Electronic Supplementary Information

Evidence for inhibition of HIF-1a Prolyl hydroxylase 3 activity by four biological active tetraazamacrocycles

Jing Cao, Zhirong Geng, Xiaoyan Ma, Jinghan Wen, Yuxin Yin, Zhilin Wang*

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China. Tel.: +86-25-83686082;

Fax: +86-25-83317761. E-mail: wangzl@nju.edu.cn

1. Experimental Details

(1) Details of activity reaction procedure

The reaction mixture contained 1 mM DTT, $0.6 \mathrm{mg} / \mathrm{mL}$ catalase, 2 mM ascorbate, 2 $\mathrm{mg} / \mathrm{mL} \mathrm{BSA}, 50 \mu \mathrm{M} \mathrm{FeCl} 2$ (prepared as 500 mM stock in 20 mM HCl and diluted with water), HIF 19 peptide, enzyme and 20 mM PBS, pH 7.0 , to a final volume of 96 $\mu \mathrm{L}$, keeping on ice bath. The reaction was initiated by addition of $4 \mu \mathrm{~L} 600 \mu \mathrm{M} 2 \mathrm{OG}$ to the reaction mixture. After warming to $37^{\circ} \mathrm{C}$ for 20 min , the reaction was quenched by addition of $200 \mu \mathrm{~L} 0.5 \mathrm{M} \mathrm{HCl}$. Derivatization was then achieved by the addition of $1 \mathrm{~mL} 1 \mathrm{mg} / \mathrm{mL}$ OPD in 0.5 M HCl and heating for 15 min at $75{ }^{\circ} \mathrm{C}$. After centrifugation for $5 \mathrm{~min}(12000 \mathrm{rpm})$, the supernatant was stored at $4{ }^{\circ} \mathrm{C}$ for no more than 1 hour, then made basic by the addition of 1 mL 1.175 M NaOH for fluorescence detection.
(2) The preparation of compounds 1-4

For use in enzyme activity assay and spectrometry studies, compounds $\mathbf{1 , 2}$ and 4 were prepared as 5 mM stock in Milli-Q deionized water and stored at $4^{\circ} \mathrm{C} . \mathbf{3}$ is prepared as 10 mM stock in acetonitrile and diluted with Milli-Q deionized water at room temperature.

2. Supplemented Figures

Fig. S1. Double reciprocal plots for the inhibition of hydroxylation activity by macrocyclic polyamines $\mathbf{1 - 4}$. a Plots for $\mathbf{1}$ concentration of $0 \mu \mathrm{M}(\mathbf{\bullet}), 1 \mu \mathrm{M}(\bullet), 3 \mu \mathrm{M}$ ($\mathbf{\Delta})$. b Plots for $\mathbf{2}$ concentration of $0 \mu \mathrm{M}(\mathbf{\square}), 3 \mu \mathrm{M}(\bullet)$ and $5 \mu \mathrm{M}(\mathbf{\Delta})$. c Plots for $\mathbf{3}$ concentration of $0 \mu \mathrm{M}(\mathbf{\bullet}), 1 \mu \mathrm{M}(\bullet), 2 \mu \mathrm{M}(\mathbf{\Delta})$. d Plots for $\mathbf{4}$ concentration of $0 \mu \mathrm{M}$ $(■), 1 \mu \mathrm{M}(\bullet)$ and $2 \mu \mathrm{M}(\mathbf{\Delta})$. (inset) Replot of slopes versus concentration of inhibitors. Data were analyzed as mean \pm S.D. of three independent experiments.

Fig. S2. Fluorescence emission spectra of PHD3 with increasing amounts of a 1, b 2, c 3 and d 4 in 50 mM PBS (pH 7.0) at $37{ }^{\circ} \mathrm{C}$. λ (excitation) was 280 nm and maximum λ (emission) was 330 nm , respectively. The data indicates that the inhibitors have little effects on the fluorescence of the enzyme with absence of Fe^{2+}.

Fig. S3. Fluorescence emission spectra of $\operatorname{PHD} 3-\mathrm{Fe}^{2+}(\mathrm{a}, \mathrm{b})$ and PHD3- $-\mathrm{Fe}^{2+}-2 \mathrm{OG}$ (c, d) mixtures with increasing amounts of $1(\mathrm{a}, \mathrm{c})$ and $2(\mathrm{~b}, \mathrm{~d})$ in $50 \mathrm{mM} \operatorname{PBS}(\mathrm{pH} 7.0)$ at $37^{\circ} \mathrm{C} . \lambda$ (excitation) was 280 nm . Inset: Effects of $1(\mathrm{a}, \mathrm{c})$ and $2(\mathrm{~b}, \mathrm{~d})$ on the maximum fluorescence emission intensity of $\mathrm{PHD} 3-\mathrm{Fe}^{2+}$ and PHD3- Fe^{2+}-2OG mixtures.

Fig. S4. Change in absorption spectra of a 1, b 2, c 3 and d 4 measured upon addition of Fe^{2+}. The concentrations of $1-4$ were $130,140,25,50 \mu \mathrm{M}$, respectively. The amounts of Fe^{2+} used for titration were from $10^{-4}-10^{-2} \mathrm{M}$. (inset) Determination of association constant (K_{a}) via Benesis-Hildebrand plot of $\lambda_{\max }$. The four compounds coordinates with Fe^{2+} in a $1: 1$ stoichiometry, according to linear fit of Benesi-Hildebrand equation ${ }^{1}(\mathrm{Eq} \mathrm{S} 1)$.
$1 /\left(\mathrm{A}-\mathrm{A}_{0}\right)=1 /\left[K_{\mathrm{a}}{ }^{*}[\mathrm{~L}] *\left(\mathrm{~A}-\mathrm{A}_{0}\right)\right]+1 /\left(\mathrm{A}-\mathrm{A}_{0}\right)(\mathrm{S} 1)$

1. H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703-2707.

3. Computationally Optimized Energy and Coordinates

(1) Energy of optimized model for the complex of 4-iron and residues of first coordination shell of PHD3 active site (a. u.)
-1990.7722236 a. u.
(2) Coordinates of optimized model for the complex of 4 -iron and residues of first coordination shell of PHD3 active site:

Standard orientation:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	4.724335	-1.738123	-0.215215
2	6	0	3.461462	-1.387963	0.256063
3	7	0	2.795785	-0.356304	-0.324343
4	6	0	3.163631	0.145828	-1.532142
5	6	0	4.414428	-0.170830	-2.054437
6	6	0	5.227809	-1.065068	-1.339107
7	6	0	2.519121	-2.186001	1.155491
8	6	0	1.964848	0.772405	-2.252684
9	7	0	1.168892	-2.020499	0.408147
10	6	0	-0.026698	-2.806814	0.861088
11	6	0	-1.046977	-2.877671	-0.292924
12	7	0	-1.631664	-1.543709	-0.730101
13	6	0	-1.460734	-1.032453	-2.130671
14	6	0	-0.589993	0.245399	-2.246012
15	7	0	0.780326	-0.027416	-1.690225
16	16	0	-3.238998	-1.329976	-0.040263

17	8	0	-3.197709	-1.622905	1.499303
18	8	0	-4.417261	-1.883465	-0.938736
19	1	0	5.283541	-2.543723	0.243236
20	1	0	4.734296	0.222276	-3.011233
21	1	0	6.212870	-1.311838	-1.715204
22	1	0	2.820391	-3.236329	1.218777
23	1	0	2.386464	-1.741656	2.141840
24	1	0	2.058352	0.650067	-3.337653
25	1	0	1.803369	1.821454	-2.008384
26	1	0	1.374638	-2.358630	-0.546046
27	1	0	0.251247	-3.839554	1.112540
28	1	0	-0.477665	-2.340110	1.731998
29	1	0	-0.577146	-3.301876	-1.188171
30	1	0	-1.843461	-3.570977	-0.000530
31	1	0	-2.438592	-0.850157	-2.590292
32	1	0	-1.000757	-1.840701	-2.712585
33	1	0	-0.538538	0.504393	-3.312771
34	1	0	-1.025371	1.075135	-1.692730
35	1	0	0.996652	-1.004140	-1.941676
36	26	0	1.052618	0.039396	0.348608
37	8	0	-0.763286	0.280697	1.380839
38	7	0	1.371265	2.060445	0.496133
39	6	0	-0.145724	-0.089893	2.486475
40	8	0	1.142343	-0.126923	2.406004
41	6	0	-0.887123	-0.539892	3.730786
42	7	0	1.116222	4.156126	1.187194
43	1	0	-1.853209	-0.957203	3.440982
44	1	0	-0.279219	-1.266074	4.273065
45	1	0	-1.062279	0.314934	4.396694
46	1	0	0.688888	4.984653	1.587331

47	7	0	-3.540894	0.537190	-0.418659
48	6	0	-2.878717	1.711355	-0.037290
49	1	0	-1.998840	1.634975	0.580802
50	6	0	-3.596088	2.747751	-0.575310
51	1	0	-3.443925	3.816306	-0.569910
52	6	0	-4.645772	0.835628	-1.134354
53	1	0	-5.343641	0.114715	-1.523857
54	6	0	2.485620	2.829057	0.087075
55	1	0	3.323552	2.395861	-0.423253
56	6	0	2.325536	4.125803	0.497026
57	1	0	2.937029	5.001849	0.337654
58	6	0	0.574273	2.901905	1.172441
59	1	0	-0.335543	2.627853	1.667803
60	7	0	-4.688914	2.173874	-1.246211
61	1	0	-5.406444	2.694101	-1.748648

4. Table S1

Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the computational model

Bond length		Bond angles	
N1-Fe	1.910	O3-Fe-O4	63.761
$\mathrm{~N} 2-\mathrm{Fe}$	2.064	$\mathrm{~N} 5-\mathrm{Fe}-\mathrm{O} 3$	89.187
$\mathrm{~N} 4-\mathrm{Fe}$	2.058	$\mathrm{~N} 4-\mathrm{Fe}-\mathrm{N} 5$	97.110
$\mathrm{~N} 5-\mathrm{Fe}$	2.051	$\mathrm{~N} 4-\mathrm{Fe}-\mathrm{N} 1$	76.409
$\mathrm{O} 3-\mathrm{Fe}$	2.103	$\mathrm{~N} 1-\mathrm{Fe}-\mathrm{N} 2$	75.639
$\mathrm{O} 4-\mathrm{Fe}$	2.066	$\mathrm{~N} 2-\mathrm{Fe}-\mathrm{O} 4$	83.599

5. Table S2

Average $\log \mathrm{P}$ of compounds 1-4 calculated by ALOGPS 2.1 program from Virtual

Computational Chemistry Laboratory ${ }^{2}$.

Inhibitors	Average $\log \mathrm{P}$
1	-4.58 ± 1.93
2	-0.92 ± 0.91
3	7.68 ± 1.15
4	1.68 ± 0.57

2. I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Palyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk and V. V. Prokopenko, J. Comput. Aided. Mol. Des., 2005, 19, 453-463.
