Supplementary Information for:

PEGylation of an artificial O₂ and CO receptor: synthesis, characterisation and pharmacokinetic study

Takunori Ueda, Hiroaki Kitagishi and Koji Kano*

Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.

	$10^{-5} \varepsilon_{422} / \mathrm{M}^{-1} \mathrm{cm}^{-1}$
hemoCD	3.71 ^b
PEG750-hemoCD	3.77
PEG5k-hemoCD	3.53
PEG10k-hemoCD	3.51
PEG20k-hemoCD	3.60

Table S1 Extinction coefficients of CO-coordinated hemoCD and PEG(mw)-hemoCDs at 422 nm in 0.05 M phosphate buffer at pH 7.0 and 25 °C.^a

^{*a*}CO-coordinated PEG(mw)-hemoCDs were quantitatively formed by the additions of excess $Na_2S_2O_4$ to the solutions of the ferric-forms of PEG(mw)-hemoCDs under CO atmospheres. ^{*b*}Ref 35.

Fig. S1 MALDI-TOF MS spectra of HOOC(CH₂)₃(CO)O-PEG750-OCH₃ (a, positive mode), P-PEG750 (b, negative mode) and Fe^{III}P-PEG750 (c, negative mode) with a subsequent addition of a mixture of α -cyano-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid matrices.

Fig. S2 MALDI-TOF MS spectra of HOOC(CH₂)₃(CO)O-PEG10k-O(CO)(CH₂)₃COOH (a, positive mode), P-PEG10k (b, negative mode) and Fe^{III}P-PEG10k (c, negative mode) with a subsequent addition of a mixture of α -cyano-4-

hydroxycinnamic acid and 2,5-dihydroxybenzoic acid matrices.

Fig. S3 MALDI-TOF MS spectra of HOOC(CH₂)₃(CO)O-PEG20k-O(CO)(CH₂)₃COOH (a, positive mode), P-PEG20k (b, negative mode) and Fe^{III}P-PEG20k (c, negative mode) with a subsequent addition of a mixture of α -cyano-4hydroxycinnamic acid and 2,5-dihydroxybenzoic acid matrices.

Fig. S4 UV-Vis spectral changes of Fe^{III}P-PEG750 (1 x 10^{-5} M) upon addition of Py3CD in 0.05 M phosphate buffer at pH 7.0 and 25 °C. Inset shows plots of the changes in absorbances of Fe^{III}P-PEG750 versus [Py3CD]. The solid lines indicate theoretical curves for the 1:1 complexation to give the binding constant (*K*).

Fig. S5 UV-Vis spectral changes of Fe^{III}P-PEG10k (1 x 10^{-5} M in the porphyrin concentration) upon addition of Py3CD in 0.05 M phosphate buffer at pH 7.0 and 25 °C. Inset shows plots of the changes in absorbances of Fe^{III}P-PEG10k versus [Py3CD]. The solid lines indicate theoretical curves for the 1:1 complexation to give the binding constant (*K*).

Fig. S6 UV-Vis spectral changes of Fe^{III}P-PEG20k (1 x 10⁻⁵ M in the porphyrin concentration) upon addition of Py3CD in 0.05 M phosphate buffer at pH 7.0 and 25 °C. Inset shows plots of the changes in absorbances of Fe^{III}P-PEG20k versus [Py3CD]. The solid lines indicate theoretical curves for the 1:1 complexation to give the binding constant (*K*).

Fig. S7 Calorimetric titrations of Fe^{III}-PEG(mw)s with 25 aliquots (10 μ L each) of Py3CD in 0.05 M phosphate buffer at pH 7.0 and 298.15 K. The initial concentrations of Fe^{III}-PEG(mw) in a cell and Py3CD in a syringe are given in the respective figures.

Fig. S8 Autoxidation reaction of the O_2 adduct of PEG750-hemoCD (5.0 x 10^{-6} M) under air in 0.05 M phosphate buffer at 25 °C. Scans were made at 1.0 hour intervals. Inset: First-order plot based on the absorption change at 422 nm.

Fig. S9 Autoxidation reaction of the O_2 adduct of PEG5k-hemoCD (5.0 x 10^{-6} M) under air in 0.05 M phosphate buffer at 25 °C. Scans were made at 1.0 hour intervals. Inset: First-order plot based on the absorption change at 422 nm.

Fig. S10 Autoxidation reaction of the O_2 adduct of PEG10k-hemoCD (5.0 x 10^{-6} M) under air in 0.05 M phosphate buffer at 25 °C. Scans were made at 1.0 hour intervals. Inset: First-order plot based on the absorption change at 422 nm.

Fig. S11 Autoxidation reaction of the O_2 adduct of PEG20k-hemoCD (5.0 x 10^{-6} M) under air in 0.05 M phosphate buffer at 25 °C. Scans were made at 1.0 hour intervals. Inset: First-order plot based on the absorption change at 422 nm.

Fig. S12 Autoxidation reaction of the O_2 adduct of PEG10k-hemoCD (5.0 x 10⁻⁶ M) in the presence of catalase (100 units) under air in 0.05 M phosphate buffer at 25 °C. Scans were made at 1.0 hour intervals. Inset: First-order plot based on the absorption change at 422 nm.

Fig. S13 UV-Vis spectral changes of PEG750-hemoCD (5.0 x 10⁻⁶ M) as a function of the O₂ partial pressure (P^{02}) in N₂ in 0.05 M phosphate buffer at pH 7.0 and 25 °C (a), plot of $P^{02} / \Delta A_{433 \text{ nm}}$ versus P^{02} for determining $P_{1/2}^{02}$ (b) and the titration curve for O₂ binding to PEG750-hemoCD (c).

Fig. S14 UV-Vis spectral changes of PEG5k-hemoCD (5.0 x 10⁻⁶ M) as a function of the O₂ partial pressure (P^{O2}) in N₂ in 0.05 M phosphate buffer at pH 7.0 and 25 °C (a); plot of $P^{O2} / \Delta A_{433 \text{ nm}}$ versus P^{O2} for determining $P_{1/2}^{O2}$ (b) and the titration curve for O₂ binding to PEG5k-hemoCD (c).

Fig. S15 UV-Vis spectral changes of PEG10k-hemoCD (5.0 x 10⁻⁶ M) as a function of the O₂ partial pressure (P^{O2}) in N₂ in 0.05 M phosphate buffer at pH 7.0 and 25 °C (a), plot of $P^{O2} / \Delta A_{433 \text{ nm}}$ versus P^{O2} for determining $P_{1/2}^{O2}$ (b) and the titration curve for O₂ binding to PEG10k-hemoCD (c).

Fig. S16 UV-Vis spectral changes of PEG20k-hemoCD (5.0 x 10⁻⁶ M) as a function of the O₂ partial pressure (P^{02}) in N₂ in 0.05 M phosphate buffer at pH 7.0 and 25 °C (a), plot of $P^{02} / \Delta A_{433 \text{ nm}}$ versus P^{02} for determining $P_{1/2}^{02}$ (b) and the titration curve for O₂ binding to PEG20k-hemoCD (c).

Fig. S17 The amount of urinary excreted PEG(mw)-hemoCD at 6 h after the infusion of oxy-PEG(mw)-hemoCD (5 x 10^{-4} M solution in PBS was infused to the femoral vein of a rat at the rate of 1.0 mL/h for 2 h). The *P* values obtained from student's T-test indicate the probability that the observed differences between the groups has occurred by chance.