#### Synthesis and antibacterial activity of novel neamine derivatives: preponderant role of the substituent position on the neamine core.

Nicolas Gernigon, Valérie Bordeau, Fabienne Berrée, Brice Felden,\* Bertrand Carboni\*

#### **Supporting Information**

| Synthesis of neamine derivatives 3 and 4                                                                      | 2 |
|---------------------------------------------------------------------------------------------------------------|---|
| Biological assays for compounds <b>8a+8b</b> and <b>8a</b>                                                    | 3 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra of the neamine derivatives <b>1</b> , <b>2</b> and <b>5-18</b> | 4 |

#### 1,3,2',6'-Tetraazido-6,3',4'-tri-O-acetylneamine 3<sup>1</sup>

To a solution of 1,3,2',6'-tetraazidoneamine (3 g, 7 mmol) in a mixture of CH<sub>2</sub>Cl<sub>2</sub>/pyridine (45 mL, 1:1 v/v) at 0°C was added Ac<sub>2</sub>O (45 mL). The reaction mixture was stirred at room temperature for 2h. It was then diluted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL) and slowly poured on an ice-cold aqueous NaHCO<sub>3</sub> saturated solution under stirring. The layers were separated, the organic layer was washed with  $H_2O$  (2 x 20 mL) and concentrated under reduced pressure. The residue was taken up in EtOAc (50 mL) and washed with aqueous NH<sub>4</sub>Cl (2 x 50 mL) and brine (50 mL). The organic layer was dried (MgSO<sub>4</sub>), concentrated in vacuo, and the residue was purified by column chromatography (EtOAc/cyclohexane 15% to 20%) to afford 3 (2.5 g, 4.6 mmol, 64%) ( $R_f$  0.5 EtOAc/cyclohexane 2:3) and the tetracetylated neamine derivative (0.8 g, 1.4 mmol, 20%). (R<sub>f</sub> 0.6 EtOAc/cyclohexane 2:3). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 5.50 (dd, J = 9.4, 10.5 Hz, 1H, H-3'), 5.36 (d, J = 3.6 Hz, 1H, H-1'), 5.06 (dd, J = 9.3, 10.6 Hz, 10.6 Hz)1H, H-4'), 4.94 (dd, J = 8.7, 9.8 Hz, 1H, H-6), 4.35 (ddd, J = 2.8, 4.7, 10.1 Hz, 1H, H-5'), 3.75-3.63 (m, 2H, H-5, H-2'), 3.62-3.50 (m, 2H, H-1, H-4), 3.50-3.28 (m, 4H, H-6'<sub>éq</sub>, H-6'<sub>ax</sub>, H-3, OH), 2.42 (ddd, J = 4.2, 4.2, 13.6 Hz, 1H, H-2<sub>éa</sub>), 2.19 (s, 3H, CH<sub>3</sub>), 2.11 (s, 3H, CH<sub>3</sub>), 2.07 (s, 3H, CH<sub>3</sub>), 1.62 (ddd, J = 13.5, 13.5, 13.5 Hz, 1H, H-2<sub>ax</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 169.9 (CH<sub>3</sub>-C=O), 169.7 (CH<sub>3</sub>-C=O), 169.2 (CH<sub>3</sub>-C=O), 98.3 (C-1'), 83.4, 74.4, 73.9, 70.8, 69.0, 68.8, 61.3 (C-N<sub>3</sub>), 57.8 (C-N<sub>3</sub>), 57.4 (C-N<sub>3</sub>), 50.4 (C-6'), 31.5 (C-2), 20.3 (CH<sub>3</sub>), 20.2 (CH<sub>3</sub>), 20.1 (CH<sub>3</sub>).

#### 3',4'-Di-O-acetyl-1,3,2',6'-tetraazidoneamine 4<sup>2</sup>

To a solution of 3 (4 g, 7.2 mmol) in THF (80 mL) was added NaOH 0.1N (90 mL, 9 mmol). After stirring at room temperature for 1h, quantitative conversion of the starting material was observed by TLC (40% EtOAc in cyclohexane). The solution was neutralized by saturated NH<sub>4</sub>Cl aqueous solution (20 mL). The remaining solvent was removed in vacuo and the aqueous layer was extracted with EtOAc (3 x 50 mL). The organic layers were combined, dried (MgSO<sub>4</sub>), and concentrated under reduced pressure to give a yellow oil which was purified by column chromatography on silica gel using 15% to 20% EtOAc in cyclohexane to obtain 4 (2.8 g, 5.4 mmol, 75%) (R<sub>f</sub> 0.4 EtOAc/cyclohexane 2:3). <sup>1</sup>H NMR (300 MHz,  $CDCl_3$ )  $\delta$  5.51 (dd, J = 9.3, 10.5 Hz, 1H, H-3'), 5.36 (d, J = 3.6 Hz, 1H, H-1'), 5.07 (dd, J =10.1, 10.1 Hz, 1H, H-4'), 4.36 (ddd, J = 2.7, 4.8, 10.2 Hz, 1H, H-5'), 3.79 (d, J = 2.6 Hz, 1H), 3.70 (dd, J = 3.6, 10.5 Hz, 1H, H-2'), 3.60-3.25 (m, 7H), 3.00 (s, 1H), 2.37 (ddd, J = 4.1, 4.1, 4.1)13.2 Hz, 1H, H- $2_{eq}$ ), 2.11 (s, 3H, CH<sub>3</sub>), 2.07 (s, 3H, CH<sub>3</sub>), 1.56 (ddd, J = 12.3, 12.3, 12.3, Hz, 1H, H- $2_{ax}$ ); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  170.2 (C=O), 169.8 (C=O), 98.6 (C-1'), 82.7, 76.0, 75.5, 71.0, 69.4, 69.3, 61.6 (C-N<sub>3</sub>), 59.7 (C-N<sub>3</sub>), 58.6 (C-N<sub>3</sub>), 50.8 (C-6'), 31.8 (C-2), 20.7 (CH<sub>3</sub>), 20.6 (CH<sub>3</sub>); HRMS (electrospray) Calcd for C<sub>16</sub>H<sub>22</sub>N<sub>12</sub>O<sub>8</sub>Na [M+Na]<sup>+</sup>: 533.1581, found: 533.1565.

<sup>&</sup>lt;sup>1</sup> W. K. C. Park, M. Auer, H. Jaksche, C-H. Wong, J. Am. Chem. Soc. 1996, 118, 10150-10155.

<sup>&</sup>lt;sup>2</sup> J. Li, J. Wang, P. G. Czyryca, H. Chang, T. W. Orsak, R. Evanson, C.-W. T. Chang, *Org. Lett.* 2004, **6**, 1381–1384.



Figure 1

**Figure 1 legend: Growth inhibition of the aminoglycoside derivatives on** *E. coli* and *S. aureus* bacteria. Growth inhibition patterns of compounds 8a+8b and 8a compared to the effect of the neamine (internal control) during *E. coli* (left panels) and *S. aureus* (right panels) growths. For all the aminoside derivatives, only one concentration is indicated corresponding to the lowest that suppresses bacterial growth during a 15 hour incubation time (in red). The growth curves in the absence of the aminoglycosides are in blue.



















11



































27





























































57













