Selective Oxidation of Unactivated C-H Bonds by Supramolecular Control

Yat-Sing Fung, Siu-Cheong Yan and Man-Kin Wong*

State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.

SUPPORTING INFORMATION

Table S1 Oxidation of Adamantane (1) at Different Temperature	S2
Table S2 Oxidation of 1 with Different Bases	S2
Table S3 Oxidation of $\mathbf{1}$ with Different Amounts of Oxone and NaHCO_{3}	S3
Table S4 Effect of Loading of 1,1,1-Trifluoroacetone on Oxidation of 1	S3
Table S5 Oxidation of 3a with Different Loading of Oxone and NaHCO_{3}	S4
Table S6 Oxidation of 3a with Different Amounts of β-CD	S4
Figure S1 LC-MS (ESI+) spectra of β-CD ($m / z=1135.38)$ in dioxirane-based oxidation of 3a	S5
Calculation of the difference of activation energy for the improvement of the site-selectivity of C-H bond oxidation of 3a using Arrhenius equation	S6-S7
Details of ${ }^{1} \mathrm{H}$ NMR titration experiments and Scott's plot of 3a-c and β-CD	S8-S10
Figure S5-S15 ${ }^{1} \mathrm{H}$ NMR titration curves for 3a-d and CDs	S11-S16
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 3a-d, 4a-d, and 4a'-d'	S17-S28
${ }^{1}$ H NMR spectra of Table 1	S29-S33
'H NMR spectra of Table 2	S33-S35
${ }^{1} \mathrm{H}$ NMR spectra of Table 3	S35-S41
${ }^{1} \mathrm{H}$ NMR spectra of Table S1	S42-S43
${ }^{1}$ H NMR spectra of Table S2	S43-S45
${ }^{1} \mathrm{H}$ NMR spectra of Table S3	S45-S46
${ }^{1} \mathrm{H}$ NMR spectra of Table S4	S47-S48
${ }^{1} \mathrm{H}$ NMR spectra of Table S5	S49-S50
${ }^{1} \mathrm{H}$ NMR spectra of Table S6	S50-S52
Partial contour plot of 600 MHz 2 D ROESY spectra for binding of 5a-c, and 3d to β-CD	S53-S57
Calibration Curve for GC Analysis	S58-S59
Chromatogram of C-H bond Oxidation of $\mathbf{6 a}$ and $\mathbf{6 b}$	S60-S67

Table S1. Oxidation of Adamantane (1) at Different Temperature ${ }^{a}$

Entry	Temperature (${ }^{\circ} \mathrm{C}$)	$\mathbf{1 : 2 a}: \mathbf{2 a}{ }^{\text {b }}$
1	0	87: $13: 0$
2	25	48: 47 : 5
3	40	60:33:7
${ }^{a}$ Reactions were carried out by $\mathbf{1}(0.1 \mathrm{mmol})$ and $1,1,1$-trifluoroacetone (0.1 $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$, with Oxone (0.5 mmol) and NaHCO_{3} $(1.55 \mathrm{mmol}) .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.		

Table S2. Oxidation of $\mathbf{1}$ with Different Bases ${ }^{a}$

Entry	Base	pH	$\mathbf{1}: \mathbf{2 a}: \mathbf{2 a} \mathbf{a}^{b}$
$\mathbf{1}$	NaHCO_{3}	$\mathbf{6 . 9}$	$\mathbf{4 8 : 4 7 : 5}$
2	CaCO_{3}	6.4	$44: 41: 15$
3	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	9.0	$98: 2: 0$
4	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	8.7	$97: 3: 0$
5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	9.1	$100: 0: 0$
${ }^{a}$ Reactions were carried out by $\mathbf{1}$	$(0.1 \mathrm{mmol})$ and $1,1,1$-trifluoroacetone $(0.1$		
mmol) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ at room temperature, with Oxone			
$(0.5 \mathrm{mmol})$ and base $\left(1.55 \mathrm{mmol}^{b}{ }^{b}\right.$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude			
reaction mixture.			

Table S3. Oxidation of $\mathbf{1}$ with Different Amounts of Oxone and $\mathrm{NaHCO}_{3}{ }^{a}$

Entry	Oxone (mmol)	$\mathrm{NaHCO}_{3}(\mathrm{mmol})$	Time	$\mathbf{1}: \mathbf{2 a}: \mathbf{2 a} \mathbf{a}^{b}$
1	0.5	1.55	2 h	$48: 47: 5$
2	0.5×2	1.55×2	4 h	$24: 67: 9$
$\mathbf{3}$	$\mathbf{0 . 5 \times 3}$	$\mathbf{1 . 5 5 \times 3}$	$\mathbf{6 ~ h}$	$\mathbf{7}: \mathbf{5 0}: \mathbf{4 3}$
4	0.5×4	1.55×4	8 h	$16: 59: 25$
5	0.25×8	0.775×8	8 h	$12: 54: 34$

${ }^{a}$ Reactions were carried out by $\mathbf{1}(0.1 \mathrm{mmol})$ and $1,1,1$-trifluoroacetone (0.1 mmol) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ at room temperature, with different amounts of Oxone and $\mathrm{NaHCO}_{3} .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.

Table S4. Effect of Loading of 1,1,1-Trifluoroacetone on Oxidation of $\mathbf{1}^{a}$

Entry	1,1,1-trifluoroacetone (equiv)	1:2a: $\mathbf{2 a}^{\text {b }}$
1	2	23:52:25
2	1	7:50: 43
3	0.5	51:38:11
4	0.1	64:31:5
${ }^{a}$ React 1,1,1-tri with Ox ${ }^{b}$ Determ	were carried out oroacetone in $\mathrm{H}_{2} \mathrm{O}$ (1 $(0.5 \mathrm{mmol} \times 3)$ and N d by ${ }^{1} \mathrm{H}$ NMR analysi	and differ 1.5 mL) at $\times 3$). (total mixture.

Table S5. Oxidation of 3a with Different Loading of Oxone and $\mathrm{NaHCO}_{3}{ }^{a}$

Entry	Oxone (mmol)	NaHCO_{3} (mmol)	Time	3a $: \mathbf{4 a}: \mathbf{4 a} \mathbf{a}^{b}$
1	1×4	3.1×4	8 h	$69: 27: 4$
$\mathbf{2}^{\mathbf{c}}$	$\mathbf{0 . 5 \times 8}$	$\mathbf{1 . 5 5 \times 8}$	$\mathbf{8} \mathbf{h}$	$\mathbf{4 4}: \mathbf{4 8}: \mathbf{8}$

${ }^{a}$ Reactions were carried out by $\mathbf{3 a}(0.2 \mathrm{mmol})$ and 1,1,1-trifluoroacetone (0.2 mmol) in $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ at room temperature with Oxone (1 $\mathrm{mmol} \times 4)$ and $\mathrm{NaHCO}_{3}(3.1 \mathrm{mmol} \times 4) .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. ${ }^{\mathrm{c}}$ The reaction was conducted with Oxone (0.5 $\mathrm{mmol} \times 8)$ and $\mathrm{NaHCO}_{3}(1.55 \mathrm{mmol} \times 8)$.

Table S6. Oxidation of 3a with Different Amounts of β - CD^{a}

Entry	β-CD (equiv)	Conversion $(\%)^{b}$	Yield (\%) c	$\mathbf{4 a}: \mathbf{4 \mathbf { a } ^ { d }}$
1	0.1	23	40	$7: 1$
2	0.5	32	50	$8: 1$
$\mathbf{3}$	$\mathbf{1 . 1}$	$\mathbf{4 0}$	$\mathbf{7 1}$	$\mathbf{2 0 : 1}$
4	2	34	42	$25: 1$
5	5	49	20	$29: 1$
6	10	47	29	$30: 1$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Figure S1. LC-MS (ESI +) spectra of β-CD $(m / z=1135.38)$ in dioxirane-based oxidation of 3a

Calculation of the difference of activation energy for the improvement of the site-selectivity of $\mathbf{C - H}$ bond oxidation of 3a using Arrhenius equation $\left(\ln k=-\left(E_{a} / R T\right)+\ln A\right)$

The calculation was based on two assumptions. (i) There is no change in $\Delta \mathrm{S}$. (ii) The activation energy for the formation of $\mathbf{4 a}$ remains unchanged, and the activation energy for the formation of $\mathbf{4 a} \mathbf{a}^{\prime}$ is increased due to the induced steric hindrance by β-CD. The steps of calculation were shown as follows:

Let the Arrhenius equation for the $\mathrm{C}-\mathrm{H}$ bond oxidation of 3 a in a mixture of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CN}$ be:

$$
\begin{equation*}
\ln \mathrm{k}_{1}=-\left(\mathrm{E}_{\mathrm{a} 1} / \mathrm{RT}\right)+\ln \mathrm{A} \tag{1}
\end{equation*}
$$

And let the Arrhenius equation for the $\mathrm{C}-\mathrm{H}$ bond oxidation of $\mathbf{3 a}$ in $\mathrm{H}_{2} \mathrm{O}$ with β - CD be:

$$
\begin{equation*}
\ln \mathrm{k}_{2}=-\left(\mathrm{E}_{\mathrm{a} 2} / \mathrm{RT}\right)+\ln \mathrm{A} \tag{2}
\end{equation*}
$$

where k_{1} and k_{2} are the rate constants for the C-H bond oxidation of 3 a in a mixture of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CN}$ and that in $\mathrm{H}_{2} \mathrm{O}$ with β - CD , respectively; Ea_{1} and Ea_{2} are the activation energies for the C-H bond oxidation of $3 \mathbf{a}$ in a mixture of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CN}$ and that in $\mathrm{H}_{2} \mathrm{O}$ with β - CD , respectively; R is gas constant ($1.987 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$); T is absolute temperature, assumed to be 298 K ; A is the pre-exponential factor.
The difference of $E a_{1}$ and $E a_{2}$ is calculated by (1) - (2):

$$
\begin{align*}
& \ln \mathrm{k}_{1}-\ln \mathrm{k}_{2}=\left[-\left(\frac{\mathrm{Ea}_{1}}{\mathrm{RT}}\right)+\ln \mathrm{A}\right]-\left[-\left(\frac{\mathrm{Ea}_{2}}{\mathrm{RT}}\right)+\ln \mathrm{A}\right] \\
& \ln \left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\right) \tag{3}\\
&=\frac{E a_{2}-E a_{1}}{\mathrm{RT}}
\end{align*}
$$

The C-H bond oxidation of $\mathbf{3 a}$ in a mixture of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CN}$ gave $\mathbf{4 a}$ and $\mathbf{4 a}$ ' in the ratio of 1 : $1 / 7$, and the C - H bond oxidation of $\mathbf{3 a}$ in $\mathrm{H}_{2} \mathrm{O}$ with β - CD gave $\mathbf{4 a}$ and $\mathbf{4 a}$ ' in the ratio of $1: 1 / 20$.

Therefore,

$$
\begin{equation*}
\ln \left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\right)=\ln \frac{\frac{1}{7}}{\frac{1}{20}}=\ln 2.857 \tag{4}
\end{equation*}
$$

Substitute (4) into (3):

$$
\begin{aligned}
\ln 2.857 & =\frac{\mathrm{Ea}_{2}-\mathrm{Ea}_{1}}{\mathrm{RT}} \\
\mathrm{Ea}_{2}-\mathrm{Ea}_{1} & =\mathrm{RT} \ln 2.857
\end{aligned}
$$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

$$
\begin{aligned}
& \mathrm{Ea}_{2}-\mathrm{Ea}_{1}=1.987 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 298 \mathrm{~K} \times \ln 2.857 \\
& \mathrm{Ea}_{2}-\mathrm{Ea}_{1}=0.622 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{aligned}
$$

Therefore, the difference in the activation energy for the improvement of the site-selectivity of C-H bond oxidation of $3 \mathbf{a}$ is $0.622 \mathrm{kcal} \mathrm{mol}^{-1}$.

Details of ${ }^{\mathbf{1}} \mathbf{H}$ NMR titration experiments and Scott's plots of 3a-c

The mixtures of 3a-c and β-CD for the ${ }^{1} \mathrm{H}$ NMR titration experiments were prepared by mixing indicated volume of (i) 3a-c stock solutions ($0.5 \mathrm{M}, 0.25 \mathrm{mmol}$ of 3a-c in 0.5 mL of D_{6}-acetone), (ii) β-CD stock solution ($0.01 \mathrm{M}, 0.1 \mathrm{mmol}$ of β-CD in 10 mL of $\mathrm{D}_{2} \mathrm{O}$), and (iii) $\mathrm{D}_{2} \mathrm{O}$ according to the following table. The final volumes of the mixtures were $\sim 0.5 \mathrm{~mL}$.

Entry	Ratio of 3a-c : β-CD	Volume of 3a-c stock solutions $(\mu \mathrm{L})$	Volume of β-CD stock solution (mL)	Volume of $\mathrm{D}_{2} \mathrm{O}(\mathrm{mL})$
1	$0: 10$	0	0.50	0
2	$1: 9$	1	0.45	0.05
3	$2: 8$	2	0.40	0.10
4	$3: 7$	3	0.35	0.15
5	$4: 6$	4	0.30	0.20
6	$5: 5$	5	0.25	0.25
7	$5.5: 4.5$	6	0.25	0.25
8	$6: 4$	6	0.20	0.30
9	$6.7: 3.3$	6	0.15	0.35
10	$7: 3$	7	0.15	0.35

Remarks: In general, the mixtures with high ratio of β-CD are opaque and viscous (entries 1-7) while transparent solutions are observed in the mixtures with low ratio of β-CD (entries 8-10).

The mixtures were subjected to ${ }^{1} \mathrm{H}$ NMR analysis. The changes of the chemical shift of H3 of β-CD (with the chemical shift of H 4 of β-CD as the internal reference) are obtained as $\Delta \delta_{\mathrm{obs}}$ which is used for the calculation of the binding constant.

The binding constants (K) of 3a-c to β-CD were calculated by fitting $\Delta \delta_{\text {obs }}$ into Scott's plot as the equation shown below (R. L. Scott, Recl. Trav. Chim. Pays-Bas, 1956, 75, 787):

$$
[\mathbf{3 a - c}] / \Delta \delta_{\text {obs }}=[\mathbf{3 a - c}] / \Delta \delta_{\max }+\Delta \delta_{\max } / \mathrm{K}
$$

where [3a-c] is the concentration of 3a-c with normalized concentration of $\beta-\mathrm{CD}, \Delta \delta_{\text {obs }}$ is the observed change of the chemical shift of H3 of β-CD at different concentrations of 3a-c, $\Delta \delta_{\max }$ is the maximum change of the chemical shift of H 3 of β-CD.

Figure S2. Scott's plot of ${ }^{1} \mathrm{H}$ NMR titration of 3a and $\beta-\mathrm{CD}$

Figure S3. Scott's plot of ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{3 b}$ and β-CD

Figure S4. Scott's plot of ${ }^{1} \mathrm{H}$ NMR titration of 3 c and β-CD

Figure S5. ${ }^{1} \mathrm{H}$ NMR titration curve for $\mathbf{3 b}$ and β-CD

Figure S6. ${ }^{1} \mathrm{H}$ NMR titration curve for $3 \mathbf{c}$ and β-CD

Figure S7. ${ }^{1} \mathrm{H}$ NMR titration curve for 3d and β-CD

Figure S8. ${ }^{1} \mathrm{H}$ NMR titration curve for 3 a and $\alpha-\mathrm{CD}$

Figure S9. ${ }^{1} \mathrm{H}$ NMR titration curve for $\mathbf{3 b}$ and $\alpha-\mathrm{CD}$

Figure S10. ${ }^{1} \mathrm{H}$ NMR titration curve for 3 c and α-CD

Figure S11. ${ }^{1} \mathrm{H}$ NMR titration curve for $\mathbf{3 d}$ and $\alpha-\mathrm{CD}$

Figure S12. ${ }^{1} \mathrm{H}$ NMR titration curve for 3a and γ-CD

Figure S13. ${ }^{1}$ H NMR titration curve for $\mathbf{3 b}$ and γ-CD

Figure S14. ${ }^{1} \mathrm{H}$ NMR titration curve for 3 c and γ-CD

Figure S15. ${ }^{1} \mathrm{H}$ NMR titration curve for 3 d and γ-CD

3,7-dimethyloctyl benzoate (3a)

3,7-dimethyloctyl 4-tert-butylbenzoate (3b)

ppm (t1)

3,7-dimethyloctyl pivalate (3c)

ppm (t1)

3,7-dimethyloctyl acetate (3d)

ppm (t1)

7-hydroxy-3,7-dimethyloctyl benzoate (4a)

ppm (t1)

3-hydroxy-3,7-dimethyloctyl benzoate (4a’)

ppm (t1)

7-hydroxy-3,7-dimethyloctyl 4-tert-butylbenzoate (4b)

3-hydroxy-3,7-dimethyloctyl 4-tert-butylbenzoate (4b’)

1	1		1	1	1	1			1	1	1	1	1	1	,	,	1		1	1	1	1	\|
		20						50					100					50					0

7-hydroxy-3,7-dimethyloctyl pivalate (4c)

ppm (t1)

3-hydroxy-3,7-dimethyloctyl pivalate (4c’)

ppm (f1)

ppm (t1)

7-hydroxy-3,7-dimethyloctyl acetate (4d)

ppm (t1)

3-hydroxy-3,7-dimethyloctyl acetate (4d')

Table 1, entry 1 (Table S3, entry 3; Table S4, entry 2)

Calculation of the ratio of adamantane (1) to products (Table 1, entry 1)
1:2a: 2a'
$=[4 / 4 \div(4 / 4+22.5 / 3+13.3 / 2) \times 100]:[22.5 / 3 \div(4 / 4+22.5 / 3+13.3 / 2) \times 100]:$
$[13.3 / 2 \div(4 / 4+22.5 / 3+13.3 / 2) \times 100]$
$=7: 50: 43$

Table 1, entry 2

Table 1, entry 3

Table 1, entry 4

Table 1, entry 5

Table 1, entry 6

Table 1, entry 7

Table 1, entry 8

Table 2, entry 1 (Table 3, entry 2; Table S6, entry 3)

4a

Table 2, entry 2 (Table 3, entry 4)

Aa
Mra \qquad manhole \qquad whomencru \qquad

Table 2, entry 3

Aa
\qquad when \qquad monMOWh on Nownsurn

Table 2, entry 4

Table 3, entry 1

Table 3, entry 3

Table 3, entry 5

Table 3, entry 6

Table 3, entry 7

Table 3, entry 8

Table 3, entry 9

\qquad why

4 c

,

Table 3, entry 10

Table 3, entry 11

Table 3, entry 12

Table 3, entry 14

Table 3, entry 15

4d'
 \qquad

Table 3, entry 16

Table S1, entry 1 (Table S2, entry 1; Table S3, entry 1)

Table S1, entry 2

Table S1, entry 3

Table S2, entry 2

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Table S2, entry 3

Table S2, entry 4

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Table S2, entry 5

Table S3, entry 2

Table S3, entry 4

Table S3, entry 5

Table S4, entry 1

Table S4, entry 3

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Table S4, entry 4

Table S5, entry 1

Ratio of 3a: 4a : 4a’(Table S5, entry 1)

$=[6 / 6 \div(6 / 6+2.36 / 6+0.12 / 2) \times 100]:[2.36 / 6 \div(6 / 6+2.36 / 6+0.12 / 2) \times 100]:$ $[0.12 / 2 \div(6 / 6+2.36 / 6+0.12 / 2) \times 100]$
$=69: 27: 4$

Table S5, entry 2

Table S6, entry 1

ppm (t1)

4a
1

Table S6, entry 2

Aa'

\qquad song \qquad

mandowhe nonobruble manas

$4 a$

Table S6, entry 4

Table S6, entry 5

Table S6, entry 6

$4 a$

I

Partial contour plot of 2D ROESY spectrum for binding of 5 a to $\boldsymbol{\beta}$ - $C D$ in $\mathbf{D}_{2} \mathbf{O}$.

Based on the 2D ROESY spectrum of the binding of $\mathbf{5 a}$ to β-CD, strong NOE correlation signals of $o-\mathrm{H}$ and $m-\mathrm{H}$ of $\mathbf{5 a}$ with H 3 and H 5 of $\beta-\mathrm{CD}$ and the absence of correlation signal of $p-\mathrm{H}$ of $5 \mathbf{a}$ with protons of β-CD suggest that the phenyl group of $\mathbf{5 a}$ is deeply inserted into the β-CD cavity and $p-\mathrm{H}$ of $5 \mathbf{a}$ is exposed outside of the cavity. H6 of β-CD shows no NOE correlation signal with any protons of the phenyl group of $\mathbf{5 a}$, revealing that $p-\mathrm{H}$ of $\mathbf{5 a}$ is exposed outside the secondary face of β-CD. Considering the $1: 1$ stoichiometry of the inclusion complexation between $\mathbf{3 a}$ and $\beta-\mathrm{CD}$, the possible binding geometry of the benzoate group of $\mathbf{5 a}$ is proposed (Figure S 16).

Figure S16. Proposed binding geometry for the inclusion of $\mathbf{5 a}$ in β-CD.

Partial contour plot of 2D ROESY spectrum for binding of $5 \mathbf{b}$ (tert-butyl moiety) to $\boldsymbol{\beta}$-CD in $\mathrm{D}_{2} \mathrm{O}$.

Partial contour plot of 2D ROESY spectrum for binding of $5 \mathbf{b}$ (phenyl ring moiety) to $\boldsymbol{\beta}$-CD in $\mathrm{D}_{2} \mathrm{O}$.

In the 2D ROESY spectrum for binding of $\mathbf{5 b}$ to β-CD, the protons of the tert-butyl group and the protons at the m-position of the phenyl ring of $\mathbf{5 b}$ have strong NOE correlation signals with H3 and H 5 of β-CD while the protons at the o-position of the phenyl ring of $\mathbf{5 b}$ only exhibits weak correlation signal with H 6 of β-CD. This suggests that $\mathbf{5 b}$ inserts into β-CD from the primary face. The tert-butyl group of $\mathbf{5 b}$ is included in the β-CD cavity, and just half of the phenyl ring is inserted to the β-CD cavity. As the stoichiometry for the formation of inclusion complex of $\mathbf{3 b}$ and β - CD is 1 : 1 , the possible binding geometry of the 4-tert-butylbenzoate moiety of $\mathbf{5 b}$ is proposed in Figure S17.

Figure S17. Proposed binding geometry for the inclusion of $\mathbf{5 b}$ in β-CD.

Partial contour plot of 2D ROESY spectrum for binding of 5 c to $\boldsymbol{\beta}$-CD in $\mathrm{D}_{2} \mathrm{O}$.

From the 2D ROESY spectrum for binding of 5 c to β-CD, the protons of the tert-butyl group of 5c have NOE correlation signals with $\mathrm{H} 3, \mathrm{H} 5$, and H 6 of β-CD with different intensities. The NOE signal between the protons of the tert-butyl group and H 3 is the strongest, and that between the protons of the tert-butyl group and H 5 is moderate, while that between the protons of the tert-butyl group and H 5 is the weakest. Based on these findings, it was proposed that the tert-butyl group of $\mathbf{5 c}$ enters the cavity of β-CD from the secondary face, unlike $\mathbf{5 a}$ and $\mathbf{5 b}$. As the stoichiometry for formation of inclusion complex of 3 c and β-CD is $1: 1$, the possible binding geometry of the tert-butyl group of $5 \mathbf{c}$ to β-CD is suggested (Figure S 18).

Figure S18. Proposed binding geometry for the inclusion of $5 \mathbf{c}$ in β-CD.

Partial contour plot of 600 MHz 2D ROESY spectrum for binding of 3d to $\boldsymbol{\beta}$-CD in $\mathbf{D}_{2} \mathbf{O}$.

From the 2D ROESY spectrum of the binding of 3d to β-CD, strong NOE signals of the 3,7-dimethyloctyl chain of $\mathbf{3 d}$ with H 3 , H5, and H6 of β-CD suggest that the 3,7-dimethyloctyl chain of $3 \mathbf{d}$ is included into the cavity of β-CD. The NOE signal of the terminal dimethyl group of $\mathbf{3 d}$ with H 5 and H 6 of β-CD is more intense than that with H 3 of β-CD, and the internal methyl group of 3d have more intense signal with H 3 than with H5. This reveals that the terminal dimethyl group is close to the primary face, and the internal methyl group is close to the secondary face. Based on the $2: 1$ stoichiometry of the inclusion complex between $\mathbf{3 d}$ and β-CD, the binding geometry is proposed as Figure S19.

Figure S19. Proposed binding geometry for the inclusion of 3d in β-CD.

Calibration Curve for GC Analysis

(a) Cumene (6a) and cumyl alcohol (7a) (25-800 ppm), internal standard: n-decane (5040 ppm)

(b) Ethyl benzene (6b) and acetophenone (7b) (25-975 ppm), internal standard: n-decane (504
ppm)

Chromatogram of C-H bond Oxidation of 6a and 6b

(a) Oxidation of 6 a in $\mathrm{H}_{2} \mathrm{O}$ with $\boldsymbol{\beta}$-CD

Temperature program: The temperature initially stayed at $105^{\circ} \mathrm{C}$ for 3 min , then rose to $110{ }^{\circ} \mathrm{C}$ at the rate of $70{ }^{\circ} \mathrm{C}$ per min, and finally stayed at $110^{\circ} \mathrm{C}$ for 3 min .

Concentration of internal standard: 3111 ppm

rted By	$:$	Signal
maltiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: FID1 A,

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area counts*s	Height [counts]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	3.422	BB	0.0220	6805.32422	4972.39062	7.14136
2	4.083	BB	0.0265	$8.35267 e 4$	4.99685 e 4	87.65111
3	5.652	BV	0.0362	4962.49072	2050.17944	5.20753
Totals	s :			9.52945 e 4	5.69911 e 4	

Results obtained with enhanced integrator!

(b) Oxidation of 6a in $\mathbf{H}_{2} \mathrm{O}$

Temperature program: The temperature initially stayed at $105^{\circ} \mathrm{C}$ for 3 min , then rose to $110{ }^{\circ} \mathrm{C}$ at the rate of $70{ }^{\circ} \mathrm{C}$ per min, and finally stayed at $110^{\circ} \mathrm{C}$ for 3 min .

Concentration of internal standard: 3111 ppm

Wrted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: FID1 A,

Peak	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	Area counts*s	Height [counts]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.418	PB	0.0211	553.42493	426.21051	0.65376
2	4.080	BB	0.0262	8.40989 e 4	$5.11577 e 4$	99.34624
Total	s :			$8.46523 e 4$	5.15840 e 4	

Results obtained with enhanced integrator!

*** End of Report ***

(c) Oxidation of 6 a in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ without β-CD

Temperature program: The temperature initially stayed at $100{ }^{\circ} \mathrm{C}$ for 3 min , then rose to $110{ }^{\circ} \mathrm{C}$
at the rate of $70{ }^{\circ} \mathrm{C}$ per min, and finally stayed at $110^{\circ} \mathrm{C}$ for 3 min .

Concentration of internal standard: 311 ppm


```
    Area Percent Report
```



```
Sorted By Signal
Multiplier :
Signal 1: FID1 A,
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{aligned}
& \text { RetTime } \\
& \text { [min] }
\end{aligned}
\] & Type & Width [min] & Area counts*s & Height [counts] & \begin{tabular}{l}
Area \\
\%
\end{tabular} \\
\hline 1 & 3.578 & BV & 0.0198 & 8487.38379 & 6696.82227 & 47.50764 \\
\hline 2 & 4.310 & VB & 0.0262 & 8798.01367 & 5352.95313 & 49.24637 \\
\hline 3 & 5.951 & BP & 0.0315 & 579.90680 & 246.19954 & 3.24599 \\
\hline
\end{tabular}
Totals : 1.78653e4 1.22960e4
```

 Results obtained with enhanced integrator!

*** End of Report ***
(d) Oxidation of 6 b in $\mathrm{H}_{2} \mathrm{O}$ with $\boldsymbol{\beta}$-CD

Temperature program: The temperature initially stayed at $100^{\circ} \mathrm{C}$ for 3 min , then rose to $180^{\circ} \mathrm{C}$ at the rate of $70^{\circ} \mathrm{C}$ per min, and finally stayed at $180^{\circ} \mathrm{C}$ for 3 min .

Concentration of internal standard: 311 ppm


```
Area Percent Report
lll
Signal 1: FID1 A,
Peak RetTime Type Width Area Height Area
```



```
    1 3.036 PB 0.0191 9496.75781 7858.29980 46.45183.
    2 4.416 VB 0.0305 8946.07324 4647.00146 43.75825
    3 5.646 BP 0.0211 2001.48279 1447.86682 9.78992
Totals : 2.04443e4 1.39532e4
    Results obtained with enhanced integrator!
===========================================================================
trument 1 12/15/10 4:37:11 PM Jimmy

\section*{(e) Oxidation of \(\mathbf{6 b}\) in \(\mathrm{H}_{\mathbf{2}} \mathrm{O}\)}

Temperature program: The temperature initially stayed at \(100^{\circ} \mathrm{C}\) for 5 min , then rose to \(180^{\circ} \mathrm{C}\) at the rate of \(70^{\circ} \mathrm{C}\) per min, and finally stayed at \(180^{\circ} \mathrm{C}\) for 2 min .

Concentration of internal standard: 311 ppm


\section*{(f) Oxidation of \(\mathbf{6 b}\) in \(\mathbf{H}_{2} \mathbf{O} / \mathbf{C H}_{3} \mathrm{CN}\) without \(\boldsymbol{\beta}\) - CD}

Temperature program: The temperature initially stayed at \(100^{\circ} \mathrm{C}\) for 3 min , then rose to \(180^{\circ} \mathrm{C}\) at the rate of \(70^{\circ} \mathrm{C}\) per min, and finally stayed at \(180^{\circ} \mathrm{C}\) for 3 min .

Concentration of internal standard: 311 ppm


```

Area Percent Report

```

\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}

Signal 1: FID1 A,
```

Peak $\#$ $\#$ RetTime Type [min]	Width [min]	Area counts*s	Height [counts]	Area $\%$		
$--\mid$	3.085	BP	0.0172	7318.51367	6479.84033	46.57081
1	3.530	PB	0.0296	8169.40381	4209.70801	51.98538
3	5.730	BV	0.0219	226.89276	148.01051	1.44381

 Results obtained with enhanced integrator!
    ```

```

 *** End of Report ***
    ```

\section*{(g) Oxidation of a mixture of \(\mathbf{6 a}\) and \(6 b\) in \(\mathrm{H}_{2} \mathrm{O}\) with \(\boldsymbol{\beta}\)-CD}

Temperature program: The temperature initially stayed at \(100^{\circ} \mathrm{C}\) for 3 min , then rose to \(180^{\circ} \mathrm{C}\)
at the rate of \(70^{\circ} \mathrm{C}\) per min, and finally stayed at \(180^{\circ} \mathrm{C}\) for 2 min .

Concentration of internal standard: 311 ppm


```

 Area Percent Report
    ```

\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}

Signal 1: FID1 A,
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & Area counts*s & Height [counts] & \[
\begin{gathered}
\text { Area } \\
\%
\end{gathered}
\] \\
\hline 1 & 3.153 & MM & 0.0191 & 6220.30762 & 5415.76953 & 24.50126 \\
\hline 2 & 3.728 & MM & 0.0241 & 6983.68750 & 4834.27930 & 27.50815 \\
\hline 3 & 4.619 & MM & 0.0323 & 9355.64746 & 4820.53369 & 36.85110 \\
\hline 4 & 5.804 & MM & 0.0236 & 161.70407 & 114.41843 & 0.63694 \\
\hline 5 & 6.006 & MM & 0.0249 & 2666.35620 & 1786.06433 & 10.50255 \\
\hline Totals & & & & \(2.53877 e 4\) & 1.69711 e 4 & \\
\hline
\end{tabular}

Results obtained with enhanced integrator!

*** Dñ ~f n~m—nt + + +

\section*{(h) Oxidation of a mixture of \(\mathbf{6 a}\) and 6 b in \(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}\) without \(\boldsymbol{\beta}\)-CD}

Temperature profile: The temperature initially stayed at \(100^{\circ} \mathrm{C}\) for 3 min , then rose to \(180^{\circ} \mathrm{C}\) at the rate of \(70^{\circ} \mathrm{C}\) per min, and finally stayed at \(180^{\circ} \mathrm{C}\) for 2 min .

Concentration of internal standard: 311 ppm


```

Area Percent Report

```
\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}

Signal 1: FID1 A,
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{aligned}
& \text { RetTime } \\
& {[\mathrm{min}]}
\end{aligned}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & Area counts*s & Height [counts] & Area \% \\
\hline 1 & 3.154 & MM & 0.0189 & 5984.56348 & 5269.64111 & 24.83551 \\
\hline 2 & 3.730 & MM & 0.0238 & 7451.79248 & 5213.46387 & 30.92440 \\
\hline 3 & 4.622 & MM & 0.0329 & 9665.46289 & 4899.29199 & 40.11098 \\
\hline 4 & 5.806 & MM & 0.0211 & 177.60823 & 140.13611 & 0.73706 \\
\hline 5 & 6.008 & MM & 0.0260 & 817.37604 & 523.15692 & 3.39205 \\
\hline
\end{tabular}

Results obtained with enhanced integrator!```

