3n , 59/51 ^e	83/90 ^e	S
14	1o (3-Thienyl)	3o , 79/69 ^e	87/94 ^e	S
15	1p [CH ₃ (CH ₂) ₆]	3p , 53	60	S
16	1q (Cyclohexyl)	3q , 52	78	S
17	1r (2-CIC ₆ H ₄)	3r , 38/43 ^g	36/75 ^g	S
18	1s (3-NO ₂ C ₆ H ₄)	3s , 60	62	S
19	1t [CH ₃ (CH ₂) ₂]	3t , 61	48	S
20	1u (Cyclopropyl)	3u , 59	35	S

^a Reaction conditions: **1** (0.10 mmol), **2a** (0.30 mmol), Zn(NTf₂)₂ (10 mol%), **L13** (20 mol%), THF (0.50 mL), MeOH (0.50 mL) and MS 4A (50 mg), the reaction was carried out at 5 °C for 24 h. ^b Isolated yield after column chromatography. ^c Determined by chiral HPLC analysis. ^d Determined by the X-ray diffraction. ^e The reaction was carried out at 0 °C. ^f The reaction was carried out at 25 °C. ^g L14 was utilized instead of L13.

5. Analytical data for Zn(NTf₂)₂-catalyzed Mannich-type adducts 3a-3u *N*-(2,2-difluoro-3-oxo-1,3-diphenylpropyl)benzohydrazide (3a).

A pale yellow oil (79%, 30 mg); IR (acetone): v 3293, 3064, 2374, 1775, 1702, 1697, 1676, 1655, 1598, 1579, 1528, 1450, 1310, 1283, 1211, 1184, 1066, 907 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 5.01 (t, 1H, J = 12.6 Hz, NH), 5.46 (br, 1H, CH), 7.34-7.60 (m, 13H, ArH), 7.69 (s, 1H, BzNH), 7.95 (d, 2H, J = 7.8 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 66.5 (dd, J_{C-F} = 23.8, 21.1 Hz), 117.3 (t, J_{C-F} = 259.1 Hz), 126.8, 128.5, 128.6, 129.1, 129.5, 129.9

(t, $J_{C-F} = 3.6 \text{ Hz}$), 131.9, 132.1, 132.4 (t, $J_{C-F} = 1.9 \text{ Hz}$), 132.7 (d, $J_{C-F} = 2.3 \text{ Hz}$), 134.2, 167.5, 189.6 (t, $J_{C-F} = 28.7 \text{ Hz}$); ¹⁹F NMR (282 MHz, CDCl₃, TMS): δ -111.5 (dd, 1F, J = 276, 12 Hz), -114.0 (dd, 1F, J = 276, 14 Hz); MS (ESI) m/z (%): 381 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₂₂H₁₈F₂N₂O₂Na⁺¹(M⁺+1) requires 403.1234, Found: 403.1229. Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane/*i*PrOH = 60/40, 0.6 mL/min, 230 nm, $t_{minor} = 25.55 \text{ min}$, $t_{majorr} = 18.77 \text{ min}$; [α]²⁰_D = +29.3 (c 0.55, CHCl₃), 93 % *ee*).

N-(1-(4-chlorophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3b).

A pale yellow oil (75%, 31 mg); IR (acetone): v 3293, 3064, 2925, 2854,1777, 1703, 1649, 1598, 1579, 1527, 1492, 1467, 1449, 1310, 1282, 1211, 1184, 1091, 1016, 925, 908 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 5.02 (t, 1H, J = 12.6 Hz, NH), 5.46 (br, 1H, CH), 7.30-7.51 (m, 9H, ArH), 7.55-7.62 (m, 3H, ArH), 7.76 (d, 1H, J = 4.8 Hz, BzNH), 7.98 (d, 2H, J = 7.8 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 65.9 (dd, J_{C-F} = 23.3, 20.9 Hz), 117.0 (t, J_{C-F} = 261.1 Hz), 126.8, 128.6, 128.7, 128.8, 130.0 (t, J_{C-F} = 3.5 Hz), 130.9, 131.4, 132.0, 132.1, 132.3, 134.5, 135.2, 167.6, 189.3 (t, J_{C-F} = 29.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃, TMS): δ -111.3 (dd, 1F, J = 278, 12 Hz), -114.3 (dd, 1F, J = 278, 16 Hz); MS (ESI) m/z (%): 415 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₂₂H₁₇ClF₂N₂O₂Na⁺¹(M⁺+1) requires 437.0844, Found: 437.0839. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 80/20, 0.7 mL/min, 214 nm, t_{minor} = 12.70 min, t_{majorr} = 14.85 min; [α]²⁰_D = +39.2 (c 1.05, CHCl₃), 95 % *ee*).

N-(1-(4-bromophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3c).

A yellow oil (79%, 36 mg); IR (acetone): v 3292, 3064, 2924, 2853,1778, 1704, 1645, 1597, 1579, 1528, 1488, 1467, 1449, 1309, 1281, 1212, 1182, 1072, 1012, 925, 908 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 4.99 (t, 1H, J = 12.3 Hz, NH), 5.45 (d, 1H, J = 3.3 Hz, CH), 7.36-7.51 (m, 9H, ArH), 7.55-7.63 (m, 3H, ArH), 7.73 (d, 1H, J = 6.0 Hz, BzNH), 7.98 (d, 2H, J = 7.8 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 65.9 (dd, J_{C-F} = 23.6, 20.3 Hz), 116.9 (t, J_{C-F} = 260.0 Hz), 123.4, 126.8, 128.6, 128.7, 130.0 (t, J_{C-F} = 3.4 Hz), 131.2, 131.7, 131.9, 132.1, 132.3, 134.5, 167.6, 189.2 (t, J_{C-F} = 28.7 Hz); ¹⁹F NMR (282 MHz, CDCl₃, TMS): δ -111.1 (dd, 1F, J = 279, 12 Hz), -114.5 (dd, 1F, J = 279, 14 Hz); MS (ESI) m/z (%): 460 (97) [M⁺+1]; HRMS (MALDI) Calcd. for C₂₂H₁₇BrF₂N₂O₂⁺¹(M⁺+1) requires 459.0518, Found: 459.0514. Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (hexane/*i*PrOH = 90/10, 0.6 mL/min, 214 nm, t_{minor} = 27.45 min, t_{majorr} = 29.36 min; [α]²⁰_D = +55.3 (c 2.00, CHCl₃), 96 % *ee*).

N-(2,2-difluoro-1-(4-fluorophenyl)-3-oxo-3-phenylpropyl)benzohydrazide (3d).

A colorless oil (83%, 33 mg); IR (CH₂Cl₂): v 3295, 3062, 1698, 1650, 1600, 1579, 1510, 1462, 1450, 1266, 1228, 1161, 1102, 1066, 1027, 1001, 965, 907 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 5.03 (td, 1H, J = 14.0, 2.0 Hz, CH), 5.59 (dd, 1H, J = 5.6, 2.4 Hz, NH), 6.98 (t, 2H, J = 7.6 Hz, ArH), 7.33 (t, 2H, J = 7.6 Hz, ArH), 7.37-7.46 (m, 5H, ArH), 7.55 (d, 3H, J = 8.0 Hz, ArH), 7.94 (d, 2H, J = 8.0 Hz, ArH), 8.03 (d, 1H, J = 6.0 Hz, BzNH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 65.6 (dd, J_{C-F} = 23.5, 20.3 Hz), 115.4 (d, J_{C-F} = 21.2 Hz), 117.1 (t, J_{C-F} = 258.5 Hz), 126.8, 128.5, 128.6, 129.9 (t, J_{C-F} = 3.4 Hz), 131.3 (d, J_{C-F} = 8.5 Hz), 132.0, 132.3, 134.3, 163.0 (d, J_{C-F} = 247.0 Hz), 167.6, 189.4 (t, J_{C-F} = 28.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -106.1 (dd, 1F, J = 277, 12 Hz), -108.8 (dd, 1F, J = 277, 14 Hz), -112.1; MS (ESI) m/z (%): 421.3 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₂H₁₇F₃N₂O₂Na⁺¹ (M+Na)⁺ requires 421.1136, Found: 421.1134. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 80/20, 0.7 mL/min, 230 nm, t_{minor} = 15.08 min, t_{maiorr} = 17.47 min; [α]²⁰_D = +22.2 (c 0.85, CHCl₃), 93 % *ee*).

N-(2,2-difluoro-3-oxo-3-phenyl-1-p-tolylpropyl)benzohydrazide (3e).

A pale yellow oil (73%, 29 mg); IR (acetone): v 3294, 3061, 3030, 2923, 2860, 1779, 1706, 1648, 1598, 1579, 1515, 1449, 1309, 1283, 1183, 1126, 1068, 1026, 925 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 2.33 (s, 3H, CH₃), 4.96 (t, 1H, J = 13.5 Hz, NH), 5.44 (d, 1H, J = 5.1 Hz, CH), 7.15 (d, 2H, J = 7.8 Hz, ArH), 7.35-7.51 (m, 7H, ArH), 7.57 (d, 3H, J = 6.9 Hz, ArH), 7.63 (d, 1H, J = 4.8 Hz, BzNH), 7.97 (d, 2H, J = 7.5 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 21.2, 66.5 (dd, J_{C-F} = 21.3, 2.4 Hz), 118.2 (t, J_{C-F} = 302.0 Hz), 126.8, 128.6, 129.3 (d, J_{C-F} = 3.2 Hz), 129.7, 130.0 (t, J_{C-F} = 3.5 Hz), 132.0, 132.2, 132.6, 134.3, 139.1, 167.3, 189.7 (t, J_{C-F} = 29.5 Hz); ¹⁹F NMR (282 MHz, CDCl₃, TMS): δ -111.7 (dd, 1F, J = 277, 13 Hz), -114.0 (dd, 1F, J = 277, 14 Hz); MS (ESI) m/z (%): 395 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₂₃H₂₁F₂N₂O₂⁺¹(M⁺+1) requires 395.1574, Found: 395.1565. Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (hexane/*i*PrOH = 80/20, 0.7 mL/min, 230 nm, t_{minor} = 19.67 min, t_{majorr} = 23.60 min; [α]²⁰_D = +37.8 (c 1.50, CHCl₃), 92 % *ee*).

N-(2,2-difluoro-1-(4-methoxyphenyl)-3-oxo-3-phenylpropyl)benzohydrazide (3f).

A pale yellow oil (87%, 36 mg); IR (acetone): v 3298, 3065, 3003, 2958, 2934, 2838, 1775, 1709, 1642, 1612, 1580, 1514, 1449, 1363, 1306, 1253, 1179, 1125, 1072, 1027, 925 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 3.78 (s, 3H, OCH₃), 4.99 (dt, 1H, *J* = 14.4, 1.8 Hz, NH), 5.41 (d, 1H, *J* = 4.5 Hz, CH), 6.85 (d, 2H, *J* = 8.7 Hz, ArH), 7.35-7.50 (m, 7H, ArH), 7.55-7.60 (m, 3H, ArH), 7.69 (d, 1H, *J* = 6.0 Hz, BzNH), 7.96 (d, 2H, *J* = 7.2 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 55.2, 66.1 (dd, *J*_{C-F} = 22.9, 21.0 Hz), 113.9, 119.2 (t, *J*_{C-F} = 130.2 Hz), 124.6 (d, *J*_{C-F} = 2.7 Hz), 126.8, 128.6, 130.0 (t, *J*_{C-F} = 3.4 Hz), 130.7, 131.9, 132.2,

132.5, 134.2, 160.1, 167.3, 189.7 (t, $J_{C-F} = 28.3 \text{ Hz}$); ¹⁹F NMR (282 MHz, CDCl₃, TMS): δ -112.0 (dd, 1F, J = 292, 14 Hz), -113.9 (dd, 1F, J = 292, 13 Hz); MS (ESI) m/z (%): 411 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₂₃H₂₁F₂N₂O₃⁺¹(M⁺+1) requires 411.1520, Found: 411.1515. Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (hexane/*i*PrOH = 85/15, 0.6 mL/min, 214 nm, $t_{minor} = 34.63 \text{ min}, t_{majorr} = 36.93 \text{ min}; [\alpha]^{20}_{D} = +50.1$ (c 1.50, CHCl₃), 94 % *ee*).

N-(2,2-difluoro-1-(4-nitrophenyl)-3-oxo-3-phenylpropyl)benzohydrazide (3g).

A pale yellow solid, m.p. 130-133 °C; (79%, 33 mg); IR (CH₂Cl₂): v 3294, 3065, 2925, 1924, 1818, 1698, 1650, 1599, 1579, 1522, 1465, 1449, 1346, 1310, 1279, 1209, 1182, 1126, 1068, 1027, 1016, 975, 907 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 5.18 (t, 1H, *J* = 12.0 Hz, CH), 5.57 (br, 1H, NH), 7.35 (t, 2H, *J* = 8.0 Hz, ArH), 7.43-7.49 (m, 3H, ArH), 7.55-7.57 (m, 2H, ArH), 7.62 (t, 1H, *J* = 7.2 Hz, ArH), 7.70 (d, 2H, *J* = 8.0 Hz, ArH), 7.94 (d, 1H, *J* = 4.8 Hz, BzNH), 8.01 (d, 2H, *J* = 8.0 Hz, ArH), 8.15 (d, 2H, *J* = 8.0 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 65.6 (dd, *J*_{C-F} = 23.7, 20.6 Hz), 116.7 (t, *J*_{C-F} = 261.0 Hz), 123.5, 126.8, 128.6, 128.8, 129.9 (t, *J*_{C-F} = 4.3 Hz), 130.7, 131.7, 132.0, 132.2, 134.7, 140.3, 148.2, 167.8, 188.7 (t, *J*_{C-F} = 28.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -104.3 (dd, 1F, *J* = 287, 11 Hz), -109.1 (dd, 1F, *J* = 287, 16 Hz); MS (ESI) *m*/*z* (%): 448.4 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₂H₁₇F₂N₃O₄Na⁺¹ (M+Na)⁺ requires 448.1080, Found: 448.1079. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 70/30, 0.7 mL/min, 230 nm, *t_{minor}* = 15.68 min, *t_{majorr}* = 21.75 min; [α]²⁰_D = +31.7 (c 1.05, CHCl₃), 90 % *ee*).

N-(1-(4-cyanophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3h).

A pale yellow oil (67%, 27 mg); IR (CH₂Cl₂): v 3296, 3061, 2925, 2854, 2230, 1969, 1920, 1818, 1698, 1651, 1598, 1579, 1504, 1465, 1450, 1417, 1308, 1266, 1209, 1184, 1126, 1067, 1025, 1001, 925, 907 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 5.12 (td, 1H, J = 11.2, 3.2 Hz, CH), 5.52 (dd, 1H, J = 6.0, 3.2 Hz, NH), 7.38 (t, 2H, J = 7.2 Hz, ArH), 7.43-7.51 (m, 3H, ArH), 7.55 (dd, 2H, J = 7.6, 1.2 Hz, ArH), 7.60-7.66 (m, 5H, ArH), 7.90 (d, 1H, J = 6.0 Hz, BzNH), 8.00 (d, 2H, J = 7.6 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 65.9 (dd, $J_{C-F} = 23.9$, 20.5 Hz), 112.9, 116.7 (t, $J_{C-F} = 260.6$ Hz), 118.3, 126.8, 128.6, 128.8, 130.0 (t, $J_{C-F} = 3.6$ Hz), 130.5, 131.7, 132.0, 132.1, 132.2, 134.7, 138.4, 167.7, 188.8 (t, $J_{C-F} = 29.3$ Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -104.5 (dd, 1F, J = 286, 12 Hz), -109.1 (dd, 1F, J = 286, 15 Hz); MS (ESI) m/z (%): 428.4 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₃H₁₇F₂N₃O₂Na⁺¹ (M+Na)⁺ requires 428.1184, Found: 428.1181. Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (hexane/*i*PrOH = 70/30, 0.6 mL/min, 214 nm, $t_{minor} = 22.74$ min, $t_{maiorr} = 28.87$ min; [α]²⁰D = +55.1 (c 1.00, CHCl₃), 91 % ee).

N-(2,2-difluoro-3-oxo-3-phenyl-1-(4-(trifluoromethyl)phenyl)propyl)benzohydrazide (3i).

A colorless solid, m.p. 128-131 °C; (69%, 31 mg); IR (CH₂Cl₂): v 3376, 3242, 3066, 2925, 1920, 1821, 1696, 1671, 1660, 1597, 1580, 1515, 1450, 1423, 1325, 1296, 1270, 1216, 1157, 1121, 1068, 1020, 957, 926, 906 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 5.11 (td, 1H, J = 14.0, 2.0 Hz, CH), 5.51 (br, 1H, NH), 7.33 (t, 2H, J = 7.6 Hz, ArH), 7.40-7.48 (m, 3H, ArH), 7.53-7.64 (m, 7H, ArH), 7.92 (d, 1H, J = 5.6 Hz, BzNH), 7.97 (d, 2H, J = 7.6 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 66.0 (dd, J_{C-F} = 24.1, 21.0 Hz), 116.9 (t, J_{C-F} = 257.6 Hz), 123.7 (q, J_{C-F} = 270.8 Hz), 125.4 (q, J_{C-F} = 3.7 Hz), 126.8, 128.6, 128.7, 130.0 (t, J_{C-F} = 3.6

Hz), 130.1, 131.0 (q, $J_{C-F} = 32.5$ Hz), 131.8, 132.1, 134.6, 137.0, 167.7, 189.1 (t, $J_{C-F} = 28.9$ Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -62.8, -104.8 (dd, 1F, J = 283, 12 Hz), -108.9 (dd, 1F, J = 283, 15 Hz); MS (ESI) m/z (%): 471.4 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₃H₁₇F₅N₂O₂Na⁺¹ (M+Na)⁺ requires 471.1104, Found: 471.1102. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 80/20, 0.6 mL/min, 230 nm, $t_{minor} = 15.60$ min, $t_{majorr} = 18.92$ min; $[\alpha]^{20}_{D} = +21.6$ (c 0.95, CHCl₃), 90 % *ee*).

N-(1-(3-chlorophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3j).

A pale yellow oil (71%, 29 mg); IR (acetone): v 3303, 3066, 3003, 2922, 1968, 1908, 1818, 1779, 1715, 1638, 1598, 1579, 1528, 1449, 1361, 1309, 1282, 1220, 1186, 1055, 1027, 1001, 933, 910 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 5.00 (dt, 1H, J = 11.4, 1.8 Hz, NH), 5.45 (d, 1H, J = 3.9 Hz, CH), 7.26-7.31 (m, 3H, ArH), 7.34-7.41 (m, 3H, ArH), 7.43-7.46 (m, 2H, ArNH), 7.48-7.62 (m, 4H, ArH), 7.77 (d, 1H, J = 5.7 Hz, BzNH), 7.98 (d, 2H, J = 7.2 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 66.0 (dd, J_{C-F} = 23.5, 20.6 Hz), 116.9 (t, J_{C-F} = 255 Hz), 126.8, 127.9, 128.6, 128.7, 129.3, 129.6, 129.8, 130.0 (t, J_{C-F} = 3.3 Hz), 131.9, 132.0, 132.3 (t, J_{C-F} = 2.6 Hz), 134.4, 134.5, 134.9 (d, J_{C-F} = 2.6 Hz), 167.6, 189.2 (t, J_{C-F} = 28.3 Hz); ¹⁹F NMR (282 MHz, CDCl₃, TMS): δ -110.8 (dd, 1F, J = 280, 11 Hz), -114.5 (dd, 1F, J = 280, 16 Hz); MS (ESI) m/z (%): 415 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₂₂H₁₇ClF₂N₂O₂⁺¹(M⁺+1) requires 415.1026, Found: 415.1019. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 90/10, 0.7 mL/min, 214 nm, t_{minor} = 23.63 min, t_{majorr} = 26.93 min; [α]²⁰_D = +33.3 (c 1.55, CHCl₃), 94 % *ee*).

N-(2,2-difluoro-1-(naphthalen-1-yl)-3-oxo-3-phenylpropyl)benzohydrazide (3k).

A yellow oil (69%, 29 mg); IR (acetone): v 3292, 3062, 2925, 1919, 1779, 1704, 1656, 1598, 1579, 1514, 1468, 1449, 1362, 1310, 1277, 1184, 1125, 1069, 1028, 908 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 5.56 (br, 1H, CH), 5.92 (t, 1H, J = 12.0 Hz, NH), 7.29-7.36 (m, 4H, ArH), 7.40-7.54 (m, 7H, ArH), 7.82-7.89 (m, 6H, ArNH), 8.15 (br, 1H, BzNH); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 60.5 (dd, $J_{C-F} = 22.9$, 21.2 Hz), 117.9 (t, $J_{C-F} = 258.1$ Hz), 124.9, 125.7, 126.7, 126.8, 128.4, 128.5, 128.7, 128.9, 129.8, 129.9 (t, $J_{C-F} = 3.4$ Hz), 131.9, 132.0, 132.2, 132.6, 133.7, 134.2, 167.5, 189.9 (t, $J_{C-F} = 43.0$ Hz); ¹⁹F NMR (282 MHz, CDCl₃, TMS): δ -109.1 (dd, 1F, J = 274, 8 Hz), -113.1 (dd, 1F, J = 274, 11 Hz); MS (ESI) m/z (%): 431 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₂₆H₂₁F₂N₂O₂⁺¹(M⁺+1) requires 431.1570, Found: 431.1565. Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (hexane/*i*PrOH = 70/30, 0.6 mL/min, 214 nm, $t_{minor} = 18.49$ min, $t_{majorr} = 13.97$ min; [α]²⁰_D = -9.5 (c 1.05, CHCl₃), 91 % *ee*).

N-(2,2-difluoro-1-(naphthalen-2-yl)-3-oxo-3-phenylpropyl)benzohydrazide (3l).

A pale yellow oil (72%, 31 mg); IR (CH₂Cl₂): v 3293, 3059, 2925, 2852, 1919, 1817, 1698, 1657, 1599, 1580, 1510, 1450, 1372, 1309, 1266, 1184, 1121, 1068, 1027, 1001, 963, 909 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 5.20 (td, 1H, *J* = 14.0, 2.4 Hz, CH), 5.59 (dd, 1H, *J* = 6.0, 2.4 Hz, NH), 7.28 (t, 2H, *J* = 8.0 Hz, ArH), 7.34-7.47 (m, 5H, ArH), 7.51-7.53 (m, 3H, ArH), 7.61 (d, 1H, *J* = 8.0 Hz, BzNH), 7.74-7.80 (m, 3H, ArH), 7.88-7.96 (m, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 66.6 (dd, *J*_{C-F} = 23.8, 21.2 Hz), 117.4 (t, *J*_{C-F} = 257.0 Hz), 126.2, 126.5, 126.6, 126.8, 127.6, 128.1, 128.3, 128.5, 128.6, 129.5, 130.0 (t, *J*_{C-F} = 3.9 Hz), 130.2, 131.9, 132.1, 132.4, 132.9, 133.5, 134.3, 167.5, 189.5 (t, *J*_{C-F} = 28.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -105.3 (dd, 1F, *J* = 277, 12 Hz), -108.0 (dd, 1F, *J* = 277, 15 Hz); MS (ESI) *m*/*z* (%): 453.5 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₆H₂₀F₂N₂O₂Na⁺¹ (M+Na)⁺ requires 453.1384, Found: 453.1385. Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (hexane/*i*PrOH = 80/20, 0.6 mL/min, 230 nm, *t_{minor}* = 25.58 min, *t_{majorr}* = 23.68 min; [α]²⁰_D = +56.3 (c 0.85, CHCl₃), 94 % *ee*).

N-(2,2-difluoro-1-(furan-2-yl)-3-oxo-3-phenylpropyl)benzohydrazide (3m).

A pale yellow oil (77%, 26 mg); IR (acetone): v 3293, 3063, 2926, 2285, 1969, 1911, 1707, 1648, 1598, 1580, 1534, 1450, 1311, 1279, 1201, 1185, 1128, 1062, 1027, 1001, 917, 809 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 5.15 (dt, 1H, J = 10.2, 3.0 Hz, NH), 5.59 (br, 1H, CH), 6.35 (dd, 1H, J = 3.3, 1.8 Hz, ArH), 6.50 (d, 1H, J = 3.3 Hz, ArH), 7.37-7.52 (m, 6H, ArH), 7.59-7.76 (m, 3H, ArH), 7.77 (d, 1H, J = 3.6 Hz, BzNH), 8.03 (d, 2H, J = 8.1 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 60.6 (dd, J_{C-F} = 24.2, 22.1 Hz), 110.7, 111.3, 120.1 (t, J_{C-F} = 261 Hz), 126.9, 128.7, 130.0 (t, J_{C-F} = 3.5 Hz), 132.0, 132.2 (t, J_{C-F} = 3.8 Hz), 134.4, 143.4, 146.3 (d, J_{C-F} = 3.5 Hz), 167.4, 189.1 (t, J_{C-F} = 28.7 Hz); ¹⁹F NMR (282 MHz, CDCl₃, TMS): δ -109.6 (dd, 1F, J = 282, 10 Hz), -114.5 (dd, 1F, J = 282, 16 Hz); MS (ESI) m/z (%): 371 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₂₀H₁₇F₂N₂O₃⁺¹(M⁺+1) requires 371.1213, Found: 371.1202. Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane/*i*PrOH = 70/30, 0.6 mL/min, 214 nm, t_{minor} = 24.22 min, t_{majorr} = 21.96 min; [α]²⁰_D = +16.7 (c 1.35, CHCl₃), 57 % *ee*).

N-(2,2-difluoro-3-oxo-3-phenyl-1-(thiophen-2-yl)propyl)benzohydrazide (3n).

A pale yellow oil (59%, 23 mg); IR (CH₂Cl₂): v 3293, 3063, 2925, 2854, 1818, 1698, 1650, 1598, 1580, 1524, 1462, 1450, 1309, 1276, 1208, 1179, 1122, 1064, 1027, 1001, 974, 920, 908 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 5.37 (td, 1H, J = 14.0, 2.8 Hz, CH), 5.50 (dd, 1H, J = 6.0, 2.8 Hz, NH), 6.97 (dd, 1H, J = 4.8, 2.8 Hz, ArH), 7.17 (d, 1H, J = 2.8 Hz, ArH), 7.32-7.49 (m, 6H, ArH), 7.59 (d, 3H, J = 7.2 Hz, ArH), 7.83 (d, 1H, J = 6.0 Hz, BzNH), 7.99 (d, 2H, J = 7.2 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 62.0 (dd, $J_{C-F} = 23.7$, 21.8 Hz), 116.7 (t, $J_{C-F} = 259.7$ Hz), 126.8, 126.9, 127.2, 128.6, 128.7, 129.4, 129.9 (t, $J_{C-F} = 3.4$ Hz), 132.0, 132.3, 133.9, 134.4, 167.6, 189.2 (t, $J_{C-F} = 28.4$ Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -105.6 (dd, 1F, J = 278, 12 Hz), -108.6 (dd, 1F, J = 278, 13 Hz); MS (ESI) m/z (%):

409.4 (100) $[M+Na]^+$; HRMS (MALDI) Calcd. for $C_{20}H_{16}F_2N_2O_2SNa^{+1}$ (M+Na)⁺ requires 409.0790, Found: 409.0793. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 70/30, 0.7 mL/min, 230 nm, t_{minor} = 11.05 min, t_{majorr} = 15.27 min; $[\alpha]^{20}_{D}$ = +33.0 (c 0.25, CHCl₃), 90 % ee).

N-(2,2-difluoro-3-oxo-3-phenyl-1-(thiophen-3-yl)propyl)benzohydrazide (30).

A pale yellow oil (79%, 30 mg); IR (CH₂Cl₂): v 3292, 3060, 2926, 1818, 1698, 1653, 1598, 1579, 1522, 1450, 1310, 1266, 1201, 1184, 1159, 1126, 1067, 1027, 1001, 912 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 5.15 (td, 1H, J = 13.6, 1.6 Hz, CH), 5.38 (br, 1H, NH), 7.21-7.22 (m, 1H, ArH), 7.27-7.29 (m, 1H, ArH), 7.33-7.42 (m, 5H, ArH), 7.47 (t, 1H, J = 7.2 Hz, ArH), 7.56-7.59 (m, 3H, ArH and BzNH), 7.93 (d, 2H, J = 7.2 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 62.3 (dd, J_{C-F} = 24.0, 21.0 Hz), 117.2 (t, J_{C-F} = 257.0 Hz), 126.0, 126.1, 126.8, 127.9, 128.5, 128.6, 129.9 (t, J_{C-F} = 4.3 Hz), 131.9, 132.1, 132.4, 133.0, 134.3, 167.4, 189.5 (t, J_{C-F} = 28.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -106.1 (dd, 1F, J = 275, 12 Hz), -108.2 (dd, 1F, J = 275, 14 Hz); MS (ESI) m/z (%): 409.3 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₀H₁₆F₂N₂O₂SNa⁺¹ (M+Na)⁺ requires 409.0790, Found: 409.0793. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 70/30, 0.7 mL/min, 230 nm, t_{minor} = 11.60 min, t_{majorr} = 17.60 min; [α]²⁰_D = +21.5 (c 0.75, CHCl₃), 94 % *ee*).

N-(2,2-difluoro-1-oxo-1-phenyldecan-3-yl)benzohydrazide (3p).

A colorless oil (53%, 21 mg); IR (CH₂Cl₂): v 3299, 3064, 3032, 2955, 2927, 2856, 1968, 1817, 1698, 1644, 1599, 1579, 1526, 1450, 1377, 1347, 1309, 1284, 1249, 1180, 1120, 1071, 1027, 1002, 908 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.87 (t, 3H, *J* = 6.8 Hz, CH₃), 1.27-1.39 (m, 8H, CH), 1.52-1.83 (m, 4H, CH), 3.69 (td, 1H, *J* = 12.4, 6.4 Hz, CH), 5.09 (d, 1H, *J* = 6.8 Hz, NH), 7.37 (t, 2H, *J* = 7.6 Hz, ArH), 7.46 (t, 3H, *J* = 7.6 Hz, ArH), 7.57-7.62 (m, 5H, ArH), 7.74 (d, 1H, *J* = 7.2 Hz, BzNH), 8.08 (d, 2H, *J* = 8.0 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 14.0, 22.5, 26.0, 26.3 (t, *J*_{C-F} = 3.5 Hz), 28.9, 29.5, 31.7, 63.7 (dd, *J*_{C-F} = 24.2, 20.6 Hz), 118.6 (t, *J*_{C-F} = 254.2 Hz), 126.8, 128.5, 128.7, 129.9 (t, *J*_{C-F} = 3.7 Hz), 131.9, 132.2, 134.3, 167.0, 190.4 (t, *J*_{C-F} = 29.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -105.1 (dd, 1F, *J* = 277, 10 Hz), -111.6 (dd, 1F, *J* = 277, 17 Hz); MS (ESI) *m/z* (%): 425.4 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₃H₂₈F₂N₂O₂Na⁺¹ (M+Na)⁺ requires 425.2023, Found: 425.2021. Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane/*i*PrOH = 98/2, 0.8 mL/min, 214 nm, *t_{minor}* = 27.57 min, *t_{majorr}* = 33.42 min; [α]²⁰_D = -18.0 (c 0.55, CHCl₃), 60 % *ee*).

N-(1-cyclohexyl-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3q).

BZHN NH O F F

A colorless oil (52%, 20 mg); IR (CH₂Cl₂): v 3225, 3058, 2924, 2854, 1972, 1816, 1699, 1640, 1609, 1573, 1529, 1501, 1479, 1448, 1403, 1368, 1348, 1318, 1301, 1265, 1218, 1183, 1153, 1105, 1073, 1051, 1027, 1003, 968, 949, 916 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.48-1.77 (m, 4H, CH), 1.86-1.90 (m, 3H, CH), 2.05-2.08 (m, 1H, CH), 3.38-3.45 (m, 1H, CH), 3.48-3.57 (m, 1H, CH), 4.43 (d, 1H, *J* = 13.6 Hz, CH), 5.22 (br, 1H, NH), 7.33-7.45 (m, 5H, ArH), 7.49-7.51 (m, 1H, ArH), 7.56 (d, 1H, *J* = 7.8 Hz, ArH), 7.66 (d, 1H, *J* = 2.0 Hz, BzNH), 7.75 (d, 1H, *J* = 7.2 Hz, ArH), 8.03 (d, 1H, *J* = 7.8 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 14.2, 25.4 (d, *J*_{C-F} = 14.3 Hz), 26.0 (d, *J*_{C-F} = 21.5 Hz), 26.4 (d, *J*_{C-F} = 23.2 Hz), 67.8 (dd, *J*_{C-F} = 23.2, 19.7 Hz), 119.5 (t, *J*_{C-F} = 255.5 Hz), 126.2, 126.8, 127.8, 128.4, 128.6, 128.7, 129.0, 129.1, 130.0 (t, *J*_{C-F} = 2.6 Hz), 131.4, 131.9, 132.3, 133.8, 134.2, 135.8, 166.5, 172.1, 190.8 (t, *J*_{C-F} =

29.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -102.8 (dd, 1F, J = 276, 9 Hz), -108.0 (dd, 1F, J = 276, 19 Hz); MS (ESI) m/z (%): 409.4 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₂H₂₄F₂N₂O₂Na⁺¹ (M+Na)⁺ requires 409.1704, Found: 409.1698. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 27.93 min, t_{majorr} = 21.87 min; $[\alpha]^{20}_{D}$ = -30.8 (c 0.50, CHCl₃), 78 % ee).

N-(1-(2-chlorophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3r).

A pale yellow oil (43%, 18 mg); IR (acetone): v 3291, 3065, 1968, 1901, 1818, 1780, 1703, 1648, 1598, 1579, 1528, 1475, 1449, 1362, 1308, 1282, 1181, 1128, 1070, 1028, 1001, 926, 901 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 5.52 (br, 1H, NH), 5.66 (dd, 1H, *J* = 18.6, 7.5 Hz, CH), 7.29-7.48 (m, 8H, ArH), 7.50-7.63 (m, 4H, ArH), 7.77 (d, 1H, *J* = 7.5 Hz, BzNH), 8.07 (d, 2H, *J* = 7.5 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 62.1 (dd, *J*_{C-F} = 24.9, 20.6 Hz), 117.1 (t, *J*_{C-F} = 255 Hz), 126.8, 127.0, 128.5, 128.7, 129.7, 130.0 (t, *J*_{C-F} = 3.4 Hz), 130.2, 131.0, 131.9, 132.0, 132.2, 134.4, 135.5, 167.4, 189.2 (t, *J*_{C-F} = 27.9 Hz); ¹⁹F NMR (282 MHz, CDCl₃, TMS): δ -109.3 (dd, 1F, *J* = 276, 7.6 Hz), -116.6 (dd, 1F, *J* = 276, 18 Hz); MS (ESI) *m*/*z* (%): 415 (100) [M⁺+1]; HRMS (MALDI) Calcd. for C₂₂H₁₇ClF₂N₂O₂⁺¹(M⁺+1) requires 415.1032, Found: 415.1019. Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (hexane/*i*PrOH = 70/30, 0.6 mL/min, 214 nm, *t_{minor}* = 15.36 min, *t_{majorr}* = 13.55 min; [α]²⁰_D = -8.4 (c 1.15, CHCl₃), 75 % *ee*).

N-(2,2-difluoro-1-(3-nitrophenyl)-3-oxo-3-phenylpropyl)benzohydrazide (3s).

A yellow oil (60%, 25 mg); IR (CH₂Cl₂): v 3293, 3065, 2956, 2924, 2854, 1970, 1913, 1819, 1698, 1650, 1598, 1580, 1530, 1464, 1450, 1399, 1350, 1308, 1281, 1188, 1161, 1129, 1182, 1066, 1027, 1002, 973, 908 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 5.20 (td, 1H, *J* = 11.2, 3.2 Hz, CH), 5.59 (br, 1H, NH), 7.32 (t, 2H, *J* = 8.0 Hz, ArH), 7.41-7.61 (m, 7H, ArH), 7.86 (d, 1H, *J* = 8.0 Hz, BzNH), 8.00 (d, 2H, *J* = 8.0 Hz, ArH), 8.15-8.21 (m, 2H, ArH), 8.42 (s, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 65.4 (dd, *J*_{C-F} = 26.0, 24.0 Hz), 116.6 (t, *J*_{C-F} = 232.3 Hz), 123.9, 124.5, 126.8, 128.5, 128.7, 129.4, 129.9 (t, *J*_{C-F} = 3.4 Hz), 131.6, 131.9, 132.1, 134.6, 135.2, 136.0, 148.0, 167.8, 188.7 (t, *J*_{C-F} = 28.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -104.1 (dd, 1F, *J* = 286, 10 Hz), -109.6 (dd, 1F, *J* = 286, 11 Hz); MS (ESI) *m*/*z* (%): 448.4 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₂H₂₁₇F₂N₃O₄Na⁺¹ (M+Na)⁺ requires 448.1089, Found: 448.1079. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 90/10, 0.7 mL/min, 214 nm, *t_{minor}* = 43.88 min, *t_{majorr}* = 52.98 min; [α]²⁰_D = +16.0 (c 0.20, CHCl₃), 62 % *ee*).

N-(2,2-difluoro-1-oxo-1-phenylhexan-3-yl)benzohydrazide (3t).

A colorless oil (61%, 21 mg); IR (CH₂Cl₂): v 3295, 3064, 2963, 2933, 2874, 1699, 1656, 1643, 1590, 1579, 1530, 1450, 1380, 1308, 1286, 1201, 1183, 1160, 1128, 1056, 1027, 1002, 973, 918 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.99 (t, 3H, *J* = 7.2 Hz, CH₃), 1.58-1.66 (m, 2H, CH₂), 1.76-1.80 (m, 2H, CH₂), 3.65-3.73 (m, 1H, CH), 5.06 (br, 1H, NH), 7.38 (t, 2H, *J* = 7.2 Hz, ArH), 7.45-7.49 (m, 3H, ArH), 7.61 (d, 3H, *J* = 7.2 Hz, ArH), 7.69 (d, 1H, *J* = 4.0 Hz, BzNH), 8.09 (d, 2H, *J* = 7.2 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 14.0, 19.4, 28.3 (t, *J*_{C-F} = 2.1 Hz), 63.5 (dd, *J*_{C-F} = 24.8, 21.6 Hz), 118.7 (t, *J*_{C-F} = 258.1 Hz), 126.8, 127.8, 128.3, 128.6, 128.7, 129.0, 129.9 (t, *J*_{C-F} = 3.6 Hz), 131.9, 132.2, 132.6, 134.3, 167.0, 190.5 (t, *J*_{C-F} = 29.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -105.3 (dd, 1F, *J* = 276, 9 Hz), -111.7 (dd, 1F, *J* = 276, 17 Hz); MS (ESI) *m*/*z* (%): 369.4 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₁₉H₂₀C₂Na⁺¹ (M+Na)⁺ requires 369.1379, Found: 369.1385. Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane/*i*PrOH = 70/30, 0.6 mL/min, 214 nm, *t_{minor}* = 8.67 min, *t_{majorr}* = 10.11 min; [α]²⁰D = -13.3 (c 1.55, CHCl₃), 48 % *ee*).

N-(1-cyclopropyl-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3u).

A colorless oil (59%, 20 mg); IR (CH₂Cl₂): v 3294, 3063, 3010, 1969, 1910, 1818, 1779, 1670, 1650, 1598, 1579, 1524, 1450, 1393, 1308, 1278, 1181, 1126, 1066, 1027, 1001, 967, 899 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.36-0.42 (m, 1H, CH), 0.58-0.77 (m, 3H, CH), 1.00-1.10 (m, 1H, CH), 2.96 (dd, 1H, J = 12.0, 8.4 Hz, CH), 5.13 (br, 1H, NH), 7.39 (t, 2H, J = 7.2 Hz, ArH), 7.44-7.51 (m, 3H, ArH), 7.58-7.64 (m, 3H, ArH), 7.91 (br, 1H, BzNH), 8.08 (d, 2H, J = 8.0 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 2.9, 4.6, 8.8 (t, $J_{C-F} = 4.7$ Hz), 66.4 (t, $J_{C-F} = 22.0$ Hz), 118.8 (t, $J_{C-F} = 256.0$ Hz), 126.8, 128.6, 128.7, 129.9 (t, $J_{C-F} = 3.2$ Hz), 131.9, 132.2, 132.9, 134.2, 167.4, 190.2 (t, $J_{C-F} = 27.8$ Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -107.6 (dd, 1F, J = 268, 13 Hz), -108.7 (dd, 1F, J = 268, 12 Hz); MS (ESI) m/z (%): 367.3 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₁₉H₁₈F₂N₂O₂Na⁺¹ (M+Na)⁺ requires 367.1228, Found: 367.1228. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 80/20, 0.7 mL/min, 230 nm, $t_{minor} = 11.25$ min, $t_{majorr} = 18.07$ min; [α]²⁰_D = -15.5 (c 0.45, CHCl₃), 35 % ee).

6. Analytical data for Zn(NTf₂)₂-catalyzed Mannich-type adducts 5a-5f *N*-(2,2-difluoro-3-oxo-1,3-diphenylpropyl)-4-methoxybenzohydrazide (5a).

A pale yellow oil (81%, 33 mg); IR (CH₂Cl₂): v 3292, 3063, 2936, 2840, 1968, 1907, 1818, 1777, 1699, 1642, 1606, 1578, 1510, 1494, 1453, 1308, 1255, 1210, 1178, 1123, 1065, 1028, 1002, 907 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 3.78 (s, 3H, OCH₃), 4.99 (td, 1H, *J* = 14.0, 1.6 Hz, CH), 5.43 (d, 1H, *J* = 8.8 Hz, NH), 6.82 (d, 2H, *J* = 8.8 Hz, ArH), 7.30-7.32 (m, 3H, ArH), 7.39 (t, 2H, *J* = 8.0 Hz, ArH), 7.45-7.47 (m, 2H, ArH), 7.51-7.57 (m, 3H, ArH), 7.79 (d, 1H, *J* = 5.6 Hz, BzNH), 7.93 (d, 2H, *J* = 8.0 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 55.3, 66.7 (dd, *J*_{C-F} = 23.7, 20.4 Hz), 113.7, 117.4 (t, *J*_{C-F} = 261.0 Hz), 124.4, 128.5, 128.6, 128.7, 129.1, 129.5, 129.9 (t, *J*_{C-F} = 3.2 Hz), 132.5, 132.8, 134.2, 162.5, 167.1, 189.6 (t, *J*_{C-F} = 28.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -105.8 (dd, 1F, *J* = 274, 11 Hz), -108.6 (dd, 1F, *J* = 274, 14 Hz); MS (ESI) *m/z* (%): 433.4 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₃H₂₀F₂N₂O₃Na⁺¹ (M+Na)⁺ requires 433.1342, Found: 433.1334. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 80/20, 0.7 mL/min, 214 nm, *t_{minor}* = 18.81 min, *t_{majorr}* = 27.63 min; [α]²⁰_D = +37.3 (c 0.45, CHCl₃), 94 % *ee*).

N-(2,2-difluoro-3-oxo-1,3-diphenylpropyl)-4-nitrobenzohydrazide (5b).

A yellow solid, m.p. 137-139 °C; (59%, 25 mg); IR (CH₂Cl₂): v 3323, 3298, 3106, 3071, 3034, 2925, 2854, 1690, 1677, 1598, 1579, 1520, 1493, 1482, 1450, 1405, 1346, 1325, 1296, 1263, 1197, 1178, 1123, 1108, 1090, 1072, 1030, 1001, 975, 927, 906 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 5.01 (t, 1H, J = 12.0 Hz, CH), 5.51 (d, 1H, J = 4.0 Hz, NH), 7.36-7.49 (m, 7H, ArH), 7.60 (t, 1H, J = 7.6 Hz, ArH), 7.73 (d, 2H, J = 8.4 Hz, ArH), 7.85 (d, 2H, J = 5.2 Hz, BzNH), 7.94 (d, 2H, J = 7.6 Hz, ArH), 8.22 (d, 2H, J = 8.4 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 66.5 (dd, J_{C-F} = 23.3, 21.1 Hz), 117.3 (t, J_{C-F} = 259.1 Hz), 123.9, 128.1, 128.7, 128.8, 129.4, 129.5, 130.1 (t, J_{C-F} = 3.3 Hz), 132.4, 132.5, 134.5, 137.8, 149.9, 165.4, 189.7 (t, J_{C-F} = 24.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -104.9 (dd, 1F, J = 280, 12

Hz), -108.1 (dd, 1F, J = 280, 15 Hz); MS (ESI) m/z (%): 448.4 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for $C_{22}H_{17}F_2N_3O_4Na^{+1}$ (M+Na)⁺ requires 448.1083, Found: 448.1079. Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane/*i*PrOH = 70/30, 0.5 mL/min, 214 nm, $t_{minor} = 57.61 \text{ min}$, $t_{majorr} = 70.23 \text{ min}$; $[\alpha]^{20}{}_{D} = +19.8$ (c 0.75, CHCl₃), 92 % *ee*).

4-bromo-N-(1-(4-bromophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (5c).

A pale yellow solid, m.p. 139-142 °C; (41%, 22 mg); IR (CH₂Cl₂): v 3399, 3337, 3276, 3071, 2924, 2853, 1924, 1819, 1785, 1696, 1675, 1593, 1568, 1549, 1503, 1471, 1450, 1408, 1311, 1362, 1276, 1203, 1184, 1120, 1105, 1072, 1030, 1011, 925, 901 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 4.97 (t, 1H, *J* = 12.0 Hz, CH), 5.43 (d, 1H, *J* = 2.4 Hz, NH), 7.34 (d, 2H, *J* = 8.4 Hz, ArH), 7.41-7.50 (m, 7H, ArH), 7.60 (tt, 1H, *J* = 7.6, 0.8 Hz, ArH), 7.83 (d, 1H, *J* = 5.6 Hz, BzNH), 7.95 (d, 2H, *J* = 7.6 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 65.8 (dd, *J*_{C-F} = 23.7, 20.2 Hz), 116.9 (t, *J*_{C-F} = 258.5 Hz), 123.5, 126.9, 128.4, 128.7, 130.0 (t, *J*_{C-F} = 3.5 Hz), 130.8, 131.2, 131.8, 131.9, 134.6, 166.7, 189.2 (t, *J*_{C-F} = 28.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -105.1 (dd, 1F, *J* = 280, 11 Hz), -108.8 (dd, 1F, *J* = 280, 15 Hz); MS (ESI) *m*/*z* (%): 537.3 (100) [M+H]⁺; HRMS (MALDI) Calcd. for C₂₂H₁₆Br₂F₂N₂O₂H⁺¹ (M+H)⁺ requires 536.9615, Found: 536.9619. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 80/20, 0.7 mL/min, 214 nm, *t_{minor}* = 15.64 min, *t_{majorr}* = 23.08 min; [α]²⁰_D = +56.0 (c 0.20, CHCl₃), 95 % *ee*).

N-(2,2-difluoro-3-oxo-1,3-diphenylpropyl)biphenyl-4-carbohydrazide (5d).

A white solid, m.p. 142-145 °C; (72%, 33 mg); IR (CH₂Cl₂): v 3307, 3262, 3062, 3032, 2925, 2853, 1966, 1925, 1817, 1703, 1629, 1608, 1598, 1580, 1529, 1495, 1448, 1402, 1308, 1267, 1223, 1210, 1186, 1125, 1050, 1006, 972, 901 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 5.03 (t, 1H, *J* = 12.8 Hz, CH), 5.49 (d, 1H, *J* = 4.8 Hz, NH), 7.34-7.46 (m, 8H, ArH), 7.50 (t, 2H, *J* = 3.6 Hz, ArH), 7.56 (d, 2H, *J* = 5.2 Hz, ArH), 7.58 (d, 2H, *J* = 5.2 Hz, ArH), 7.63 (d, 2H, *J* = 8.4 Hz, ArH), 7.73 (br, 1H, BzNH), 7.96 (d, 2H, *J* = 7.6 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 66.7 (dd, *J*_{C-F} = 22.8, 20.2 Hz), 117.4 (t, *J*_{C-F} = 257.3 Hz), 127.1, 127.2, 127.3, 128.1, 128.6, 128.9, 129.2, 129.6, 130.0 (t, *J*_{C-F} = 3.5 Hz), 130.8, 132.6, 132.8, 134.3, 139.8, 144.8, 166.1, 189.7 (t, *J*_{C-F} = 28.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -105.8 (dd, 1F, *J* = 276, 12 Hz), -108.3 (dd, 1F, *J* = 276, 15 Hz); MS (ESI) *m/z* (%): 479.5 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₈H₂₂F₂N₂O₂Na⁺¹ (M+Na)⁺ requires 479.1549, Found: 479.1542. Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (hexane/*i*PrOH = 70/30, 0.7 mL/min, 230 nm, *t_{minor}* = 43.99 min, *t_{majorr}* = 36.87 min; [α]²⁰_D = +34.0 (c 0.60, CHCl₃), 96 % *ee*).

N-(1-(4-chlorophenyl)-2,2-difluoro-3-oxo-3-p-tolylpropyl)benzohydrazide (5e).

A yellow oil (81%, 35 mg); IR (CH₂Cl₂): v 3292, 3062, 3001, 2925, 2856, 1912, 1767, 1695, 1650, 1606, 1580, 1526, 1492, 1466, 1412, 1311, 1284, 1211, 1183, 1127, 1091, 1070, 1027, 1017, 969, 925, 908 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 2.37 (s, 3H, CH₃), 5.00 (t, 1H, J = 12.0 Hz, CH), 5.45 (br, 1H, NH), 7.19 (d, 2H, J = 8.4 Hz, ArH), 7.27 (d, 2H, J = 8.4 Hz, ArH), 7.33 (t, 2H, J = 7.2 Hz, ArH), 7.39-7.47 (m, 3H, ArH), 7.54 (d, 2H, J = 8.0 Hz, ArH), 7.86 (d, 2H, J = 8.0 Hz, ArH), 7.93 (d, 2H, J = 3.2 Hz, BzNH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 21.7, 65.8 (dd, $J_{C-F} = 24.6$, 21.0 Hz), 117.1 (t, $J_{C-F} = 260.0$ Hz), 126.8, 128.5, 128.7, 129.4, 129.7, 130.1 (t, $J_{C-F} = 3.4$ Hz), 130.9, 131.5, 131.9, 132.0, 135.0, 145.7, 167.5, 188.7 (t, $J_{C-F} = 28.7$ Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -105.5 (dd, 1F, J = 279, 12 Hz), -108.9 (dd, 1F, J = 279, 14 Hz); MS (ESI) m/z (%): 451.4 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₃H₁₉ClF₂N₂O₂Na⁺¹ (M+Na)⁺ requires 451.1002, Found: 451.0995. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 90/10, 0.7 mL/min, 230 nm, $t_{minor} = 32.32$ min, $t_{majorr} = 37.96$ min; [α]²⁰_D = +39.3 (c 0.75, CHCl₃), 92 % *ee*).

N-(1-(4-chlorophenyl)-2,2-difluoro-3-oxo-3-(thiophen-2-yl)propyl)benzohydrazide (5f).

A pale yellow solid, m.p. 137-139 °C; (88%, 37 mg); IR (CH₂Cl₂): v 3293, 3065, 2925, 2854, 1965, 1908, 1660, 1600, 1580, 1513, 1492, 1464, 1409, 1357, 1309, 1286, 1242, 1208, 1183, 1123, 1090, 1063, 1027, 1016, 972, 908 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 4.93 (t, 1H, J = 12.8 Hz, CH), 5.37 (br, 1H, NH), 7.12 (t, 1H, J = 4.0 Hz, ArH), 7.30 (d, 2H, J = 8.4 Hz, ArH), 7.36-7.43 (m, 4H, ArH), 7.49 (t, 1H, J = 7.2 Hz, ArH), 7.59 (d, 2H, J = 8.8 Hz, ArH), 7.75 (d, 2H, J = 5.2 Hz, ArH), 7.85 (d, 1H, J = 2.4 Hz, BzNH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 66.1 (dd, J_{C-F} = 23.8, 21.2 Hz), 116.9 (t, J_{C-F} = 257.0 Hz), 126.9, 128.6, 128.8, 128.9, 130.8, 131.2, 132.0, 132.1, 135.2, 136.0 (t, J_{C-F} = 5.5 Hz), 136.9, 138.6, 167.5, 182.4 (t, J_{C-F} = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -106.6 (dd, 1F, J = 269, 11

Hz), -110.2 (dd, 1F, J = 269, 14 Hz); MS (ESI) m/z (%): 443.3 (100) $[M+Na]^+$; HRMS (MALDI) Calcd. for C₂₀H₁₅ClF₂N₂O₂Na⁺¹ (M+Na)⁺ requires 443.0409, Found: 43.0403. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/*i*PrOH = 90/10, 0.7 mL/min, 230 nm, $t_{minor} = 46.47$ min, $t_{majorr} = 54.88$ min; $[\alpha]^{20}_{D} = +23.1$ (c 0.50, CHCl₃), 76 % *ee*).

7. X-ray crystal structure and crystal data of ligand L9 and Mannich-type adduct 5c

The crystal data of **L9** have been deposited in CCDC with number 785244. Empirical Formula: $C_{55}H_{43}Cl_2N_2O_2PS$; Formula Weight: 897.84; Crystal Color, Habit: colorless, prismatic; Crystal Dimensions: 0.397 x 0.365 x 0.258 mm; Crystal System: Orthorhombic; Lattice Type: Primitive; Lattice Parameters: a = 13.5209(9)Å, b = 16.5318(12)Å, c = 41.077(3)Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, $V = 9181.8(11)Å^3$; Space group: C222(1); Z = 8; $D_{calc} = 1.299$ g/cm³; $F_{000} = 3744$; Diffractometer: Bruker Smart CCD; Residuals: R; Rw: 0.0472, 0.0976.

The crystal data of **5c** have been deposited in CCDC with number 798183. Empirical Formula: $C_{22}H_{16}Br_2F_2N_2O_2$; Formula Weight: 538.19; Crystal Color, Habit: colorless, prismatic; Crystal System: Monoclinic; Lattice Type: Primitive; Lattice Parameters: a = 12.2490(4)Å, b = 5.5446(19)Å, c = 16.2080(6)Å, $\alpha = 90^\circ$, $\beta = 104.895(4)^\circ$, $\gamma = 90^\circ$, V = 1063.8(6)Å³; Space group: P2(1); Z = 2; D_{calc} = 1.680 g/cm³; F₀₀₀ = 532; Diffractometer: Bruker Smart CCD; Residuals: R; Rw: 0.0519, 0.1386.

8. ¹H NMR and ³¹P NMR spectroscopic studies of the potential active species

Figure SI-2. ¹H NMR and ³¹P NMR spectroscopic studies of the potential active specie in the catalytic enantioselective difluorination.

9. References:

(1) Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K. *Chem. Commun.* 1999, 1323-1324.
(2) (a) Deng, H. P.; Wei, Y.; Shi, M. *Adv. Synth. Catal.* 2009, 351, 2897-2902; (b) Ogasawara, M.; Yoshida, K.; Kamei, H.; Kato, K.; Uozumi, Y.; Hayashi, T. *Tetrahedron Asymmetry* 1998, 9, 1779-1787; (c) Hatano, M.; Yamanaka, M.; Mikami, K. *Eur. J. Org. Chem.* 2003, 2552-2555. (d) Uozumi, Y.; Suzuki, N.; Ogiwara, A.; Hayashi, T. *Tetrahedron* 1994, 50, 4293-4302. (e) Zhao, Q. Y.; Yuan, Z. L.; Shi, M. *Tetrahedron: Asymmetry* 2010, 21, 943-951.
(3) (a) You, S. L.; Kelly, J. W. *Org. Lett.* 2004, 6, 1681-1683. (b) Liu, H.; Du, D. M. *Adv. Synth. Catal.* 2010, 353, 1113-1118.

10. NMR and HPLC data for Zn(NTf₂)₂-catalyzed Mannich-type adducts 3a-3u.

N-(2,2-difluoro-3-oxo-1,3-diphenylpropyl)benzohydrazide (3a).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

N2000 数据工作站

实验时间: 2010-08-28,16:54:09 谱图文件:D:\HPLC\Yz1\15\Ar-15-27-0J-60-40-230-0.6race.org 实验者: 报告时间: 2010-08-30,8:40:45 积分方法:面积归一法 1

B zH N

OJ-H hexane/'PrOH = 60/40 230nm 0.6mL/min racemic sample

2010-08-30

浙江大学智能信定研究所

2010-08-30

N-(1-(4-chlorophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3b).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

BzHN 0 CI

OD-H hexane/ⁱPrOH = 80/20 214nm 0.7mL/min

racemic sample

2010-08-30

OD-H HEXANE/iPrOH = 80/20 0.7 M L/M IN 214NM BZHN NH O EE = 95%

浙江大学智能信启研究所

N-(1-(4-bromophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3c).

BZHN NH O Br

IC-H HEXANE /iPrOH = 90/10 214NM 0.6 M L/M IN

RACEMIC SAMPLE

2010-09-06

浙江大学智能信定研究所

N-(2,2-difluoro-1-(4-fluorophenyl)-3-oxo-3-phenylpropyl)benzohydrazide (3d).

N2000 数据工作站

实验时间: 2010-12-24,14:36:33 谱图文件:D:\HPLC\Yz1\16\A-16-4F-RACE-RE OD 80 20 0.7ML 214NM.org

实验者: 报告时间: 2010-12-24,14:37:28 积分方法:面积归一法 1

峰号	峰名	保留时间	峰高	峰面积	含量
1		15.345	281098.688	10578736.000	49.6781
2		17.835	232390. 422	10715810.000	50. 3219
总计			513489.109	21294546.000	100.0000

OD-H Hexane/iPrOH = 80/20 0.7 mL/min 214 nm

RACE MIC SAM PLE

2010-12-24

BZHN NH O

OD-H Hexane/iPrOH = 80/20 0.7 mL/min 214 nm

ee = 93%

2010-12-24

浙江大学智能信启研究所

N-(2,2-difluoro-3-oxo-3-phenyl-1-p-tolylpropyl)benzohydrazide (3e).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

AD-H HEXANE/iPrOH = 80/20 0.7 M L/M IN 214NM BZHN._{NH} O

RACEMIC SAMPLE

2010-09-06

浙江大学智能信定研究所

N-(2,2-difluoro-1-(4-methoxyphenyl)-3-oxo-3-phenylpropyl)benzohydrazide (3f).

IUtai

Meo FF

IC-H HEXANE/IPrOH = 85/15 0.6 ML/MIN 214NM RACEMIC SAMPLE

HPLC REPORT

No.	PeakNo	R.Time	PeakHeight	PeakArea	PerCent	
1	1	34.627	3946.4	182524.4	2.7899	
2	2	36.927	109325.1	6359785.8	97.2101	
Tota	1		113271.5	6542310.2	100.0000	9)

IC-H HEXANE/iPrOH = 85/15 0.6 ML/MIN 214NM EE = 94%

N-(2,2-difluoro-1-(4-nitrophenyl)-3-oxo-3-phenylpropyl)benzohydrazide (3g).

OD-H HEXANE/IPA = 70/30 0.7 ML/MIN 230NM BZHN NH O O2N F

RACEMIC SAMPLE

2010-09-19

N2000 数据工作站

2010-09-19

浙江大学智能信定研究所

1

N-(1-(4-cyanophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3h).

BZHN NH O NC F

AD-H HEXANE/iPrOH = 70/30 214 NM 0.6 ML/MIN RACEMIC SAMPLE

2010-09-09

AD-H HEXANE/iPrOH = 70/30 214 NM 0.6 ML/MIN EE = 91%

```
2010-09-09
```

浙江大学智能信息研究所

N-(2,2-difluoro-3-oxo-3-phenyl-1-(4-(trifluoromethyl)phenyl)propyl)benzohydrazide (3i).

N2000 数据工作站

实验时间: 2010-09-26,14:36:14 谱图文件:D:\HPLC\Yz1\15\A-15-87-4CF3-RACE OD 80 20 0.6ML 214NM.org

实验者: 报告时间: 2010-09-26,14:42:54 积分方法:面积归一法 1

唯马	啤石	休留时间	軍回	軍田休	百里
1		15.855	302481.719	11493144.000	50.0295
2		19.275	242312.594	11479578.000	49.9705
总计			544794.313	22972722.000	100.0000

BZHN NH O F₃C

OD-H HEXANE/IPA = 80/20 230 NM 0.6 M L/MIN

RACE MIC SAM PLE

2010-09-26

N2000 数据工作站

实验时间: 2010-09-26,15:11:18 谱图文件:D:\HPLC\Yz1\15\A-15-87-4CF3-CHIRAL OD 80 20 0.6ML 214NM.org 实验者: 报告时间: 2010-09-26,15:12:28 积分方法:面积归一法 1

峰号	峰名	保留时间	峰高	峰面积	含量
1		15.603	23197. 463	788739.250	4,9631
2		18.923	321974.875	15103458.000	95.0369
总计			345172.338	15892197.250	100.0000

2010-09-26

浙江大学智能信启研究所

N-(1-(3-chlorophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3j).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

HPLC REPORT

Sample Name:yzl-a-10-46-3clrac od250 90.che Time:14:26 column: Velocity: Date:2010-10-27 Method: the mobile phase: the detection wavelength:

No.	PeakNo	R. Time	PeakHeight	PeakArea	PerCent	
1	1	23.627	178200.5	11241378.6	49.8272	
2	2	26.777	158565.0	11319333.0	50.1728	
Tota	13		336765.5	22560711.6	100.0000	

B ZH N NH O

OD-H Hexane/iPrOH = 90/10 0.7 mL/min 214 nm

racemic sample

HPLC REPORT

Sample Name:yzl-a-15-48-3cl.che Time:15:08 column: Velocity: Date:2010-10-27 Method: the mobile phase: the detection wavelength:

No.	PeakNo	R. Time	PeakHeight	PeakArea	PerCent	
1	1	23.627	1164. 1	62419.8	2.9728	
2	2	26.927	29160.1	2037288.0	97.0272	
Tota	1		30324.2	2099707.8	100.0000	

N-(2,2-difluoro-1-(naphthalen-1-yl)-3-oxo-3-phenylpropyl)benzohydrazide (3k).

IC-H HEXANE/IPrOH = 70/30 214NM 0.6 ML/MIN RACEMIC SAMPLE

2010-09-07

IC-H HEXANE/IPrOH = 70/30 214N M 0.6 M L/M IN EE = 91%

```
2010-09-07
```

浙江大学智能信定研究所

N-(2,2-difluoro-1-(naphthalen-2-yl)-3-oxo-3-phenylpropyl)benzohydrazide (3l).

N2000 数据工作站

<u>实验时间: 2010-09-20,10:09:04</u> 谱图文件:D:\HPLC\Yz1\15\A-15-78-2Naph-RACE IC 80 20 0.6ML 230NM.org 实验者: 报告时间: 2010-09-20,10:54:34 积分方法:面积归一法 1

IC-H HEXANE/IPA = 80/20 0.6 ML/MIN 230NM

RACEMIC SAMPLE

2010-09-20

实验时间: 2010-09-20,10:49:23 谱图文件:D:\HPLC\Yz1\15\A-15-78-2Naph-CHIRAL IC 80 20 0.6ML 230NM.org

实验者: 报告时间: 2010-09-20,10:58:43 积分方法:面积归一法 1

峰号	峰名	保留时间	峰品	峰面积	含量
1		23.680	555360.063	22219690.000	97.1003
2		25.577	17194.152	663542.875	2.8997
总计			572554.215	22883 <mark>2</mark> 32. 875	100.0000

2010-09-20

浙江大学智能信定研究所

N-(2,2-difluoro-1-(furan-2-yl)-3-oxo-3-phenylpropyl)benzohydrazide (3m).

OJ-H HEXANE/IPrOH = 70/30 214N M 0.6 M L/M IN RACEMIC SAMPLE

2010-09-07

BZHN NH O

OJ-H HEXANE/IPrOH = 70/30 214N M 0.6 M L/M IN EE = 57%

```
2010-09-07
```

浙江大学智能信定研究所

N-(2,2-difluoro-3-oxo-3-phenyl-1-(thiophen-2-yl)propyl)benzohydrazide (3n).

N2000 数据工作站

实验时间: 2010-12-24,11:13:44 谱图文件:D:\HPLC\Yz1\16\A-16-2Th-RACE-RE OD 70 30 0.7mL 214\M.org

实验者: 报告时间: 2010-12-24,11:20:01 积分方法:面积归一法 1

2	15.765	241081.813	9125594.000	49.7549	
总计		607544.813	18341095.000	100.0000	

B ZH N NH O

OD-H Hexane/iPrOH = 70/30 0.7 mL/min 214 nm

RACEMIC SAMPLE

2010-12-24

实验时间: 2010-12-22,11:20:49 谱图文件:D:\HPLC\Yz1\16\A-16-2-Th OoC OD 70 30 0.7ML 230NM.org

实验者: 报告时间: 2010-12-24,11:05:00 积分方法:面积归一法 1

峰号	峰名	保留时间	峰高	峰面积	含量
1		11.048	63167.289	1720983, 125	4.7175
2		15.270	942892.063	34759576.000	95.2825
总计			1006059.352	36480559.125	100.0000

B zH N NH

OD-H Hexane/iPrOH = 70/30 0.7 mL/min 214 nm

ee = 90%

2010-12-24

浙江大学智能信定研究所

N-(2,2-difluoro-3-oxo-3-phenyl-1-(thiophen-3-yl)propyl)benzohydrazide (30).

OD-H Hexane/iPrOH = 70/30 0.7 mL/min 214 nm BZHN NH O SJF'

RACEMIC SAMPLE

2010-12-24

N2000 数据工作站

实验时间: 2010-12-22,15:00:13 谱图文件:D:\HPLC\Yz1\16\A-16-3Th-OoC OD 70 30 0.7ML 230NM.org 实验者: 报告时间: 2010-12-24,11:01:55 积分方法:面积归一法 1

0D-H Hexane/iPrOH = 70/30 0.7 mL/min 214 nm

ee = 94%

519662.412

2010-12-24

总计

浙江大学智能信息研究所

23151430.500

100.0000

N-(2,2-difluoro-1-oxo-1-phenyldecan-3-yl)benzohydrazide (3p).

BZHN NH O ×F F

OJ-H HEXANE/IPA = 98/2 214 NM 0.8 ML/MIN

RACEMIC SAMPLE

2010-09-30

B ZHN NH O F

OJ-H HEXANE/IPA = 98/2 214 NM 0.8 ML/MIN EE = 60%

2010-09-30

浙江大学智能信息研究所

N-(1-cyclohexyl-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3q).

N2000 数据工作站

实验者: 报告时间: 2010-09-19,21:36:05 积分方法:面积归一法 实验时间: 2010-09-19,21:31:59 谱图文件:D:\HPLC\Yz1\15\A-15-77-CYCHEXANE-RACEMIC OD 90 10 0.5ML 230NM.org

2010-09-19

浙江大学智能信定研究所

1

实验时间: 2010-09-19,22:09:43 谱图文件:D:\HPLC\Yz1\15\A-15-77-CYCHEXANE-CHIRAL OD 90 10 0.5ML 230NM.org 实验者: 报告时间: 2010-09-19,22:10:19 积分方法:面积归一法 1

2010-09-19

浙江大学智能信启研究所

N-(1-(2-chlorophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3r).

IC-H hexane/ⁱPrOH = 70/30 214nm 0.6mL/min

racemic sample

2010-08-30

2010-08-30

浙江大学智能信定研究所

N-(2,2-difluoro-1-(3-nitrophenyl)-3-oxo-3-phenylpropyl)benzohydrazide (3s).

2010-09-30

2010-09-30

浙江大学智能信息研究所

N-(2,2-difluoro-1-oxo-1-phenylhexan-3-yl)benzohydrazide (3t).

RACEMIC SAMPLE

2010-09-21

2010-09-21

浙江大学智能信息研究所

N-(1-cyclopropyl-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (3u).

实验时间: 2010-09-26,11:10:57 谱图文件:D:\HPLC\Yz1\15\A-15-89-CYCPROPANE-RACE OD 80 20 0.7ML 214NM.org 实验者: 报告时间: 2010-09-26,11:15:48 积分方法:面积归一法 1

OD-H HEXANE/IPA = 80/20 230NM 0.7 ML/MIN

RACEMIC SAMPLE

2010-09-26

浙江大学智能信定研究所

2010-09-26

浙江大学智能信定研究所

11. NMR and HPLC data for Zn(NTf₂)₂-catalyzed Mannich-type adducts 5a-5f. N-(2,2-difluoro-3-oxo-1,3-diphenylpropyl)-4-methoxybenzohydrazide (5a).

MeO. HN NH O OD-H hexane/iPrOH = 80/20 0.7 mL/min 214 nm race sample

2010-10-12

浙江大学智能信定研究所

N2000 数据工作站

实验时间: 2010-10-12,21:36:44 谱图文件:D:\HPLC\Y21\16\A-16-9-NHCOOMe-chiral OD 80 20 0.7ML 214NM.org 实验者: 报告时间: 2010-10-12,21:38:44 积分方法:面积归一法 1

峰号	峰名	保留时间	峰高	峰面积	含量
1	00120-07	18.812	10412.025	494918.313	2.7378
2		27.633	231241.078	17582448.000	97.2622
总计			241653.104	18077366.313	100.0000

2010-10-12

浙江大学智能信定研究所

N-(2,2-difluoro-3-oxo-1,3-diphenylpropyl)-4-nitrobenzohydrazide (5b).

02N OJ-H Hexane/iPrOH = 70/30 0.5 mL/min 214 nm HN NH O RACEMIC SAMPLE

2010-12-25

浙江大学智能信启研究所

实验时间: 2010-12-10,19:15:04 谱图文件:D:\HPLC\Yzl\16\A-16-35-NHCONO2-chiral 0J 70 30 0.5ML 214NM.org 实验者: 报告时间: 2010-12-24,11:23:13 积分方法:面积归一法 1

2010-12-24

浙江大学智能信定研究所

4-bromo-N-(1-(4-bromophenyl)-2,2-difluoro-3-oxo-3-phenylpropyl)benzohydrazide (5c).

实验时间: 2010-12-24,15:15:46 谱图文件:D:\HPLC\Yzl\16\A-16-NHCOBrBr-RACE-RE 0D 80 20 0.7ML 214NM.org

实验者: 报告时间: 2010-12-24,15:17:56 积分方法:面积归一法 1

峰亏	峰名	保留时间	峰品	峰面积	含重
1		15.463	501588.594	20538432.000	50.4261
2		23.060	305213.125	20191308.000	49.5739
总计			806801.719	40729740.000	100.0000

OD-H Hexane/iPrOH = 80/20 0.7 mL/min 214 nm HN NH O RACEMIC SAMPLE Br

2010-12-24

浙江大学智能信定研究所

实验时间: 2010-12-10,15:34:44 谱图文件:D:\HPLC\Yz1\16\A-16-35-NHCOBrBr-chiral-10oC OD 80 20 0.7ML 214NM.org 实验者: 报告时间: 2010-12-24,11:27:11 积分方法:面积归一法 1

峰号 峰名 保留时间 峰高 峰面积 含量 15.635 11647.218 482698, 469 2.2173 1 2 23.075 312835.719 21287338.000 97.7827 324482.937 21770036.469 100.0000 总计

OD-H Hexane/iPrOH = 80/20 0.7 mL/min 214 nm HN NH O ee = 95%

2010-12-24

浙江大学智能信定研究所

N-(2,2-difluoro-3-oxo-1,3-diphenylpropyl)biphenyl-4-carbohydrazide (5d).

N2000 数据工作站

实验时间: 2010-12-25,10:43:21 谱图文件:D:\HPLC\Yz1\16\A-16-PhPh-RACE-RE AD 70 30 0.7ML 230NM.org 实验者: 报告时间: 2010-12-25,10:45:01 积分方法:面积归一法 1

唯丂	唯名	休留时间	車回	峰曲伏	百里	
1		39.493	37859.750	4394245.500	50. 5255	- 6
2		47.602	39790. 465	4302833. 000	49.4745	
总计			77650.215	8697078.500	100.0000	

2010-12-25

浙江大学智能信息研究所

2010-12-24

浙江大学智能信定研究所

N-(1-(4-chlorophenyl)-2,2-difluoro-3-oxo-3-p-tolylpropyl)benzohydrazide (5e).

实验时间: 2010-12-24,16:28:13 谱图文件:D:\HPLC\Yzl\16\A-16-SILYLOXY-Me-RACE-RE OD 90 10 0.7ML 230NM.org

实验者: 报告时间: 2010-12-24,16:29:44 积分方法:面积归─法

1

7/1/13/4/4						
峰号	峰名	保留时间	峰高	峰面积	含量	
1		29.452	115648.281	8813487.000	50.4831	
2		34.462	96605.164	8644817.000	49.5169	
总计			212253. 445	17458304.000	100.0000	

B ZHN NH O ľ

OD-H Hexane/iPrOH = 90/10 0.7 mL/min 230 nm

RACEMIC SAMPLE

2010-12-24

浙江大学智能信定研究所

实验时间: 2010-12-04,15:21:28 谱图文件:D:\HPLC\Yz1\16\A-16-32-Me-chiral OD 90 10 0.7ML 230NM.org 实验者: 报告时间: 2010-12-24,11:38:44 积分方法:面积归一法 1

BZHN NH O

OD-H Hexane/iPrOH = 90/10 0.7 mL/min 230 nm ee = 92%

2010-12-24

浙江大学智能信息研究所

N-(1-(4-chlorophenyl)-2,2-difluoro-3-oxo-3-(thiophen-2-yl)propyl)benzohydrazide (5f).

N2000 数据工作站

实验时间: 2010-12-24,17:39:07 谱函文件:D:\HPLC\Yz1\16\A-16-SILYLOXY-2Th-RACE-RE OD 90 10 0.7ML 230NM.org 实验者: 报告时间: 2010-12-24,17:39:27 积分方法:面积归一法 色谱图(A-16-SILYLOXY-2Th-RACE-RE OD 90 10 0.7ML 230NM.org) 500 450 400 350 300 250 电压 (mv) 200 150 100 50 0 -50 5 40 时间(min) 5 10 15 25 35 45 50 65 70 75 ò 20 30 55 60 80 分析结果表 峰号 峰名 保留时间 峰高 峰面积 含量 1 41.298 82425.133 8763509.000 50.0748 2 49.965 61377.184 8737342.000 49.9252

BZHN NH O

OD-H Hexane/iPrOH = 90/10 0.7 mL/min 230 nm RACEMIC SAM PLE

143802.316

2010-12-24

总计

浙江大学智能信定研究所

17500851.000

100.0000

1

N2000 数据工作站

BZHN NH O cı Ĉ FF

OD-H Hexane/iPrOH = 90/10 0.7 mL/min 230 nm ee = 76%

2010-12-24

浙江大学智能信息研究所

1

12. Transformation of product 3a

Scheme 1. Transformation of 3a

The synthesis of compound 6. The solution of **3a** (0.32 mmol) in DCM (3.0 mL) was stirred at -78 °C, then a solution of CeCl₃[•]7H₂O (3.0 equiv) in 3.0 mL methanol was added into the solution at -78 °C. After stirring for 5 mins, NaBH₄ (3.0 equiv) was added into the mixture in several portions under argon atmosphere at -78 °C and followed by the addition of AcOH (0.25 mL) via syringe. The mixture was stirred at the same temperature for additional 5 h. The reaction was quenched by H₂O, then neutralized with saturated K₂CO₃ (aq) to pH= 7-8. The mixture was extracted with DCM. The combined organic phase was washed with H₂O and brine, dried over anhydrous Na₂SO₄, and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography (PE/EA=3/1) to give the desired product as a white solid.

The synthesis of compound 7. To a solution of 6 (0.13 mmol) and triphosgene (3.0 equiv) in DCM (2.0 mL), a solution of pyridine (3.0 equiv) in 1.0 mL DCM was added into the solution carefully at room temperature via syringe. After stirring overnight at room temperature, the solvent was removed under vacuum and the residue was purified by silica gel column chromatography (PE/EA=8/1) to give the desired product as white solid.

N-((1*S*)-2,2-difluoro-3-hydroxy-1,3-diphenylpropyl)benzohydrazide 6a [major/minor (2:1) isomers].

A white solid, m.p. 155-158 °C; (84%, 102 mg); IR (acetone): v 3395, 3296, 3033, 1782, 1627, 1575, 1509, 1482, 1454, 1404, 1334, 1166, 1124, 1063, 1029, 1009, 926, 899 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 4.22 (major, br, 1H, NH), 4.57 (minor, dd, 0.5H, J = 7.2,

1.6 Hz, CH), 4.74 (major, d, 1H, J = 14.0 Hz, CH), 4.79 (major, t, 1H, J = 14.0 Hz, CH), 5.20 (minor, td, 0.5H, J = 7.2, 2.4 Hz, CH), 5.38 (minor, t, 0.5H, J = 1.6 Hz, NH), 5.63 (major, br, 1H, OH), 5.67 (minor, br, 0.5H, OH), 7.29-7.56 (m, 15H, ArH), 7.83 (major, d, 1H, J = 4.4 Hz, NH), 8.07 (minor, br, 0.5H, NH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 62.3 (minor, t, $J_{C-F} = 24.8$ Hz), 66.8 (major, t, $J_{C-F} = 22.4$ Hz), 73.4 (minor, dd, $J_{C-F} = 30.7$, 24.5 Hz), 74.3 (major, dd, $J_{C-F} = 32.2$, 22.9 Hz), 120.3 (major, t, $J_{C-F} = 254.0$ Hz), 120.5 (minor, t, $J_{C-F} = 241.0$ Hz), 126.9, 127.0, 127.9, 128.0, 128.3, 128.5, 128.6, 128.7, 128.8, 129.1, 129.4, 131.9, 132.1, 132.2, 133.9, 134.6, 136.1 (minor), 136.3 (major), 167.5 (major), 167.6 (minor); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -112.3 (major, dd, 1F, J = 258, 69 Hz), -124.0 (minor, ddd, 1F, J = 258, 21, 12 Hz), -113.9 (minor, dd, 1F, J = 16, 8 Hz), -114.1 (major, ddd, 1F, J = 16, 7 Hz); MS (ESI) m/z (%): 405.2 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₂H₂₀F₂N₂O₂Na⁺¹ (M+Na)⁺ requires 405.1398, Found: 405.1385. Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (hexane/*i*PrOH = 60/40, 0.5 mL/min, 214 nm, for minor product: $t_{major} = 7.79$ min, $t_{minor} = 8.88$ min, 97% *ee*; for major product: $t_{minor} = 11.04$ min, $t_{major} = 14.29$ min, 97 % *ee*; $[\alpha]^{20}_{D} = +59.0$ (c 2.60, CHCl₃)).

HPLC REPORT

(5S)-3-benzoyl-6,6-difluoro-5,7-diphenyl-1,3,4-oxadiazepan-2-one 7a [major/minor (2:1) isomers].

A white solid, m.p. 122-125 °C; (73%, 39 mg); IR (CH₂Cl₂): v 3375, 3037, 1781, 1620, 1489, 1454, 1389, 1353, 1189, 1148, 1129, 1067, 1042, 991, 923, 899; ¹H NMR (400 MHz, CDCl₃, TMS): δ 3.18 (major, d, 1H, J = 5.2 Hz, NH), 3.49 (minor, d, 0.5H, J = 5.2 Hz, NH), 4.72 (major, dt, 1H, J = 18.8, 5.2 Hz, CH), 4.89 (minor, dt, 0.5H, J = 11.6, 5.2 Hz, CH), 5.78 (minor, t, 0.5H, J = 13.2 Hz, CH), 5.95 (major, dd, 1H, J = 18.8, 8.8 Hz, CH), 7.28-7.54 (m, 17H, ArH), 7.63-7.67 (m, 1H, ArH), 7.80-7.84 (m, 3H, ArH), 7.88-7.91 (m, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 59.1 (dd, J_{C-F} = 34.5, 10.8 Hz), 72.8 (dd, J_{C-F} = 29.7, 12.5 Hz), 120.2 (major, t, $J_{C-F} = 251.0$ Hz), 120.3 (minor, t, $J_{C-F} = 251.5$ Hz), 123.4, 123.5, 125.8, 125.9, 127.6, 128.0, 128.2, 128.5, 128.7, 128.8, 128.9, 129.3, 129.5, 130.2, 131.0, 131.5, 131.6, 131.9, 135.3, 135.4, 153.1 (minor), 153.7 (major, t, $J_{C-F} = 2.9$ Hz); ¹⁹F NMR (376 MHz, CDCl₃, TMS): δ -112.5 (major, ddd, 1F, J = 255, 20, 4 Hz), -118.4 (minor, ddd, 1F, J = 255, 19, 9 Hz), -113.8 (minor, dd, 1F, J = 17, 9 Hz), -113.9 (major, ddd, 1F, J = 17, 11 Hz); MS (ESI) *m/z* (%): 431.2 (100) [M+Na]⁺; HRMS (MALDI) Calcd. for C₂₃H₁₈F₂N₂O₃Na⁺¹ (M+Na)⁺ requires 431.1172, Found: 431.1178. Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (hexane/*i*PrOH = 60/40, 0.5 mL/min, 214 nm, for major product: $t_{minor} = 10.21 \text{ min}, t_{majorr} = 14.38 \text{ min}, 94\% ee$; for minor product: $t_{major} = 17.46 \text{ min},$ $t_{minor} = 35.21 \text{ min}, 94\% ee; [\alpha]^{20}_{D} = -63.2 \text{ (c } 1.00, \text{ CHCl}_3\text{)}.$

(5S)-3-benzoyl-6,6-difluoro-5,7-diphenyl-1,3,4-oxadiazepan-2-one 7a with the addition of D_2O [major/minor (2:1) isomers]. The protons at δ 3.18 (major, d, 1H, J = 5.2 Hz, NH), 3.49 (minor, d, 0.5H, J = 5.2 Hz, NH) have been identified as the N-H for the two diastereoisomers.

¹H NMR (400 MHz, CDCl₃, TMS): δ 4.69 (major, d, 1H, *J* = 4.4 Hz, CH), 4.89 (minor, t, 0.5H, *J* = 11.6 Hz, CH), 5.78 (minor, t, 0.5H, *J* = 13.2 Hz, CH), 5.95 (major, dd, 1H, *J* = 18.8, 8.8 Hz, CH), 7.28-7.54 (m, 16H, ArH), 7.63-7.67 (m, 2H, ArH), 7.80-7.84 (m, 3H, ArH), 7.88-7.91 (m, 1H, ArH).

¹H-¹H cosy spectrum

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

HPLC REPORT

Sample Name:a-16-90-rac-ad-h-150-6-4-0.5-214.cheDate:2011-04-10 Time:13:02 Method: Column: Flow Rate: Wave Length: Mobile Phase: mV 600 500 663 400 503 300 7.543 200 627 100 35. 16 24 40 20 28 8 12 32 36 Min No. PeakNo ID. Name R. Time PeakHeight PeakArea PerCent 370802.5 8344138.4 29. 6164 30. 7027 19. 8669 Unknown 10.293 1 1 14. 503 17. 543 35. 627 262643. 8 144187. 7 8650194. 4 5597312. 4 2 2 Unknown 3 3 Unknown 4 4 Unknown 69244.8 5582428.0 19.8141 Total 846878.9 28174073.2 100.0000 AD-HCISOMM) hexane/ipron= 60/40 0.5mL/min 214 nm màjor t 1=10.293 t2=14.503 hace minor t = 17.543

S146

t 2=35.627